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Abstract. We address the issue of bandwidth al-
location on end-to-end communication networks with
multi-class traffic, where bandwidth is determined
optimally under the budget and network constraints.
We derive the blocking probabilities with respect to
bandwidth, traffic demand and the available num-
ber of end-to-end paths based on Erlang loss formula
for all service classes. Depending upon the block-
ing probability, the project presents different perfor-
mance metrics, such as budget ratio, utilization level
and bandwidth elasticity of blocking. Monotonicity
and convexity of blocking probabilities with allocated
bandwidth, traffic demand and the number of end-to-
end paths are also discussed.

1 Introduction

For a communication network providing performance
guarantees, it has to reserve resources and exercise
call admission control [43]. Network users are main-
ly interested in obtaining good quality connection-
s whenever they place requests. It is the network
providers’ mission to have an end-to-end path with
suitable bandwidth. Clearly, it is too costly for the
network providers to have a 100% guaranteed avail-
ability for all connections under the budget constraint
at any time. This is also not necessary since demand
for connections or bandwidth capacity varies over
time. Traffic flow fluctuates with time, and connec-
tions do not last forever but occur at random times
and vanish in the network once the corresponding dig-

ital document has been transferred completely. This
results in a random dynamic set of active connection-
s. Moreover, the bandwidth assigned to each connec-
tion would determine how long that connection will
stay active and thus impacts the evolution of the set
of active connections. The network chooses an opti-
mal sharing scheme for the different users under the
total budget to fulfill connection requirements. In ad-
dition, the risk (probability) of rejecting connection
requests due to lack of resources is supposedly kept
below a negotiated level.

In this work, we aim to analyze the relationship
among blocking probability, bandwidth, traffic de-
mand and the available number of end-to-end paths
on communication networks with service from ISPs,
where requests for connections represent customer-
s arriving at the system. As soon as requests are
accepted by the system, the service begins. The in-
stalled bandwidth allocation is used to maintain a
guaranteed connection availability where the block-
ing probability is kept below certain negotiated lev-
els. Our intention is to analyze the sensitivity of
the blocking probability with respect to these sys-
tem parameters, where the parameters for the system
change one at a time.

We derive the relationship between the blocking
probability and allocated bandwidth under the bud-
get constraint, which has received relatively little at-
tention in the literature. The blocking probability
of connections for each QoS class is formulated as a
function of allocated bandwidth, traffic demand and
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the available number of end-to-end paths. Monotone
and convex properties of the blocking probability are
shown in both theoretical construction and numeri-
cal examples. The results of this work can be helpful
in the operational processes involved in the efficient
set-up and usage of a core network under the bud-
get constraint, e.g., network design and provisioning
purposes.

The closed-form expression of the blocking proba-
bility in terms of bandwidth can be used to investi-
gate the optimal buffer size in capacitated commu-
nication systems so that the blocking probability is
kept below a specific threshold [35]. One application
of the relationship between blocking probability and
bandwidth allocation may be referred to designing
network pricing mechanisms for sharing bandwidth in
terms of blocking/congestion costs, whose examples
were given by Yacoubi et al. [43] and Anderson et al.
[3], etc. Another application of this work is used to
consider the admission control in end-to-end network-
s under different bandwidth sharing policies including
throughput maximization, max-min fairness, propor-
tional fairness and balanced fairness, etc. Interested
readers may refer to Egorova et al. [10], Bonald et
al. [7], Nilsson and Pióro [29], etc.

2 Problem definitions

Consider a directed network topology G = (N,A),
where N and A denote the set of nodes and the set
of links in the network respectively. All connections
are delivered through G from the source node o to the
destination node d. There are m different Quality of
Service (QoS) classes in this core network G [4], and
M = {1, 2, . . . ,m} denotes an index set consisting of
m QoS classes.

We assume connections of class i occur at the
source node o in accordance with independent Pois-
son processes at rate λi(t) at period t, but the connec-
tion volume to be transmitted has an arbitrary distri-
bution with mean σi(t) [40]. At period t, we intend to
allocate the bandwidth under a limited budget B(t)
in order to provide each class with maximal possible
QoS. The number of virtual paths of class i ∈ M is
denoted by si(t). Every virtual path of class i ∈ M

is allocated the same amount of bandwidth xi(t) at
period t.

For each class i ∈ M , the mean sojourn time
1/µi(t) of connections on virtual paths correspond-
s to the packet transmission time, and it is equal
to average connection volume divided by bandwidth,
i.e.,

1
µi(t)

=
σi(t)
xi(t)

. (1)

Suppose that connections occupy the virtual paths
in the order they occur and that sojourn times are
identically distributed and mutually independent.

In this article, we investigate the relationships be-
tween performance measures of interest and model
parameters at period t, which is similar at other pe-
riods. To simplify the notation, we skip the notation
(t), and the derivation is conducted in general for-
mat. The following definitions are given and will be
used throughout the whole context of this article.

Definition 1 The traffic demand yi for class i ∈
M is defined as the product of the mean occurrence
rate λi and the average connection volume σi, i.e.,

yi = λiσi. (2)

This communication system is analyzed as an Er-
lang loss model under assumptions of Poisson arrival-
s, general sojourn time, preset si virtual paths with
identical bandwidth xi, and no waiting space [28],
[40]. For a traffic class i ∈ M , we derive the steady-
state occupancy probabilities of n (0 ≤ n ≤ si) con-
nections, Pn. The unique steady-state probability
exists for this stable system [40]. Hence, we have

Pn =
P0

n!

(
λiσi

xi

)n

, n = 1, 2, . . . , si,

where λi is the mean occurrence rate of connections,
σi is the average connection volume, xi is the band-
width allocation and si is the preset number of virtual
paths. Solving for P0 in the equation

∑si

n=0 Pn = 1,
we can obtain P0 and Pn for n = 1, 2, . . . , si. Thus,
the blocking probability of incoming connections is
formulated as

P (xi, si, yi) =
(yi/xi)si

si!

[
si∑

n=0

(yi/xi)n

n!

]−1

, (3)
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where xi is the allocated bandwidth, si is the preset
number of virtual paths in the off-line optimization,
and yi = λiσi is the traffic demand from on-line traf-
fic flow. Moreover, the expected path occupancy in
the steady state is

L(xi, si, yi) =
si∑

n=1

(yi/xi)n

(n− 1)!




si∑

j=0

(yi/xi)j

j!



−1

. (4)

Note that L(xi, si, yi) = (yi/xi)(1 − P (xi, si, yi)).
The average throughput for class i ∈ M can be de-
termined by xiL(xi, si, yi).

In real world cases, the numbers of connections (or
users) on networks are always huge, i.e., si À 0. If
the traffic intensity ρi = yi/sixi < 1, equation (3)
can be rewritten as

P (xi, si, yi) ≈ (yi/xi)sie−yi/xi

si!
, as si →∞. (5)

Moreover, we can conclude that

L(xi, si, yi) ≈ yi

xi

(
1− (yi/xi)sie−yi/xi

si!

)
, (6)

as si →∞.

3 Network management
schemes

Network managers may wish to maximize the aver-
age revenue of the system [26] when regulating the
bandwidth allocation ~x = (x1, . . . , xm) and the num-
ber of virtual paths ~s = (s1, . . . , sm). Given traffic
demand yi for class i ∈ M , network managers would
like to determine the values of ~x and ~s to optimal the
system. As far as QoS is concerned, bandwidth al-
location xi and blocking probability P (xi, si, yi) are
the key elements of the network revenue managemen-
t scheme [7], [10], [12], [14], [17], etc. The operating
costs can be determined by the type of traffic trans-
mitted (data, voice, video) and the QoS guaranteed
for such transfer (delay constraint, bandwidth allo-
cation and blocking probability, etc) [43]. When de-
signing a network revenue management scheme, one

can formulate an optimization model with the follow-
ing average revenue function for traffic class i ∈ M
[43]:

fi(xi, si, yi) = ct
iL(xi, si, yi)+cb

iλixi(1−P (xi, si, yi)),
(7)

where users of class i ∈ M are charged the cost cb
i

for using per unit of bandwidth and users of class
i ∈ M are charged the cost ct

i per unit of time for the
sojourn time 1/µi = σi/xi on those virtual paths.
Note that cb

i and ct
i can possibly be varied according

to the time of the day to serve with a congestion
control mechanism. The total revenue is obtained by
summing over (7) for all traffic classes.

Let Ω(~s,B,G)) be the feasible set consisting of the
network constraints under preset numbers of virtual
paths ~s = (s1, . . . , sm), limited budget B and network
topology G. A network optimization scheme can be
executed as follows [3], [9], [16], [38], [39], etc.

max
∑

i∈M

wifi(xi, si, yi) (8)

s.t. ~x ∈ Ω(~s,B, G), (9)

where wi ∈ (0, 1) is a fixed weight assigned to each
class i by network managers. Here, ~x = (x1, . . . , xm)
is the decision variable, and ~s = (s1, . . . , sm), B,
yi are parameters. The goal is to determine the
bandwidth allocation ~x under negotiated QoS lev-
el so that the revenue earned by the network access
providers is maximized. The feasible set Ω(~s,B, G))
is bounded. This result follows since the bandwidth
allocated to each class i in (8), ∀i ∈ M , has a up-
per bound due to limited budget B. Moreover, the
feasible set Ω(~s,B, G)) decreases to an empty set if
||~s||2 = (

∑m
i=1 s2

i )
1/2 increases to a sufficiently large

number, where || · ||2 denotes the well-known Eu-
clidean norm on the vector space Rm.

Given fixed network topology G and limited bud-
get B, we can determine the optimal solutions ~x∗ =
(x∗1, . . . , x

∗
m) under preset numbers of virtual path-

s ~s = (s1, . . . , sm), where x∗i represents the optimal
bandwidth allocated to every virtual path of class
i ∈ M . Note that the optimal bandwidth allocation
~x∗(~s,B,G) is a function of ~s, B and G. Consequently,
the maximal throughput of si virtual paths of class i
is six

∗
i .
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4 Monotonicity and convexity
of blocking probability

The monotonicity and convexity properties of the
blocking probability (3) are listed below.

Proposition 1 The blocking probability P (xi, si, yi)
is a decreasing function of bandwidth xi, given si ≥ 1
and yi > 0 fixed.

Corollary 1 In the case of large si À 1, if the traf-
fic intensity ρi = yi/(sixi) < 1 holds, the first deriva-
tive of blocking probability P (xi, si, yi) with respect to
bandwidth xi is always negative, i.e.,

∂P (xi, si, yi)
∂xi

= (
yi

xi
− si)

ysi
i e−yi/xi

si!xsi+1
i

< 0. (10)

Proposition 2 For each si ≥ 1 and yi > 0, there
exists a subset (or region) S of positive real numbers
such that the blocking probability P (xi, si, yi) is con-
vex (concave) in bandwidth xi for all xi ∈ (/∈) S.

It should be noted that, as si → ∞, the limit of
the sequence {si + 5

2 −
√

s2
i + 4si + 2 | si ∈ N} is

0.5, where N is the set of positive integers. As the
number of end-to-end paths si is huge in real-world
communication systems, Proposition 2 implies that
P (xi, si, yi) is convex in bandwidth xi if we have
0.5 < P (xi, si, yi) ≤ 1. Otherwise, there exist two
inflection points x∗i and x∗∗i when 0 ≤ P (xi, si, yi) <
0.5.

Proposition 3 If the traffic intensity ρi = yi/sixi >
1 holds in the case of large si À 1, the expected
path occupancy L(xi, si, yi) is a decreasing function
of bandwidth xi, given yi > 0 fixed.

Given yi > 0 and si ≥ 1 fixed, there exists an
inflection point x∗i such that for all xi ≤ (≥)x∗i the
expected path occupancy L(xi, si, yi) is concave (con-
vex) in bandwidth xi.

It can also be observed that the utilization level
U is a decreasing function of bandwidth xi for given
yi > 0 and si ≥ 1. This is because the utilization level
U equals to the expected path occupancy L(xi, si, yi)
divided by si. Meanwhile, there exists an inflection
point x∗i such that for all xi ≤ (≥)x∗i the utilization
level U is concave (convex) in bandwidth xi.

Proposition 4 The blocking probability P (xi, si, yi)
is increasing in traffic demand yi, given xi > 0 and
si ≥ 1 fixed.

5 Elasticity

For each traffic class, we investigate the elasticity of
blocking probability with respect to bandwidth, traf-
fic demand and the number of virtual paths individu-
ally. Based on the investigation of elasticity, one can
develop distributed algorithms for network revenue
management that takes user’s elasticity into consid-
eration [44], [3], etc. By using the concept of elastici-
ty, we can define the bandwidth elasticity of blocking
εb
i for class i ∈ M as follows.

Definition 2 The bandwidth elasticity of block-
ing is defined as

εb
i =

4P (xi, si, yi)/P (xi, si, yi)
4xi/xi

, (11)

where 4xi is the change in allocated bandwidth, and
4P (xi, si, yi) is the change in blocking probability.

The elasticity εb
i represents the percent change in

blocking probability in response to a percent change
in bandwidth. Similarly, the demand elasticity of
blocking εd

i and the capacity elasticity of blocking
εc
i for class i ∈ M are given below.

Definition 3 The demand elasticity of blocking
is defined as

εd
i =

4P (xi, si, yi)/P (xi, si, yi)
4yi/yi

, (12)

where 4yi is the change in the traffic demand.

Definition 4 The capacity elasticity of blocking
is defined as

εc
i =

4P (xi, si, yi)/P (xi, si, yi)
4si/si

, (13)

where4si is the change in the number of virtual path-
s.
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Proposition 5 shows the phenomenon that the
blocking probability will decrease as the allocated
bandwidth increase. Proposition 6 infers that the
blocking probability will increase as the traffic de-
mand increases. Proposition 7 concludes that the
blocking probability is decreasing as enlarging the
number of virtual paths. Due to the limit of pages,
the proofs of those propositions are skipped here.
Those phenomena can also be observed in the nu-
merical results.

Proposition 5 The bandwidth elasticity of blocking
εb
i is nonpositive and decreasing as bandwidth xi in-

creases.

Proposition 6 The demand elasticity of blocking εd
i

is nonnegative as the traffic demand yi ≥ 0.

Proposition 7 The capacity elasticity of blocking εc
i

is nonpositive and decreasing as the number of virtual
paths si increases.

6 Conclusions

We consider the bandwidth allocation problem on
communication networks, where the network is mod-
elled with multiple classes of traffic. This work con-
centrates on study of the blocking probability proper-
ty of connections in terms of the available number of
end-to-end paths and the allocated bandwidth under
the budget constraint. We have presented importan-
t relations among the blocking probability, allocated
bandwidth, traffic demand and the number of end-
to-end paths.

The monotonicity and convexity relationships have
been analyzed among model parameters and perfor-
mance measures of interest, e.g., blocking probabili-
ties and expected path occupancy. We also presented
three elasticities to investigate the effect of varying
model parameters on the average revenue in analysis
of economic models. Those results are verified with
numerical examples of the blocking probability and
utilization level. One can use those monotone and
convex properties to investigate the marginal revenue
in capacitated communication systems so that the

blocking probability is kept below a specific thresh-
old. Future work will be conducted in the direction
of further investigation for the network revenue man-
agement schemes.
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