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1 Introduction

Maximum principles are an important tool in the study of partial differ-
ential and difference equations. For example, they can be used to obtain the
existence and uniqueness of solutions and to approximate it. Consequently the
theory of maximum principles in difference and differential equations has been
investigated extensively, see for example [1] and [2] and the references cited

therein.

In recent years, the study of dynamic equations on time scales has received
a lot of attentions since it not only can unify the calculation of difference
and differential equations but also has various applications. In particular, the
maximum principles have been established in [4] for the second order ordinary
dynamic operator and [5] for the elliptic dynamic operator. Motivated by the
above work, in this paper, we study the maximum principles for the elliptic
dynamic operator
n
Llu] := Z(UVZA" + Bjufi 4 Cyu¥?)
i=1
and the parabolic dynamic operator
n
Llu) := Z(uviAi + Bl + CauV) — uVr
i=1

Our results improve the results in [5].

This paper is organized as follows. Section 2 contains some basic defini-
tions and the necessary results about time scales. In Section 3, we present the
maximum principles for the elliptic dynamic operators. Finally, in section 4,
we establish the maximum principles for parabolic operators, and apply it to

obtain some useful applications.



2 Preliminary

For completeness, we state some fundamental definitions and results concern-
ing partial dynamic equations on time scales that we will use in the sequel. It
can be regarded as a generalization of the one-dimensional case. More details

can be found in [6], [7], [8], and [9].

A time scale is an arbitrary nonempty closed subset of R. Throughout this
paper, we denote I = {1,2,--- ,n}, where n € N, and we assume that T;, for

each ¢ € I, is a time scale and the set
A=T; xTyx -+ xT, ={t=(ts,ta,--- ,t,) | t; € T; for each i € I},
defined by the Cartesian product is an n-dimensional time scale.

Definition 2.1 For each v € I, the mappings o;, p; : T; — T; defined by

inf{fv € T, | v > u}, if u## maxT;,
oi(u) :==
max T, if u=maxT;,
and
sup{v € T; | v < u}, if uw# minT;,
pi(u) :=
min T;, if u=minT;,

are called the ith forward and backward jump operators respectively. In this
definition, the corresponding graininess functions p;, v; = T; — [0,00) are

defined by

pi(u) = oi(u) —u,  vi(u) :=u— pi(u).

For convenience, we define the functions &;, p; : A — A by

&Z(t) = (tlatQa e 7ti—170i(ti)7ti+1a e 7tn)7



and
ﬁz(t) = (tlatQa Tt 7ti—17pi(ti)7ti+la e 7tn)7
for any t € A and i € 1. In addition, if u : A — R is a function, then the

functions u%, u? : A — R are defined by
u(t) = u(Gi(t))  and  u(t) = u(pi(t)),
foranyte A andi e I.

Definition 2.2 A point t in A is said to be i-right dense if t; < maxT; and
oi(t;) = t;, and i-left dense if t; > minT; and p;(t;) = t;. Also, if o;(t;) > t;
then t is called i-right scattered, and if p;(t;) < t; thent is called i-left scattered.
Moreover, we say that t is i-scattered if it is both i-left scattered and i-right

scattered, and i-dense if it is both i-left dense and i-right dense.

Definition 2.3 For each i € I, let

T;\ max T;, if T; has a left scattered maximum,
(T =

T;, if T; has a left dense maximum.

Then we can define
AR = (TR x (To)* x -+ x (T,)*.

Assume u : A — R is a function and let t € A*. Then we define u®i(t) to be
the number (provided it exists) with the property that given any e > 0, there

exists a 0 > 0 such that
| [u(6:(t)) —u(s)] —u(B)[6s(t) — 5] [< e | Gi(t) — s |,

for all s € (t — de;,t + de;) N A, where {e; | i € I} denotes the natural basis
for R™. In this case, we call u™i(t) the partial delta derivative of u at t with
respect to t;.

In particular, if we choose n =1 in this definition, then u is a single variable



function from Ty into R, and we denote the delta derivative of u att € (T1)*

by u(t).

Definition 2.4 For each i € I, let

T;\ min T;, of T; has a right scattered minimum,
(Ty)x =

T;, if T; has a right dense minimum.

Then we can define
A]C = (Tl);g X (Tg);g X oo X (Tn)]c

Assume u : A — R is a function and let t € Ax. Then we define uVi(t) to be
the number (provided it exists) with the property that given any ¢ > 0, there

exists a & > 0 such that

| [u(pi(t) = u(s)] = V' ()[pi(t) — 8] |S e | pat) — s |,

for all s € (t — de;, t + de;) N A. In this case, we call uVi(t) the partial nabla
deriwative of u at t with respect to t;.
In particular, if we choose n =1 in this definition, then u is a single variable

function from Ty into R, and we denote the nabla derivative of u at t € (Tq)x

by uV(t).
For convenience, we denote the intersection of A* and Ag by AE, ie.,
A = (T1)k x (Ta)g x -+ x (T,)x.

Definition 2.5 Let the functions U, u : A — R satisfy Ui (t) = u(t) for
all t € A*, then we define /s w(t)Ait = U(s) — U(r) for all v, s € A and
it € 1. Similarly, we can define /s uw(t)Vit = U(s) = U(r) for allr, s € A if

r

UVi(t) =wu(t) for allt € A and i € I.

Definition 2.6 Let T be an arbitrary time scale, and p : T — R be a function



and satisfy
1—v(t)pt) #0  for all t € Tk.

Then we define the nabla exponential function by

éy(t,s) = exp(/tg(T)VT) for s,t €T,

where
p(7), if v(t) =0,
g(1) = .
—ﬁLog(l —v(7)p(7)),  ifv(r) #0.

Lemma 2.7 Suppose that v is a negative constant and s,t,u € T, then

(a) éa(t,s) >0 and é,(t,t)=1;
(b) éa(t,u)én(u,s) = énlt,s);
(c) eY(t,s) = aéy(t,s).

[0}

Lemma 2.8 Assume that f : T — R s a single variable function and let

t € Tk, then we have the following:

(a) If f is delta or nabla differentiable at t, then f is continuous at t.
(b) If f is continuous at a right-scattered point t, then f is delta differentiable

at t with

Ay flo@) = f(1)
o) = pt)

(c) Ift is right-dense, then f is delta differentiable at t if and only if the limit



(e) If f is continuous at a left-scattered point t, then f is nabla differentiable

at t with
vy _ S = fp?))
(f) If t is left-dense, then f is nabla differentiable at t if and only if the limit
o 0= 1(5)

s—t t—s
exists. In this case,

() — g T 1)

s—t t— s

(9) If f is nabla differentiable at t, then

Flp(t) = f(t) = v(t) [ (1)

Hereafter [a, bt represents an interval on time scale T, that is, [a, blr = [a, b]N
T. Other types of intervals on a time scale can be represented by the similar

way.
Lemma 2.9 Assume that f : T — R is a function, then

(a) If f2 >0 on [a,blr, then f is strictly increasing on |a, b]r.
b
(b) If f > 0 is a continuous function on [a,b|r, then / f()At > 0 and

b
/ f()Vt >0, where a, b € T.

Lemma 2.10 Assume that f : T — R is nabla differentiable and fV is con-

tinuous on Tx. Then f is delta differentiable at t and

A = fYV(o(t))  for all t € TF.



3 Maximum principles for elliptic dynamic equations

In this section we first consider the dynamic Laplace operator

n
Aru = Z uViti,

i=1
Let

A= [pi(ar), o1 (bi)lr, X -+ X [pn(an), on(bn)]r,-
We shall study the functions in the set

D(A) :={u: A — R | uV** is continuous in A% for each i € I}.

The following lemma provides some basic properties for an interior maximum

point of a function in D(A).

Lemma 3.1 Suppose that u € D(A) attains its mazimum at an interior point

m of A. Then, for each i € I, we have
uVilm) >0,  wfi(m) <0, and u'®(m)<0.
In particular, if m s i-right dense, then
uVi(m) = u®i(m) = 0.
Proof. Since v attains its maximum at an interior point m of A, it follows from
the definition of ©V¢ and u®¢ that

wViim) >0 and  u™(m) <0, (1)

for each i € I. Let us divide our proof into two cases according to the point

type of m with respect to the ith component.

(i) m is i-right dense:

In this case, by applying Lemma 2.10, we have that

u(m) = u¥i(&i(m)) = u¥ (m),



and consequently, together with (1), we conclude that
u¥i(m) = u?(m) = 0.

Now we want to show that uVi?i(m) < 0. For contradiction, we assume
that uVi®i(m) > 0. Then the continuity of uVi® and Lemma 2.9 imply
that there exists a & > 0 such that u"? is strictly increasing in ¢; on
J, where J denotes the set of all points ¢t € A lying on the line segment
joining m and m+de;. Since m is i-right dense, without loss of generality,
we may assume that m; +d € T;. Since uVi(m) = 0, it follows that
uVi(t) > 0 for all t € J. Then, by applying Lemma 2.9, we easily get

m+de;
/ uVi(5)Vis = u(m + de;) — u(m) > 0,

m

which contradicts the fact that u(m) is the maximum value on A.
(i) m is i-right scattered.

Note that

V(o (my) = W0iM) —u(pi(Gi(m))) _ w(Gi(m)) —u(m) _ a,
B ( z( )) Ui(mi) - pi<0i(mi>) 0i<mi) —m, (

Together with (1), we obtain

Corollary 3.2 Ifu € D(A) satisfies
Aru >0, in Ag, (2)
then u cannot attain its maximum at an interior point of A.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of A. By applying Lemma 3.1, we have that uVi?i(m) < 0 for each



1 € I. This implies that
Aru(m) =3 u¥®(m) <0,

=1

which contradicts (2). O

Next we consider the more general operator which contains the first-derivative
terms
Llu] := Z(uv’Ai + Bju®i + CauV?) = Aqu + Z(BZ-UAZ' + CuM).
i=1 i=1
Following the statement of Lemma 3.1, for each t € A, we define the auxiliary

index sets

Ippi={i €l :t;=oi(ts)},
IES = {Z el:t < O'Z(tl)}

Corollary 3.3 If u € D(A) satisfies
Llu] >0, in Af, (3)

and let B; and C; satisfy

(4)
for each t € N§ which is i-right scattered and i € I. Then u cannot attain its

mazximum at an interior point of A.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of A. Lemma 3.1 yields that at the point m, we have

,uVi(m) =0, and u m)

0 <0 if i € Iy,
ufi(m) <0, uVi(m) > 0, and uVi?i(m) <0 it i € Ifs.

Therefore, together with the assumption (4), we have that



= ; u¥ 3 (m) + EI; (Y21 (m) + Bi(m)u™ (m) + Cy(m)u”" (m))
S 07

which contradicts (3). O

Theorem 3.4 Let u € D(A) satisfy the inequality (3) and let B; and C;
satisfy

1+ Bi(t)p(t:) = 0,
(5)
=1+ Ci(t)pi(ts) <0,
for each t € N§ which is i-right scattered and i € I. Then u cannot attain its

maximum at an interior point of A.

Proof. For contradiction, we assume that v attains its maximum at an interior
point m of A. Then, by applying Lemma 3.1, we can rewrite L[u](m) in the

following way:

L[u](m)

n

= Z(uviAi(m) + Bi(m)u®(m) + Cy(m)u¥i(m))

(6)
= Z:n u¥i®i(m) + Zﬂ (V% (m) + Bi(m)u® (m) + Ci(m)u"" (m))
_ ViA; uti(m) —uVi(m) , A ' Vi

; w2 (m) + ; ( e + Bi(m)u~i(m) + Ci(m)u“i(m)).

If I = I}y, then (6) implies that

Lluj(m) = Y uVi%(m) <0,

i€l

10



which contradicts (3). Otherwise, let us define the auxiliary functions

pt) =TI wi(ty).  as(t) = I wty).
j€lps i€lhg
JFi

Obviously, if i € Ik we have

lt) = fs(Opilts). (7)

We multiply both sides of the equality (6) by fi(m) > 0 and use (7) to obtain

fu(m)Llu](m)

= jlm) > uV(m)

i€l

= jlm) D> uV(m)

el

+ Bi(m)u® (m) + Ci(m)uYi(m))

+i—i(m) > [(1 4 Bi(m)p;(mq))u™ (m) + (=1 4 Ci(m)pi(m;))u* (m)].

ielp
Lemma 3.1 together with the assumptions (5), and positivity of fi(m) and
fi_;(m) imply that
fu(m)L[u](m) <0,
which contradicts (3). Therefore we conclude that w cannot achieve its maxi-

mum at an interior point of A. O

11



4 Maximum principles for parabolic dynamic equations

In this section, we extend our results in the last section to the parabolic
dynamic operators. Let A be an n-dimensional time scale defined in section 3.

Then we define the (n + 1)-dimensional time scale 2 by

Q=Ax]0,T]

Trt1o

where T,,;; is an arbitrary time scale and 0,7 € T, ;. In addition, we set
B=Ax{0} and S=0Ax(0,Tlr,,,,
then we can define the parabolic boundary Pf) by

PQ =SUB.

Throughout this section, we study the functions in the set

D(Q) := {u: Q — R | uVi® is continuous in AR x [0, Ty, ,, for each i € I
and u¥V"+! is continuous in A x ([0, Ty, ., )i }-
Corollary 4.1 If u € D(Q) satisfies
Aru — uVrtt = iuviAi —u¥ >0, in Agx ([0,T)r,, )k, (8)
i=1

Then u cannot attain its maximum anywhere other than on the parabolic

boundary.

Proof. For contradiction, we assume that u attains its maximum at a point
m € 2\ PQ. This implies that m € Al x ([0, Ty, ,,)x. Therefore, by applying

Lemma 3.1, we have

uVi®i(m) <0 for each i€ I.

12



Since u attains its maximum at m, by the definition of partial nabla derivative
of u, we obtain
u¥m (m) > 0. (9)

It follows that
(Aru—uT4)(m) = 3w (m) — u¥ (m) <0,
i=1
which contradicts (8). O

Similarly, we consider the more general operator
n ~ ~
Llu) := Z(uViAi + Biufi 4 CuVi) — uVrt,
i=1

Corollary 4.2 If u € D(Q) satisfies
Llu) >0, in Agx ([0, )k, (10)

and let B; and C; satisfy

B;(t) > 0,
(11)
Ci(t) <0,

for each t € N x ([0,T)r,,, ) which is i-right scattered and i € I. Then u

cannot attain its mazimum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point

m € Q\ PQ. Lemma 3.1 together with the assumptions (11) and (9) imply

that
Llu](m)
= i}(uva’(Tro + Bi(m)uPi(m) + Cy(m)uVi(m)) — u¥m+ (m)
= ; qu'Ai<m) + z]; (UV A ( ) + Bi(m)uAl (m) + él(m)UVZ(m)) _ Vet (m)
<0

13



which contradicts (10). O

Theorem 4.3 Let u € D(Q) satisfy the inequality (10) and let B; and C;
satisfy

1+ Bi(t)p(ti) > 0,

(12)
-1+ éz(t),uz(tl) <0,

for each t € N x ([0,T)r,,,)c which is i-right scattered and i € 1. Then u

cannot attain its mazimum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point
m € Q\ PQ. As similar as the proof of Theorem 3.4, we rewrite Lu|(m) in

the following way:

Llu](m)

= > u(m) (13)

ubi(m) —uVi(m) =~ A S -
+ zj; ( e + Bi(m)u~i(m) + Ci(m)u“i(m)) —u (m).

If I = Iy, then (13) and (9) imply that

Liu)(m) = > uV®i(m) —u¥+(m) <0,

ielfy

which contradicts (10). Otherwise, we multiply both sides of the equality (13)
by fi(m) > 0 and use (7) and (9) to obtain that

14



which contradicts (10) and the proof is done. O
Next we consider the operator which contains the non-derivative term
(L + h)[u] == zn:(uviAi + Buu®i + CouVi) — uVr 4 ha
i=1
Theorem 4.4 Let u € D(R2) satisfy
(L+h)u] >0, in Agx ([0,T]r,., )k, (14)
and let B; and C; satisfy the inequality (12). Moreover, we suppose that

h(t) <0, (15)

for each t € N x ([0, Tr,,,)c. Then u cannot attain a nonnegative mazimum

anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains a nonnegative maximum

at a point m € Q\ PQ. By the proof of Theorem 4.3, we know that
Llul(m) <0,

if u attains its maximum at the point m. Then, together with the condition

h(m)u(m) < 0, we easily see that

(L + W) (m) = L{u)(m) + h(m)u(m) <0,

15



which contradicts (14). O

Corollary 4.5 If u € D(Q) satisfies

=1

in AR x ([0,T)r,,,)x. Further, we assume that

1+ (Bi(t) + ma(t:) Bi() pui(t;) > 0,

(17)
—1+ (Cilt) = milta)n(t))pts) < 0,
for each t € Ak x ([0,T)r,,,)x which is i-right scattered and i € I, and
h+> (Bi+v) <0, in A x ([0,T]r,,, )k (18)

i=1
Then u cannot attain a nonnegative maximum anywhere other than on the

parabolic boundary.

Proof. Using the formula (d) and (g) in the Lemma 2.8, we can obtain the two

analogues equalities:

for each t € A x ([0,T]r,,,)xc and i € I. Substituting these into (16), we
obtain
Z(ulel+(B,+uz(tl)ﬁz)uA’+(C~’l—Vl(tz)%)um)—uV”“—i—(h—l—Z(ﬁz—l—%))u > 0.
i=1 =1

Obviously, this operator has the form of (14), and the assumptions (17) and
(18) ensure that the inequalities (12) and (15) hold. Consequently, we can use

Theorem 4.4 to verify the statement. O

Finally, we establish the weak maximum principles for the parabolic operator

and apply it to obtain the uniqueness of solutions for the initial boundary

16



value problem.

Theorem 4.6 Let u € D(R2) satisfy
Llu] >0, in Ag x ([0, T]r,., )k, (19)

and we assume that B; be bounded above and C; < 0 satisfy the inequalities

(12). Then u attains its mazimum on the parabolic boundary, i.e.,

SUp u = sup u. (20)
Q PQ

Proof. Since B is bounded above, there exists a negative constant a such that
a+B; <0, in Agx([0,T]r,.. )k (21)

Select any point ¢ € Ty. Then, applying Lemma 2.7 and 2.10, we obtain

Llea(tr,1)] = (éa(t1, £))V2 + Bi(ea(ts, 1) + Ci(Ea(t, )
= (o + By)é3 (t1, 1) + aCiéa(ti, 1)
= (a+ B1)eY (o1(t), ) + aCliéa(ty, 1) (22)
= (o + By)aéy(o1(ty), 1) + aCiéa(ty, 01(t1))éq(o1(t1), ©)
= aéy(o1(t1),E)[a + By + Créa(tr, o1(t))].
The assumption C; < 0 together with (21), we see that
Lléa(t1,0)] >0, in Ag x ([0, ], )k
Then for each € > 0, we have
Llu + eé,(t1,1)] = Lu] + eL[é4(t1,1)] > 0, (23)
in A% x ([0, Tr, ., )x, so that

Sup(u+€éa(tl>£)) = sup(u+5éa(t1,f)), (24)
Q PQ

17



by applying the Theorem 4.3.

Now we want to show that supu = sup u. For contradiction, we assume that

Q PQ
supu > supu. Since the time scale T; is bounded, this implies that 0 <
Q PQ
éalt1, 1) < M for some M > 0. We set K = supu — supu > 0 and take
Q PQ
K

€ = 5,7, then by applying (24) we can deduce that

sup(u + é4(t1,1)) < sup(u +eM) = supu + M
PQ PQ PQ

K
= (supu — K)+ — < supu
Q 2 Q

< sup(u + €, (t1, f)) = sup(u + €é,(t1, f)),
Q PQ

which is a contradiction and the proof is done. O

The above proven maximum principles yields the uniqueness of solutions for

the following problem:

n

Z(uv"Ai + éiuAi + C’iuvi) — Yt = f(t) on Ag x ([0, T, 1 )

u(t) =g(t) on B, (25)

Theorem 4.7 Suppose that the assumptions of Theorem 4.6 holds. If uy and

ug are solutions of the initial boundary value problem (25), then u; = us.

Proof. First of all, we define the auxiliary function v = u; — us. Since both uq

and uy are solutions of (25), this implies that

Z(UVZAZ' + Bv®i + C’ivvi) —oVrtt =0 on AR x ([0, T, .1 )i -
i=1 26

v(t)=0 on PXQ

18



Obviously, we know that —v is also a solution of (26). Then by applying
Theorem 4.6, we have that

supv =supv =0 and  sup(—v) = sup(—v) = 0.
Q PQ Q PQ

It follows that
v(t) <0  and  —w(t) <0,

for each t € ). Consequently, we get the conclusion that v = u; —uy =0. O

19
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In recent years, the study of dynamic equations on time scales has received a lot
of attentions since 1t not only can unify the calculation of difference and
differential equations but also has various applications. In this project, we study
the maximum principles for the elliptic and parabolic dynamic equations on
multi-dimensional time scales.




