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Abstract

In this paper we are concernd with periodic boundary value problems for first-
order impulsive dynamic equations on time scales. By using Schaefer’s theorem and
Banach’s fixed point theorem we acquire some new existence results.
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1 Introduction

The theory of dynamic equations on time scales has received a lot of at-
tention since it can not only unify, extend, and generalize the theories of
differential equations and difference equations but also have various practical
applications. For more details about this theory, we refer the readers to [1], [2],
and [3]. One of the important research trends is the investigation of impulsive
dynamic equations on time scales. Recently, some researchers have focused
their attention on periodic boundary value problems (PBVPs for short) for
first-order impulsive dynamic equations. For example, Geng, Xu, and Zhu [4]
applied the method of upper and lower solutions coupled with monotone it-
erative techniques to derive the existence of extremal solutions and Wang [5]
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used the Guo-Krasnoselskii fixed point theorem to obtain some existence cri-
teria for positive solutions. However, to the best of the authors’ knowledge,
there is no existence criteria for (not necessarily positive) solutions to PBVPs
for first-order impulsive dynamic equations on time scales so far.

Let T be a time scale, i.e., a nonempty closed subset of R, and let 0, T ∈
T. Throughout this paper, [0, T ]T represents an interval on T, i.e., [0, T ]T =
[0, T ] ∩ T. Other types of intervals on T can be represented by a similar way.
Let J = [0, σ(T )]T. Motivated by [6], [7], and the above works, in this paper,
we are concerned with the existence of solutions to the following PBVPs for
first-order impulsive dynamic equations on T

x∆ + p(t)xσ = f(t, x), t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m, (1)

x(tk+)− x(tk−) = Ik(x(tk−)), k = 1, . . . ,m, (2)

x(0) = x(σ(T )), (3)

where f ∈ C(J × R,R), Ik ∈ C(R,R), p : J → [0,∞) is rd-continuous and
regressive with p ≡/ 0, and the points tk, k = 1, . . . ,m, are right-dense in T
such that 0 < t1 < · · · < tm < T . For convenience, we shall refer to (1)-(2)-(3)
as (NP).

When Ik(x) ≡ 0 for all k = 1, . . . ,m, the problem (NP) can be reduced to
the following PBVPs with no impulse effects

x∆ + p(t)xσ = f(t, x), t ∈ [0, T ]T,

x(0) = x(σ(T )),

which has been investigated by several researchers; see for example, [8], [9],
[10], [11], and the references cited therein.

PBVPs for first-order impulsive differential equations and difference equa-
tions (i.e., the cases T = R and T = Z) have been studied; see for example,
[12], [13], [6], [14], [15], [16], [17], [7], [18] for T = R and [19] for T = Z.

Let J0 = [0, t1]T, Jk = (tk, tk+1]T for k = 1, . . . ,m− 1, and Jm = (tm, σ(T )]T
and let

PC = {x : J → R| xk ∈ C(Jk), ∀k = 0, . . . ,m, and both x(tk+) and x(tk−)

exist such that x(tk−) = x(tk), ∀k = 1, . . . ,m},

where xk is the restriction of x to Jk for each k = 0, . . . ,m. We introduce
the Banach space X = {x ∈ PC : x(0) = x(σ(T ))} with the norm ‖x‖X =
supt∈J |x(t)|.

Definition 1.1 A function x is said to be a solution of (NP) if and only if
x ∈ PC ⋂C1([0, T ]T\{t1, t2, ..., tm}, R) and satisfies (1)-(2)-(3).
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We shall apply the well-known Banach’s fixed point theorem and Schaefer’s
theorem to establish the existence criteria of solutions for (NP). For readers’
convenience, we provide these two theorems here.

Lemma 1.2 (Banach’s fixed point theorem [20]) A contraction f of a com-
plete metric space S has a unique fixed point in S.

Lemma 1.3 (Schaefer’s theorem [20]) Let S ba a normed linear space, and
let operator F : S → S be compact. If the set

H(F ) = {x ∈ S : x = µF (x) for some µ ∈ (0, 1)}

is bounded, then F has a fixed point in S.

2 Linear problem

In this section we consider the ”linear problem”

x∆ + p(t)xσ = h(t), t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

x(tk+)− x(tk−) = Ik(x(tk−)), k = 1, . . . ,m,

x(0) = x(σ(T )).

For convenience, we shall refer to this problem as (LP). Note that (LP) is not
really a linear problem since the impulsive functions Ik, k = 1, . . . ,m, may or
may not be linear.

The following two basic lemmas will be used later and their proofs can be
found in [5].

Lemma 2.1 Suppose that h : J → R is rd-continuous. Then x is a solution
of (LP) if and only if x is a solution of

x(t) =
∫ σ(T )

0
G(t, s)h(s)∆s+

m∑
k=1

G(t, tk)Ik(x(tk)), t ∈ J, (4)

where

G(t, s) =


ep(s, t)ep(σ(T ), 0)

ep(σ(T ), 0)− 1
, 0 ≤ s ≤ t ≤ σ(T ),

ep(s, t)

ep(σ(T ), 0)− 1
, 0 ≤ t < s ≤ σ(T ).

Lemma 2.2 Let G(t, s) be defined as Lemma 2.1. Then

0 6 G(t, s) 6
ep(σ(T ), 0)

ep(σ(T ), 0)− 1
, A for all t, s ∈ J.
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Our existence result for (LP) is as follows.

Theorem 2.3 Suppose that there exist positive constants lk, k = 1, . . . ,m,
such that

|Ik(x)− Ik(y)| ≤ lk|x− y| for all x, y ∈ R and k = 1, . . . ,m.

If

A
m∑
k=1

lk < 1,

then the problem (LP) has a unique solution for any h ∈ PC.

Proof. First, we define the operator Ψ : X → X by

Ψx(t) =
∫ σ(T )

0
G(t, s)h(s)∆s+

m∑
k=1

G(t, tk)Ik(x(tk)),

so that fixed points of Ψ are solutions of (LP) and vice versa. Next, we claim
that Ψ is a contraction mapping. To show this, we consider u, v ∈ X and
t ∈ J . It is easy to see that

|(Ψu)(t)− (Ψv)(t)| =
∣∣∣∣∣
m∑
k=1

G(t, tk)Ik(u(tk))−
m∑
k=1

G(t, tk)Ik(v(tk))

∣∣∣∣∣
≤

m∑
k=1

|G(t, tk)||Ik(u(tk))− Ik(v(tk))|

≤
m∑
k=1

Alk|u(tk)− v(tk)|

≤
m∑
k=1

Alk‖u− v‖,

and hence

‖Ψu−Ψv‖ ≤ A
m∑
k=1

lk‖u− v‖.

This means that Ψ is a contraction mapping. Finally, applying Banach’s fixed
point theorem, we conclude that Ψ has a unique fixed point x ∈ X so that
(LP) has exactly one solution. 2

3 Nonlinear problem

In this section we study the ”nonlinear problem” (NP). It follows from
Lemma 2.1 that x ∈ X is a solution of (NP) if and only if it satisfies

x(t) =
∫ σ(T )

0
G(t, s)f(s, x(s))∆s+

m∑
k=1

G(t, tk)Ik(x(tk)), t ∈ J.
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Introduce the operator Φ : X → X by the formula

Φx(t) =
∫ σ(T )

0
G(t, s)f(s, x(s))∆s+

m∑
k=1

G(t, tk)Ik(x(tk)), t ∈ J.

Obviously, fixed points of Φ are solutions of (NP) and conversely.

Definition 3.1 Let F be a subset of PC. We say that F is quasiequicontinuous
on J if for every ε > 0 there exists δ > 0 such that if f ∈ F and k = 0, . . . ,m,
then

|f(t)− f(t̃)| < ε, ∀t, t̃ ∈ Jk and |t− t̃| < δ.

In order to show that Φ is compact, we need the following compactness
criteria.

Lemma 3.2 A set F ⊂ PC is relatively compact on J if F is bounded and
quasiequicontinuous on J .

Proof. Let {xn} be a sequence in F . From assumption, we know that {xn}
is uniformly bounded and equicontinuous on J0. By Arzela’s theorem, there
is a convergent subsequence {x(1)

n } of {xn} on J0. Since {x(1)
n } is uniformly

bounded and equicontinuous on J1, it follows from Arzela’s theorem that there
is a convergent subsequence {x(2)

n } of {x(1)
n } on J1. Continuing this process,

we can get a convergent subsequence {x(m+1)
n } of {x(m)

n } on Jm. It is clear
that {x(m+1)

n } is a convergent subsequence of {xn} on J . Hence F is relatively
compact. 2

Lemma 3.3 Φ : X → X is compact.

Proof. Let D be a bounded subset of X. The continuity of f and Ik implies
that there exist positive constants M and Mk such that |f(t, x(t))| ≤ M and
|Ik(xtk)| ≤Mk for all x ∈ D, t ∈ J , and k = 1, . . . ,m. Hence we have

|Φx(t)| =
∣∣∣∣∣
∫ σ(T )

0
G(t, s)f(s, x(s))∆s+

m∑
k=1

G(t, tk)Ik(x(tk))

∣∣∣∣∣
≤
∫ σ(T )

0
|G(t, s)||f(s, x(s))|∆s+

m∑
k=1

|G(t, tk)||Ik(x(tk))|

≤ AMσ(T ) + A
m∑
k=1

Mk.

This implies that Φ(D) is bounded.
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Let x ∈ D and t, t̃ ∈ Jk, where k = 0, . . . ,m. We have that

|Φx(t)− Φx(t̃)|

≤ M
∫ t̃

0 |G(t, s)−G(t̃, s)|∆s+M
∫ t
t̃ |G(t, s)−G(t̃, s)|∆s

+M
∫ σ(T )
t |G(t, s)−G(t̃, s)|∆s+

∑m
k=1

∣∣∣G(t, tk)−G(t̃, tk)
∣∣∣Mk

= MA
∫ t̃

0

∣∣∣ep(s, t)− ep(s, t̃)∣∣∣∆s
+Mη

∫ t
t̃

∣∣∣ep(s, t)ep(σ(T ), 0)− ep(s, t̃)
∣∣∣∆s

+Mη
∫ σ(T )
t

∣∣∣ep(s, t)− ep(s, t̃)∣∣∣∆s
+ A

∑j−1
k=1

∣∣∣ep(tk, t)− ep(tk, t̃)∣∣∣Mk

+ η
∑m
k=j

∣∣∣ep(tk, t)− ep(tk, t̃)∣∣∣Mk,

where η = 1/(ep(σ(T ), 0)− 1). It follows that |Φx(t)− Φx(t̃)| → 0 uniformly
for x ∈ D as |t − t̃| → 0. So Φ(D) is quasiequicontinuous on J . By Lemma
3.2, Φ is compact. This completes the proof. 2

Now we are in a position to establish the existence theorems for the problem
(NP) by using fixed point theorems.

Theorem 3.4 Suppose that there exist positive constants lk, k = 1, . . . ,m,
such that

|Ik(u)− Ik(v)| ≤ lk|u− v| for all u, v ∈ R,
and suppose also that there exists a positive constant l such that

|f(t, u)− f(t, v)| ≤ l|u− v| for all t ∈ J and u, v ∈ R.

If

A

(
σ(T )l +

m∑
k=1

lk

)
< 1,

then the problem (NP) has a unique solution.

Proof. For any u, v ∈ X and t ∈ J , we can easily get that

|Φu(t)− Φv(t)| ≤ A

(
σ(T )l +

m∑
k=1

lk

)
‖u− v‖,

and hence

‖Φu− Φv‖ ≤ A

(
σ(T )l +

m∑
k=1

lk

)
‖u− v‖.

This means that Φ is a contraction mapping. By Banach’s fixed point theorem,
Φ has a unique fixed point which is the unique solution of (NP). This completes
the proof. 2
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Theorem 3.5 Suppose that there exist positive constants l and ck, k = 1, ...,m,
such that

|f(t, x)| ≤ l|x| for all t ∈ J and x ∈ R (5)

and

|Ik(x)| ≤ ck for all x ∈ R and k = 1, . . . ,m. (6)

If

lAσ(T ) < 1, (7)

then the problem (NP) has at least one solution.

Proof. Let x ∈ X and t ∈ J . Suppose that x is a solution of x = µΦx for some
µ ∈ (0, 1). Using (5) and (6), we have

|x(t)| =
∣∣∣∣∣µ
∫ σ(T )

0
G(t, s)f(s, x(s))∆s+ µ

m∑
k=1

G(t, tk)Ik(x(tk))

∣∣∣∣∣
≤ µ

∫ σ(T )

0
|G(t, s)||f(s, x(s))|∆s+ µ

m∑
k=1

|G(t, tk)||Ik(x(tk))|

≤ µAl‖x‖σ(T ) + µA
m∑
k=1

ck

and hence

‖x‖ ≤ µAl‖x‖σ(T ) + µA
m∑
k=1

ck ≤ Al‖x‖σ(T ) + A
m∑
k=1

ck.

Together with (7), we obtain

‖x‖ ≤ A
∑m
k=1 ck

1− Alσ(T )
.

This implies that all solutions of x = µΦx are uniformly bounded independent
of µ ∈ (0, 1). From Lemma 1.3, Φ has a fixed point. This completes the
proof. 2

Theorem 3.6 Suppose that there exist positive constants c and ck, k = 1, ...,m,
such that

|f(t, x)| ≤ c for all t ∈ J and x ∈ R (8)

and

|Ik(x)| ≤ lk|x| for all x ∈ R and k = 1, ...,m. (9)

If

A
m∑
k=1

lk < 1, (10)

then the problem (NP) has least one solution.
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Proof. Let x ∈ X and t ∈ J . Suppose that x is a solution of x = µΦx for some
µ ∈ (0, 1). Using (8) and (9), we have

|x(t)| =
∣∣∣∣∣µ
∫ σ(T )

0
G(t, s)f(s, x(s))∆s+ µ

m∑
k=1

G(t, tk)Ik(x(tk))

∣∣∣∣∣
≤ µ

∫ σ(T )

0
|G(t, s)||f(s, x(s))|∆s+ µ

m∑
k=1

|G(t, tk)||Ik(x(tk))|

≤ µAcσ(T ) + µA
m∑
k=1

lk‖x‖,

and hence

‖x‖ ≤ µAcσ(T ) + µA
m∑
k=1

lk‖x‖ ≤ Acσ(T ) + A
m∑
k=1

lk‖x‖.

Together with (10), we obtain that

‖x‖ ≤ Acσ(T )

1− A∑m
k=1 lk

.

This implies that all solutions of x = µΦx are uniformly bounded independent
of µ ∈ (0, 1). Hence it follows from Lemma 1.3 that Φ has a fixed point. So
the proof is complete. 2

When all impulsive functions are linear, we have the following existence
result.

Theorem 3.7 For each k = 1, . . . ,m, let Ik(x) = lkx, where lk is a constant.
Suppose that the following conditions hold:

(a) |f(t, x)| ≤ c for all (t, x) ∈ J × R, for some positive constant c,

(b)
m∏
k=1

bk 6= ep(σ(T ), 0), where bk = lk + 1.

Then the problem (NP) has at least one solution.

Proof. In this case, the problem (NP) can be rewritten as

x4 + p(t)xσ = f(t, x), t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

x(tk+) = bkx(tk), k = 1, . . . ,m, (11)

x(0) = x(σ(T )).
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We first consider the special case: bk0 = 0 for some 1 ≤ k0 ≤ m. Let y(t) =
ep(t, 0)x(t). Then

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

y(tk+) = bky(tk), k 6= k0, (12)

y(tk0+) = 0,

y(0) = y(σ(T )).

We claim that the initial value problem

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ Jk0 ,
y(tk0+) = 0, (13)

has at least one solution. To show this, we define an operator Lk0 : C(Jk0)→
C(Jk0) by

(Lk0y)(t) =
∫ t

tk0

ep(s, 0)f(s, ep(0, s)y(s))∆s

so that the fixed points of Lk0 are solutions to (13). Then Lk0 is compact. To
see this, let D ⊆ C(Jk0) be a bounded set. For any y ∈ D and t ∈ Jk0 , we
have

|(Lk0y)(t)| =
∣∣∣∣∣
∫ t

tk0

ep(s, 0)f(s, ep(0, s)y(s))∆s

∣∣∣∣∣
≤
∫ t

tk0

|ep(s, 0)||f(s, ep(0, s)y(s))|∆s

≤ cep(σ(T ), 0)(tk0+1 − tk0).

This implies that Lk0(D) is uniformly bounded. Also, if t, t̃ ∈ Jk0 and y ∈ D,
then

|(Lk0y)(t)− (Lk0y)(t̃)| ≤ cep(σ(T ), 0)|t− t̃| → 0,

uniformly for y ∈ D as |t− t̃| → 0. This implies that Lk0(D) is equicontinuous
on Jk0 . Hence Lk0 is compact.

Let µ ∈ (0, 1). We consider the equation

y = µLk0y. (14)
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Suppose that y ∈ C(Jk0) is a solution of (14). Then

|y(t)| =
∣∣∣∣∣µ
∫ t

tk0

ep(s, 0)f(s, ep(0, s)y(s))∆s

∣∣∣∣∣
≤
∫ t

tk0

|ep(s, 0)||f(s, ep(0, s)y(s))|∆s

≤ cep(σ(T ), 0)σ(T ),

and hence ‖y‖ ≤ cep(σ(T ), 0)σ(T ). It follows that all solutions of y = µLk0y
are bounded independent of µ ∈ (0, 1). From Lemma 1.3, Lk0 has a fixed point.
Hence (13) has at least one solution, saying yk0 , on Jk0 . This determines the
value of yk0(tk0+1) that we use as the initial value for the following problem

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ Jk0+1,

y(tk0+1+) = bk0+1yk0(tk0+1). (15)

Similarly, we can get a solution yk0+1 on Jk0+1 for (15). Continuing this process,
we know that the initial value problem

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ Jj,
y(tj+) = bjyj−1(tj).

has a solution yj on Jj for each j = k0 + 2, . . . ,m. Also, the initial value
problem

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ J0,

y(0) = ym(σ(T )).

has a solution y0 on J0. As before, we know that the initial value problem

y∆(t) = ep(t, 0)f(t, ep(0, t)y(t)), t ∈ Jj,
y(tj+) = bjyj−1(tj).

has a solution yj on Jj for each j = 1, . . . , k0 − 1.

Let

y =



y0, on J0,

y1, on J1,
...

ym, on Jm.

It is easy to see that y is a solution of (12). So (NP) has at least one solution.
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Now we consider the only other case: bk 6= 0 for all k = 1, . . . ,m. Let x(t)
be any solution of (11). Set

y(t) = x(t)
∏

0≤tk<t
b−1
k .

For all k = 1, . . . ,m, we have

y(tk+) = bkx(tk)
∏

0≤ti≤tk
b−1
i = x(tk)

∏
0≤ti<tk

b−1
i = y(tk),

y(tk−) = x(tk)
∏

0≤ti<tk
b−1
k = y(tk).

This shows that y(t) is continuous on J . Furthmore, y(t) satisfies

y∆(t) + p(t)y(σ(t)) = F (t, y(t)), t ∈ [0, T ]T,

y(0) = y(σ(T ))
m∏
k=1

bk, (16)

where

F (t, y(t)) = f(t, y(t)
∏

0≤tk<t
bk)

∏
0≤tk<t

b−1
k .

It follows that (16) has a solution if and only if the integral equation

y(t) =
∫ σ(T )

0
G̃(t, s)F (s, y(s))∆s

is solvable. Here,

G̃(t, s) =


ηep(σ(T ), 0)ep(s, t), 0 ≤ s ≤ t ≤ σ(T ),

η
m∏
k=1

bkep(s, t), 0 ≤ t < s ≤ σ(T ),

where

η =
1

ep(σ(T ), 0)−
m∏
k=1

bk

.

Define the operator B : C(J)→ C(J) by

By =
∫ σ(T )

0
G̃(t, s)F (s, y(s))∆s.

It is easy to show that B is compact. Let µ ∈ (0, 1) and y ∈ C(J). Suppose
that y is a solution of

y = µBy, (17)
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on J . Then

|y(t)| ≤
∫ σ(T )

0
|G̃(t, s)||F (s, y(s))|∆s ≤ c1c2σ(T ),

where

c1 = sup

c ∏
0≤tk<t

|bk|−1 : t ∈ J

 ,
c2 = ηep(σ(T ), 0) sup

{
m∏
k=1

bk, 1

}
.

Hence ‖y‖ ≤ c1c2. This implies that all the solutions of (17) are bounded
independent of µ ∈ (0, 1). It follows from Lemma 1.3 that B has a fixed point.
Therefore (11) has at least one solution. 2

Theorem 3.8 Suppose that the following conditions hold:

(a) lim
|x|→∞

f(t, x)

x
= 0 uniformly for t ∈ J ,

(b) lim
|x|→∞

Ik(x)

x
= 0 for all k = 1, . . . ,m.

Then the problem (NP) has at least one solution.

Proof. Let HΦ = {x ∈ X : x = µΦx for some µ ∈ (0, 1)}. Then HΦ is
bounded. Indeed, if HΦ is unbounded, then there exist sequences {xn}∞n=1 in
X and {µn}∞n=1 in (0, 1) such that ‖xn‖ ≥ n and

x4n (t) + p(t)xn(σ(t)) = µnf(t, xn(t)), t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

xn(tk+)− xn(tk−) = µnIk(xn(tk)), k = 1, . . . ,m,

xn(0) = xn(σ(T )).

Now we let vn = xn/‖xn‖. Then ‖vn‖ = 1 and vn satisfies

v4n (t) + p(t)vn(σ(t)) = gn(t), , t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

vn(tk+)− vn(tk−) = θn,k, k = 1, . . . ,m,

vn(0) = vn(σ(T )),

where

gn(t) =
µnf(t, xn(t))

‖xn‖
and θn,k =

µnIk(xn(tk))

‖xn‖
.

By Lemma 2.1, we get

vn(t) =
∫ σ(T )

0
G(t, s)gn(s)∆s+

m∑
k=1

G(t, tk)θn,k, t ∈ J.

12



From assumptions (a) and (b), we have

|gn(t)| ≤ |f(t, xn(t))|
‖xn‖

→ 0,

uniformly for t ∈ J and

|θn,k| ≤
|Ik(xn(tk))|
‖xn‖

→ 0 , k = 1, . . . ,m,

as n→∞, so that

|vn(t)| ≤ A

{∫ σ(T )

0
|gn(s)|∆s+

m∑
k=1

|θn,k|
}
→ 0,

uniformly for t ∈ J as n→∞. Hence ‖vn‖ → 0 as n→∞, which contradicts
the fact that ‖vn‖=1. From Lemma 1.3, the problem (NP) has at least one
solution. Therefore the proof is complete. 2

The following corollaries can be immediately obtained from Theorem 3.8.

Corollary 3.9 (Bounded case) Assume that the nonlinearity f is bounded and
that the impulsive functions Ik, k = 1, . . . ,m, are bounded. Then the nonlinear
problem (NP) has at least one solution.

Corollary 3.10 (Sublinear growth) Suppose that there exist a ∈ PC, b ∈ R
and α ∈ [0, 1) such that

|f(t, x)| ≤ a(t) + b|x|α for all t ∈ J and x ∈ R,

and suppose also that there exist positive constants ak, bk ∈ R, and αk ∈ [0, 1)
such that

|Ik(x)| ≤ ak + bk|x|αk for all x ∈ R and k = 1, . . . ,m.

Then the problem (NP) has at least one solution.

4 Examples

Example 5.1 Let T = [0, 1] ∪ Z. We consider the following PBVP on T

x∆ + (t+ 1)xσ(t) =
x

10et
, t ∈ [0, 4]T, t 6=

1

2
,

x
(

1

2
+
)
− x

(
1

2
−
)

=
1

4
sin

(
x
(

1

2
−
))

,

x(0) = x(σ(4)).

13



Let

p(t) = t+ 1, f(t, x) =
x

10et
, and I(x) =

1

4
sinx.

It is easy to see that

|f(t, u)− f(t, v)| ≤ 1

10
|u− v|, for all t ∈ [0, σ(4)]T and u, v ∈ R,

and

|I(u)− I(v)| ≤ 1

4
|u− v| for all u, v ∈ R.

Also, by a simple computation, we get A = 360e
3
2/(360e

3
2 − 1) and hence

A
[
σ(4)

1

10
+

1

4

]
=

3

4
A < 1.

Hence by Theorem 3.4 the PBVP has at least one solution.

Example 5.2 Let T = [0, 1
2
] ∪ 2N0 . We consider the following PBVP on T

x∆ + p(t)xσ(t) = f(t, x), t ∈ [0, 4]T, t 6=
1

4
,

x(
1

4
+)− x(

1

4
−) = I(x(

1

4
−)),

x(0) = x(σ(4)),

where

p(t) =

 t, t ∈ [0, 1
2
],

1, t ∈ 2N0 ,
, f(t, x) =

2 sin t

x2 + 1
, and I(x) =

1

24
x.

It is easy to see that

|f(t, x)| ≤ 2 for all t ∈ [0, σ(4)]T and x ∈ R,

and

|I(x)| ≤ 1

24
|x| for all x ∈ R.

By a simple computation, we get A = 75e
1
8/(75e

1
8 −2) and so A/24 < 1. Then

by Theorem 3.6, the PBVP has at least one solution.
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Example 5.3 Let T = N2
0 ∪ [6, 8]. We consider the following PBVP on T

x∆ + p(t)x(σ(t)) = f(t, x), t ∈ [0, 8]T, t 6= 7,

x(7+)− x(7−) = I(x(7−)),

x(0) = x(σ(8)),

where

p(t) =

 1, t ∈ {0, 1, 4},

t, t ∈ [6, 8],
, f(t, x) =

x

t+ 18
, and I(x) = sinx.

It is easy to see that

|f(t, x)| ≤ 1

18
|x| for all t ∈ [0, σ(8)]T and x ∈ R,

and

|I(x)| ≤ 1 for all x ∈ R.

Also, by a simple computation, we get A = 216e14/(216e14 − 1) and so
Aσ(8)/18 = A/2 < 1. Then by Theorem 3.5, the PBVP has at least one
solution.

Example 5.4 Let T be a time scale and let 0, T ∈ T. We consider the following
PBVP on T

x∆ + xσ = e
1
x sin t, t ∈ [0, T ]T, t 6= tk, k = 1, . . . ,m,

x(tk+)− x(tk−) = x(tk−)
1
2 , k = 1, . . . ,m,

x(0) = x(σ(T )),

where tk ∈ (0, T )T are right-dense for all k = 1, . . . ,m. Let f(t, x) = e
1
x sin t

and Ik(x) = x
1
2 . Then it is easy to see that

lim
|x|→∞

f(t, x)

x
= 0 and lim

|x|→∞

Ik(x)

x
= 0.

Hence it follows from Theorem 3.8 that the PBVP has least one solution .
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