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Chapter 1

REAR

1.1 #F

The goal of this project is to study and calculate non-abelian cohomology of
compact Riemann surfaces. For any manifold X, we may consider the set of all
equivalent representations of the fundamental group of X as the first non-abelian
cohomology [10]. That is, we may define

HG (X) = Hom(m (X), G)//,

where G is a linear group.

A major reason to study non-abelian cohomology is to see some geometry
properties which are not visible by classical cohomology. We found there are
some interesting monodromy phenomena in non-abelian cases which we will
elaborate in Section 1.5.

In general, it is difficult to compute non-abelian cohomology. We do calculate
some interesting special cases, but cannot apply the same technique to all other
cases. However, we will propose a promising method to calculate the non-abelian
cohomology and will continue the study in the following years.

1.2 R EH

Our main motivation is to study degenerations of manifolds.

Definition 1. We say that f is a degeneration of a Kahler manifold if f is a
proper map from a Kahler manifold X onto the unit disk A such that [ is of
mazimum rank for all s € A except at the point s = 0. Let A* = A\ {0}. We
call X; = f~1(X}) a smooth fiber or generic fiber when t € A* and Xo = f~1(0)
the singular or degenerated fiber.

We assume the singularity in X is of normal crossing. If it is not the case,
we can do some blow-ups and base changes to make X, normal crossing. An



important tool to study degenerations is the Clemens-Schmid exact sequence,
which give a link between singular and nonsingular fibers. The main part of the
Clemens-Schmid exact sequence is introduced by the Picard-Lefschetz transfor-
mation. An analog of classic Picard-Lefschetz in non-ablian sense is a map

T: HL(X,) — HE(XY),

which is introduced by R
T: m(Xy) = m(Xy).

We are interested in calculating H} (X¢), especially classes in HS (X;) which
are fixed under the Picard-Lefschetz transformation. Those elements have sig-
nificant geometric meanings. For instance, they play an important role in the
Clemens-Schmid exact sequence.

1.3 SUERIRE
1.3.1 The Clemens-Schmid Exact Sequence

In this section, we quickly review the (abelian) Clemens-Schmid exact sequence
in classical Hodge theory.

Through this report, we assume that f : X — A is a degeneration of compact
Riemann surfaces of genus g. Denote X; as a generic fiber and X a singular
fiber. Fix a smooth fiber X;, the generator of the fundamental group of the
punched unit disk rises to a map:

T:H' (X;) — HY(X}).

The map is called the Picard-Lefschetz transformation.

Now, we want links between X; and the singular fiber Xy. There are two
maps in Clemens-Schmid exact sequence which provide the links. The first one
is

v:H' (Xo) — HY(X,).
It is induced by a map ¢ : X; — X which we shall explain now. A degeneration
f is a strong deformation so there is a map from X — X, composing with the
inclusion X; — X, one get the map c:

c: Xy — X — Xog.

The map c is called the Clemens map, see [3], [6], or [8] for detail construction
of this map. The Clemens map ¢ induces the map v.

The second link from the smooth fiber to the singular fiber is from the
Poincaré duality:

¢ HY(X,) — Hy(Xo).

Define N = I — T, where I is the identity map on H'(X;). Under our
assumption that each smooth fiber is a Riemann surface, the Clemens-Schmid
exact sequence is

1— H'(Xo) 2% HY(X,) =5 HY(X,) -5 H;(Xo) — L. (1.1)



Clemens proved the sequence 1.1 is exact. Moreover, all maps in Clemens-
Schmid exact sequence are actually morphisms of mixed Hodge structures.
Therefore, one can put a mixed Hodge structure on the singular fiber if there
is a mixed Hodge structure on the smooth one. We refer [6, Section 5.4] for
explicit examples.

1.3.2 The Non-abelian Hodge Theory

To construct a non-abelian Clemens-Schmid exact sequence, we construct an
exact sequence of “non-abelian cohomologies” instead of classical cohomologies.
Simpson suggests that one can regard the moduli space of the fundamental
group as the first nonabelian cohomology [10][11]. That is to say we can con-
sider the first non-abelian cohomology to be the set of all equivalent classes
of representations of fundamental groups 71 (X3) into some non-abelian “coeffi-
cient group” G. To have more geometric meaining, we will take G to be some
linear algebriac group over C. For instance, we can take G = GL(2,C). The
equivalent classes are defined by conjugation. For a space Y, we define the first
non-abelian cohomology as

H&(Y) = Hom(m(Xy),G)//.

When we take G as C, it is exactly the standard cohomology if we consider the
group operation on C is the addition operator.
Simpson [9] suggest a way to . A Higgs bundle is defined as the following.

Definition 2 (Higgs Bundles). A Higgs bundle over X is a holomorphic vector
bundle E together with a holomorphic map

6:F— E®Qk.
We write a Higgs bundle as a pair (E,0).

Then, we can consider the moduli space of Higgs bundles, denoted as Mpiges (Y, G).
Simpson proves that there is a one-to-one correspondence between irreducible
representations of w1 (Y) and stable Higgs bundles with vanishing Chern classes [9]:

irreducible representations stable Higgs bundle with
of m (Y) vanishing Chern classes [

There is a natural action of C* on the set of Higgs bundles. For any ¢t € C*,
the action will send a Higgs bundle (E,60) to the Higgs bundle (E,tf). An
equivalent statement of having a Hodge decomposition on some space is having
a a C* action on it. Therefore, one can consider the C* action on Higgs bundles
as a non-abelian pure Hodge structure. Because the one-to-one correspondence
between the moduli space of Higgs bundle Mpuiges(Y, G) and the moduli space
of representations of the fundamental group Mgep(Y, G), one can define a pure
Hodge structure on the moduli space we consider, MRgep(Y, G).

Simpson actually provides an “extended version” of correspondence . He
shows a correspondence between semistable Higgs bundles with vanishing Chern



class and some subset of representations. The extended correspondence allows
us to put a C* action (hence a Hodge structure) on the nilpotent completion of
the fundamental groups. One significant part of this result is that this Hodge
structure coincides with Hain’s construction [4].

Higgs bundles provides a natural Hodge structure as we have seen. How-
erver, it does not make sense of defining Higgs bundles on a singular manifold.
Therefore, Higgs bundle cannot provide mixed Hodge structures, at least not
in a direct way. We will turn the hope to Hain’s construction of mixed Hodge
structures on fundamental groups. Given any representation p from 71 (X;) to
G with Zariski dense image, Hain puts a mixed Hodge structure on the “relative
Malcev completion” [5] of 71(X;) with repect to p.

To get the relative Malcev completion, first we consider all possible extension
E of our coefficient group G and a unipotent U, and this E should fit the
following diagram.

1 U E G 1

| A

7T1(Xt)

Then, we take the inverse limit to get a proalgebraic group G. This proal-
gebraic group is the relative Malcev completion of m(X;) with repect to the
representation p.

In theory, relative Malcev completion give a hope to find a non-abelian
Clemens-Schmid exact sequence. However, it is hard to calculate the relative
Malcev completion in general. In the following subsection, we will propose
another direction to calculate non-abelian cohomology.

1.3.3 Tropical Geometry Methods

Let K be a field with non-Archmidean valuation v. We can define a norm on K
as
H.Z‘” = e_y(w)7

for all  in K. Define a Log function on K™ as following

(log([lz1[1), log(llz21), - - -, log(l|nl))

(7’/(1‘1)7 *V(w2)7 ey 7V(xn))'

Log(x)

For any algebraic variety V, define the amoeba of V' as the image of Log of
V. There are some interesting structures (tropical structures) on the image side
as we will describe now.

Definition 3 (tropical semiring). A tropical semiring is (R,®,®). For any
x,y € R, define

e =@y :=max(z,y)



e rOY:=r+y

It is easy to see, the tropical zero is —oo and the tropical one is 0. Thus,
we usually add —oo to the tropical semiring, and write T = RU {—oc0}. A
tropical polynomial is just a polynomial with tropical addition and tropical
multiplication. The following example revels the motivation of the definition of
tropical hyperplanes.

Example 1. Consider “tropicalized” polynomial f(z) = x® + 3x + 4. By defi-
nition, we have

flx)=2>®30zd4
= max{2z,3 + z,4}.

Figure 1.1 shows the “graph” of f. The graph of this tropical polynomial is

‘ /

v =3+x

Figure 1.1: graph of f(z) = 22 + 3z +4

piecewise-linear and it fails to be linear at ©t = 1 and x = 3. Note that we can
also “factor” this polynomial as following:
flx)=2>®302z94
=(z®1) o (z®3).

Therefore, x =1 and x = 3 looks like the “roots” of f(x).
The example motivates the following definition of tropical hypersurfaces.

Definition 4 (Tropical Hypersurface). Let f(x) = S.%a; © x! be a tropical
polynomial. Evaluate this polynomial is to find the maximum of the linear forms
o+ (x,1). A point in the tropical hypersurface Hy is the mazimum of the linear
forms achieve at least twice and it is exactly where the graph fails to be linear.



An advantage of tropical geometry is that many problems can be break down
to a combinatoric ones. Therefore, one may use combinatoric to solve classical
algebraic geometry or complex geometry problems.

1.4 R FE

The fundamental group of a compact Riemann surface X is well-known and
so we have a chance to calculate Hé(X) Suppose X is a compact Riemann
surface of genus g. The fundamental group w1 (X) is generated by 2¢g elements,
say o, ®2,...,0q, 51,52, .., By, satisfying one relation:

g
H[Ozi, ﬁl] =1.
i=1
We will start with a relative simple example. Let f: X — A be a degenera-
tion with generic fiber X; being a compact Riemann surface of genius 2. Suppose
the fundamental group 7 (X;) is generalized by ai, as, 81, B2 satisfying

a1 Bray B tasBeay 1Byt = 1.

The Picard-Lefschetz transformation 7' on the level of fundamental groups of
X; induce a map
T: HL(X,) — HE(X).

We are mainly interested in those elements that are fixed under the Picard-
Lefschetz transformation. In classical cases, by the local invariant theorem
or the Clemens-Schmid exact sequence, the cohomology elements that are fixed
under the Picard-Lefschetz transformation can be extended to an element in the
global cohomology, namely H} (X). One interesting phenomenon is that there
are some elements which are fixed under the Picard-Lefschetz transformation
that cannot extend to global.

We develop a method to find some elements in H}(X;) that is fixed by T
but cannot extend to global. Observe that if v € 71(X) is the vanishing cycle,
the non-abelian cohomology [p] € HE(X}) that is fixed by T should send 7 to
the identity, otherwise it cannot be extended to global.

Write

_a1 as
Av=plen) = as a4]’

Ay =plag) = | 90 ]

L a7 as
by b
Bl = p(ﬂl) = |: bl bj :| s and
[ b5 b
N CE

and the matrix representing the vanishing cycle by T', so I' = Al_lBl_lAlBl.
The matrices Ay, As, By, Bs satisfy the following relations.



1. det A; =detB; =1, for i =1, 2.
2. One relation A1 B1 A7 By ' Ay BoAT? B2 =1.

3. It is fixed under the Picard-Lefschetz transformation. From our construc-
tion this gives us

Ay =H ‘AT 'H,
B =H 'B;T"'H,
Ay =H 1A, T 'H,
By =H 'B,I''H,

where H is a change of base matrix, and we write

_| M he
ne[h ],

Each relation above give us several polynomial equations in
C[al,...,ag,bl,...7b8,h1,...,h4],

and we get a polynomial system. We can use the Grobner bases to find solutions
to the polynomial system.

1.5 &X#EHAH

By the method described in the previous section, we found a cohomology class [p]
in HL (X;) that is fixed under the Picard-Lefschetz transformation but cannot
be extended to global. Suppose ai,aq, (1,02 are generators of m(X;), and
Ar = p(aq), A2 = p(az), B = p(B1), Ba = p(B2), we can write these elements
explicitly as followings.

1 1 —4 31 4 —+/31 -1 -1
O D ) N Oy S e

4 4

1 4
H:( 24 1r>
0 15
16

The representation matrix of the vanishing cycle will not be identity. Sup-
pose I is the image matrix of the vanishing cycle. We have

_ —1p-—1 _ 1 _%
T=A7'B' ABi=(, [°).

We can easily found examples in higher genius cases, as illustrated in [7].
Note that the examples are different from previous results [7, 12]. However,



the image of p is still not Zariski dense. Therefore, there is a hope that if
we take only those classes [p] in HL(()X:), one might be able to use Hain’s
relative Malcev completion to explicitly find a correct analog of the Clemens-
Schmid exact sequence. Unfortunately, the relative Malcev completion is hard
to compute in general, so we might need to use some other approaches.

We found a promising new field which is called tropical geometry. The
technique in tropical geometry allows us to convert algebraic geometry problems
into combinatoric ones. In order to apply tropical geometry to the non-abelian
Hodge theroy, we need two important backgrounds. The first is that we will have
to be able to “slice” a huge manifold X into hyperplane sections X;. Therefore,
we have to use intersection theory in terms of tropical geometry. Lars Allermann
and Johannes Rau [2] give the first step in this direction. Moreover, we will need
to “tropicalization” HS(X3), and a new paper by Alessandrini [1] will help us in
this direction. Applying these tropical geometry techniques to the non-abelian
Hodge theory will be our main research topics in the following years.



Chapter 2
AR B

Let f: X — A be a degeneration with generic fiber X; being a compact Riemann
surface of genus n. We explicitly construct some chomology that are fixed under
the Picard-Lefschetz transformation but cannot extend to global. The examples
are different from our previous results [7, 12]. The new examples give a hope
that with some proper restriction, there will a correct analog to the Clemens-
Schmid exact sequence in non-abelian cases. We will submit our new results as
long as some of our previous works soon.

To do deeper analysis of the non-abelian cohomolgy, we study Simpson’s and
Hain’s results, but find them are difficult to calculate. Therefore, we propose
another direction: using the theory of tropical geometry. There are some very
important tools available to us, namely the tropicalization of group representa-
tions [1] and tropical intersection theory [2]. We will survey on these theories
and try to apply them to the non-abelian cohomology.
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