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ENTIRE SOLUTIONS FOR DISCRETE REACTION-DIFFUSION
EQUATIONS

S. C. FU AND H. J. WANG

Abstract. This paper deals with a discrete reaction-diffusion equation ut(x, t) =
u(x+1, t)−2u(x, t)+u(x−1, t)+f(u(x, t)), where f(u) = u2(1−u). Here, we
prove there exist entire solutions which behave as two travelling waves coming
from both sides of x-axis.

1. Introduction

In this paper, we consider the following discrete reaction-diffusion equation

(1.1) ut(x, t) = u(x + 1, t)− 2u(x, t) + u(x− 1, t) + f(u(x, t)),

which is a discrete version of the following semilinear parabolic equation

(1.2) ut = uxx + f(u).

When the function f(u) is such that f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0
and f(u) > 0 for any 0 < u < 1, (1.2) is called the Fisher’s equation [4] or
Kolmogorov, Petrovsky and Piskunov (KPP) equation [6], and it describes the
propagation of an advantageous gene within an one-dimensional habitat. When
f(u) = um(1−u), where m is an integer greater than two, it is called the mth-order
Fisher’s equation. In particular, it is called the Zeldovich equation if m = 2. For a
cubic nonlinearly f(u) = u(1− u)(u− a), it is called the Allen-Cahn equation (a =
1/2) in phase transition and also the Nagumo equation (a ∈ (0, 1)) in propagation of
nerve excitation. A great deal of work has been carried out to extend this equation
to take into account other biological, chemical or physical factors.

A solution u(x, t) of (1.1) is called a travelling wave with speed c if there exists a
function U : R→ [0, 1] such that u(x, t) = U(x+ ct), which connects two equilibria
u = 0, 1. Such solution (c, U) satisfies the following travelling wave problem and it
is unique up to translation

(1.3)
{

cU ′(·) = U(·+ 1) + U(· − 1)− 2U(·) + f(U(·)) on R,
U(−∞) = 0, U(∞) = 1, 0 ≤ U ≤ 1 on R.

When f is Lipschitz continuous on [0,1] with f(0) = f(1) = 0 < f(u) for all
u ∈ (0, 1), it has been shown in [2] that there exists cmin > 0 such that (1.3) admits
a solution if and only if c ≥ cmin . The existence, uniqueness and asymptotic
stability of travelling waves, we refer the readers to [2, 3] and the references therein.

From the dynamical point of view, the travelling wave solution is not enough
to understand the whole dynamics of a reaction-diffusion equation. Therefore,
there have been many studies done recently for other types of entire solutions. For
example, Chen and Guo in [2] constructed entire solutions which behave as two
opposite wave fronts coming from both sides of x-axis and then annihilating in a
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finite time. Here the entire solution is meant by a solution which is defined for all
(x, t) ∈ R2. Entire solutions play an important role in the whole dynamics. The
study for entire solutions is crucial in the following sense: firstly, it helps us for
the mathematical understanding of transient dynamics. As mentioned above, some
transient dynamics can be characterized by the behavior of the past t ≈ −∞, even
though we cannot describe the whole transient behavior. Secondly, structure of the
maximal invariant set (or the global attractor) is one of the ultimate goal.

In [5], Guo and Morita studied (1.1) and (1.2) where f(0) = f(1) = 0, f ′(1) < 0,
and f ′(0) 6= 0. They proved there exist entire solutions which behave as two
opposite wave fronts coming from both sides of x-axis. The technique they used
was to characterize the asymptotic behavior of the solutions as t → ±∞ in terms
of appropriate subsolutions and supersolutions and use the comparison argument.
This argument can apply not only to a general bistable reaction-diffusion equation
but also to the Fisher-KPP equation. They also extended it to a discrete diffusive
Fisher-KPP equation.

In this paper, we focus on (1.1), where f(u) = u2(1−u). We note that f ′(0) = 0
in this case. Following the method of [5], we prove the existence of entire solutions
for c = cmin in the following theorem.

Theorem 1.1. Consider (1.1), where f(u) = u2(1 − u). Let U be a solution of
(1.3) with c = cmin. Then, for any given constants θ1, θ2, there exists an entire
solution u(x, t) of (1.1) such that

(1.4) lim
t→−∞

{sup
x≥0

|u(x, t)− U(x + ct + θ1)|+ sup
x≤0

|u(x, t)− U(−x + ct + θ2)|} = 0.

2. Preliminaries

First, we define and make the notion of subsolution and supersolution of (1.1)
as follows.

Definition 2.1. A function u(x, t) defined on R×[s, S] is called a subsolution of
(1.1) if u(x, t) ≤ u(x, t) ((x, t) ∈ R×[s, S]) for any solution u(x, t) of (1.1) such that
u(x, s) ≤ u(x, s) (x ∈ R). We call u(x, t) a subsolution of (1.1) in R × (−∞,−T ]
for some T ≥ 0, if u(x, t) is a subsolution of (1.1) defined on R × [s,−T ] for any
s < −T . Similarly, a supersolution can be defined by reversing the inequalities.

Lemma 2.2. Let φi(x, t), i = 1, 2, be functions satisfying 0 < φi(x, t) < 1 and
(φi)t(·, t)−φi(·+1, t)−φi(·−1, t)+2φi(·, t)−f(φi(·, t)) ≤ 0 ((x, t) ∈ R×(−∞,−T ]).
Then u(x, t) := max{φ1(x, t), φ2(x, t)} is a subsolution of (1.1) in R× (−∞,−T ].

Proof. Given any s < −T . Set Ω := R × [s,−T ]. Let u(x, t) be a solution of
(1.1) in Ω with u(x, s) ≥ u(x, s) for all x ∈ R. Applying the strong maximum
principle (see [1]) to ωi(x, t) = u(x, t)−φi(x, t), i = 1, 2, we assert that ωi(x, t) ≥ 0
in Ω, i = 1, 2.Thus u(x, t) ≥ φi(x, t) in Ω, i = 1, 2, which yields the desired
conclusion. ¤

We note that a bounded function φ(x, t) of C2 is a subsolution of (1.1) in R ×
(−∞,−T ] if φt(·, t)−φ(·+1, t)−φ(·−1, t)+2φ(·, t)−f(φ(·, t)) ≤ 0 in R×(−∞,−T ],
while it is a supersolution if φt(·, t)−φ(·+1, t)−φ(·−1, t)+2φ(·, t)−f(φ(·, t)) ≥ 0
in R× (−∞,−T ) (see [1]).
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From now on, we alway assume c = cmin. Let λ be the larger root of the
characteristic equation

(2.1) cλ− eλ − e−λ + 2 = 0.

Concerning the asymptotic behaviors of the traveling wave solution U(x) near x =
±∞ in [3], we have the following estimates for x ≤ 0:

(2.2) keλx ≤ U(x) ≤ Keλx,

for some positive k,K. Also, for x ≥ 0 we have

(2.3) γe−µx ≤ 1− U(x) ≤ δe−µx,

for some positive γ, δ and µ is the unique positive root of

(2.4) cµ + eµ + e−µ − 3 = 0.

Moveover, there are positive numbers ψi (i = 1, 2) such that

(2.5) inf
x≤0

U ′(x)
U(x)

= ψ1, inf
x≥0

U ′(x)
1− U(x)

= ψ2.

3. Existence of entire solutions

Consider the following ordinary differential equation:

(3.1) ṗ(t) = c + Neαp(t), (t ≤ 0),

where N , c and α are constants with c, α > 0. We can solve this equation easily
and obtain the solution as

(3.2) p(t) = p(0) + ct− 1
α

log

{
1 +

N

c
eαp(0)(1− ecαt)

}
.

If N > 0, it is clear that the solution p(t) is monotone increasing. Let

(3.3) ω := p(0)− 1
α

log

(
1 +

N

c
eαp(0)

)
.

Then we obtain

(3.4) 0 < p(t)− ct− ω ≤ R0e
cαt, (t ≤ 0),

for some positive constant R0. Now, we have the following lemma.

Lemma 3.1. Let p(t) be the solution of (2.6) with p(0) < 0, α = λ, N >
max{K2/(ψ1k), 2K/(ψ2γ)} and let ω be defined by (2.8). Suppose that λ ≥ µ.
Then

(3.5) u(x, t) := U(x + p(t)) + U(−x + p(t))

and

(3.6) u(x, t) := max{U(x + ct + ω), U(−x + ct + ω)}
are a supersolution and a subsolution of (1.1) for t ≤ 0, respectively.
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Proof. First, by Lemma 2.2, we see that u(x, t) := max{U(x+ct+ω), U(−x+ct+ω)}
is a subsolution of (1.1) for t ≤ 0. Next, we prove that u(x, t) is a supersolution.
Let U(x + p(t)) = U1, U(−x + p(t)) = U2. Set N [ν](x, t) := νt(x, t)− ν(x + 1, t)−
ν(x− 1, t) + 2ν(x, t)− f(ν(x, t)). By a simple computation, we have

(3.7) N [u] = (U ′
1 + U ′

2)(Neλp −G(x, t)),

where

(3.8) G(x, t) :=
U1U2(2− 3U1 − 3U2)

U ′
1 + U ′

2

.

We also see from (2.2), (2.3) and (2.5) that

keλy ≤ U(y) ≤ Keλy, (y ≤ 0),(3.9)

ψ1keλy ≤ ψ1U(y) ≤ U ′(y), (y ≤ 0),(3.10)
ψ2γe−µy ≤ ψ2(1− U(y)) ≤ U ′(y), (y ≥ 0).(3.11)

Note that p(t) < 0 for all t ≤ 0. We divide R into three regions to estimate G(x, t).
(1) p ≤ x ≤ −p: Using (2.14) and (2.15), we obtain

(3.12)
G(x, t) ≤ 2U1U2

U ′
1 + U ′

2

≤ 2K2eλ(x+p)eλ(−x+p)

ψ1k(eλ(x+p) + eλ(−x+p))

=
2K2e2λp

ψ1k(eλx + e−λx)eλp
≤ 2K2

2ψ1k
eλp.

(2) x ≤ p: It follows from (2.14)-(2.16) that

(3.13)

G(x, t) ≤ 2U1

U ′
1 + U ′

2

≤ 2Keλ(x+p)

ψ1keλ(x+p) + ψ2γe−µ(−x+p)

=
2K

ψ1keλp + ψ2γe−(λ−µ)xe−µp
eλp

≤ 2K

ψ2γ
eλp.

(3) −p ≤ x: By the symmetry G(−x, t) = G(x, t) and (2.18), we obtain

(3.14) G(x, t) ≤ 2K

ψ2γ
eλp.

Hence we obtain

N [u] = (U ′
1 + U ′

2)(Neλp −G(x, t)) ≥ 0.

Therefore, u is a supersolution of (1.1) for t ≤ 0. This proves the lemma. ¤

Remark 3.2. The assumption λ ≥ µ in Lemma 2.3 is valid provided that cmin ≥
1

2 log 2 .

Lemma 3.3. Let u(x, t) and u(x, t) be the supersolution and the subsolution given
in Lemma 2.3. Suppose all the assumption of Lemma 2.3 holds. Then there is a
positive constant M1 such that

(3.15) 0 < u(x, t)− u(x, t) ≤ M1e
cλt ((x, t) ∈ R× (−∞, 0]).
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Proof. Suppose that t ≤ 0. Since U ′ > 0, we have U(x + ct + ω) ≥ U(−x + ct + ω)
for x ≥ 0. Thus u(x, t) = U(x + ct + ω) for x ≥ 0 and u(x, t) = U(−x + ct + ω) for
x ≤ 0. For x ≥ 0, we have

(3.16)
0 ≤ u(x, t)− u(x, t) = U(x + p(t)) + U(−x + p(t))− U(x + ct + ω)

≤ Keλ(−x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ M1e

cλt,

for some M1 > 0. On the other hand, for x ≤ 0, we have

(3.17)
0 ≤ u(x, t)− u(x, t) = U(x + p(t)) + U(−x + p(t))− U(−x + ct + ω)

≤ Keλ(x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ M1e

cλt.

This completes the proof. ¤

Following [5], we have the following proposition.

Proposition 3.4. Under the same assumptions of Lemma 2.3, there is an entire
solution u∗(x, t) of (1.1) such that

(3.18) u(x, t) ≤ u∗(x, t) ≤ u(x, t) ((x, t) ∈ R× (−∞, 0]),

where ω is defined by (2.8), u(x, t) and u(x, t) are given in Lemma 2.3.

Proof. Denote by u(x, t; ν0) a solution to (1.1) with the initial condition u(x, 0; ν0(·)) =
ν0(x). Set

νn(x, t) = u(x, t;u(·,−n)), n = 1, 2, ... .

Since u is a subsolution and u(x,−n− 1 + 0) = u(x, 0;u(·,−(n + 1))), we have

u(x,−n− 1 + t) ≤ u(x, t; u(·,−(n + 1))).

By taking t = 1, we obtain

νn(x, 0) = u(x,−n) ≤ u(x, 1; u(·,−(n + 1))) = νn+1(x, 1).

Thus the maximum principle yields

νn(x, n) ≤ νn+1(x, n + 1),

which implies {νn(·, n)} is monotone increasing. On the other hand, since νn(x, n) ≤
u(x, 0), there is a function ν∗ such that νn converges uniformly to ν∗. Therefore,
u∗(x, t) := u(x, t; ν∗) is a solution for all t ≥ 0.

Next, we show that u∗(x, t) is defined for all t ≤ 0. Given T ≥ 0, there is an
integer n1 such that n1 > T . Then, for n ≥ n1, we have

u(x,−T ; νn) = u(x,−T ; u(x, n; u(·,−n))) = u(x, n− T ;u(·,−n)).

Set

(3.19) wn(x) = u(x, n− T ; u(·,−n)).

Then νn(x, n) = u(x, T ;wn(x, t)) and

wn+1(x) = u(x, n + 1− T ; u(·,−(n + 1))) ≥ u(x, n− T ; u(·,−n)) = wn(x).

This implies the sequence {wn} is monotone increasing. Applying the same argu-
ment, there is a function νT to which wn converges uniformly. We see that

ν∗ = lim
n→∞

νn = lim
n→∞

u(x, T ; wn(x, t)) = u(x, T ; νT ).



6 S. C. FU AND H. J. WANG

Thus we obtain

νT = u(x,−T ; ν∗).

Since T > 0 is arbitrary, we conclude that u∗(x, t) := u(x, t; ν∗) is defined for all
t ∈ R.

Finally, we show that (2.23) holds. From above, we have

(3.20) u∗(x,−T ) = u(x,−T ; ν∗) = νT = lim
n→∞

ωn

Since u is a subsolution and u(x,−n) ≥ u(x, 0; u(·,−n)) = u(x,−n), we have

u(x,−n + t) ≥ u(x, t;u(·,−n)) ≥ u(x,−n + t) ∀(x, t) ∈ R× [0, n].

By taking t = n− T , we obtain

(3.21) u(x,−T ) ≥ ωn = u(x, n− T ; u(·,−n)) ≥ u(x,−T ).

Hence, it follows from (2.25) and (2.26) that u(x,−T ) ≤ u∗(x,−T ) ≤ u(x,−T ).
Since T > 0 is arbitrary, (2.23) holds. This proves the proposition. ¤

Remark 3.5. By virtue of the condition λ ≥ µ we can check that the supersolution
u(x, t), defined for t ≤ 0, is bounded by 1 for large |t|. In fact, we may assume that
K < 1/2 in the condition (2.2) by shifting appropriately. Then

U(x + p(t)) + U(−x + p(t)) ≤ K(eλx + e−λx)eλp (p ≤ x ≤ −p),

while
U(x + p) + U(−x + p) ≤ 1− γe−µ(x+p) + Ke−λ(x− p)

≤ 1− (γ −Ke(λ+µ)pe−(λ−µ)x)e−µ(x+p) (−p ≤ x),

U(x + p) + U(−x + p) ≤ Keλ(x+p) + 1− γeµ(x−p)

≤ 1− (γ −Ke(λ+µ)pe(λ−µ)x)eµ(x−p) (x ≤ p).
This implies u(x, t) ≤ 1 for t < −T with a large T > 0. Hence, by the strong max-
imum principle, we can assert that the solution u(x, t) of Proposition 2.6 satisfies
0 < u(x, t) < 1 for all (x, t) ∈ R2.

Proposition 3.6. Let u(x, t) be an entire solution constructed in Proposition 2.6.
Under the same assumptions of Lemma 2.3 and Proposition 2.6, there is a positive
number M1 such that for t ≤ 0,

(3.22)
0 ≤ supx≥0 {u(x, t)− U(x + ct + ω)}
+supx≤0 {u(x, t)− U(−x + ct + ω)} ≤ M1e

cλt.

Proof. Suppose that t ≤ 0. For x ≥ 0,

(3.23)
0 ≤ U(x + p(t)) + U(−x + p(t))− U(x + ct + ω)

≤ Keλ(−x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ 1

2M1e
cλt,

for some M1 > 0. Combining (2.23) and (2.28), we obtain

0 ≤ u(x, t)− U(x + ct + ω) ≤ u(x, t)− U(x + ct + ω) ≤ 1
2
M1e

cλt.

On the other hand, for x ≤ 0, we have

(3.24)
0 ≤ U(x + p(t)) + U(−x + p(t))− U(−x + ct + ω)

≤ Keλ(x+p(t)) + supz |U ′(z)|R0e
cλt

≤ Keλp(t) + M2e
cλt ≤ 1

2M1e
cλt.
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Therefore it follows from (2.23) and (2.29) that

0 ≤ u(x, t)− U(−x + ct + ω) ≤ u(x, t)− U(−x + ct + ω) ≤ 1
2
M1e

cλt.

Hence (2.27) holds. ¤
Proof of Theorem 1.1: Given arbitrary θ1, θ2, we consider the translation and
the time-shift as

U(x + ξ + c(t + τ)) = U(x + ct + ξ + cτ),
U(−x− ξ + c(t + τ)) = U(−x + ct− ξ + cτ).

Define ũ(x, t) := u(x + ξ, t + τ) with

ξ :=
θ1 − θ2

2
, τ :=

θ1 + θ2 − 2ω

2c
,

where u(x, t) is the entire solution of Proposition 2.6. Then we easily obtain

max{U(x + ct + θ1), U(−x + ct + θ2)}
≤ ũ(x, t) ≤ u(x + ξ, t + τ) (t ≤ −τ).

On the other hand, (1.4) immediately follows from (2.27). Thus we complete the
proof of Theorem 1.1. ¤
Remark 3.7. Entire solutions can also be constructed by using traveling wave with
speed c > cmin if one can find a pair of suitable supersolution and subsolution.
However, we cannot find such one. Therefore we left it as an open problem.
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