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ENTIRE SOLUTIONS FOR DISCRETE REACTION-DIFFUSION
EQUATIONS

S. C. FU AND H. J. WANG

ABSTRACT. This paper deals with a discrete reaction-diffusion equation u¢(x,t) =
u(z+1,t) —2u(z, t) +u(z—1,t)+ f(u(z, t)), where f(u) = u?(1 —wu). Here, we
prove there exist entire solutions which behave as two travelling waves coming
from both sides of z-axis.

1. INTRODUCTION

In this paper, we consider the following discrete reaction-diffusion equation

(1.1) u(z,t) = u(z + 1,t) — 2u(z, t) + u(z — 1,t) + f(u(z,t)),
which is a discrete version of the following semilinear parabolic equation

When the function f(u) is such that f(0) = f(1) = 0, f/(0) > 0, f'(1) < 0
and f(u) > 0 for any 0 < w < 1, (1.2) is called the Fisher’s equation [4] or
Kolmogorov, Petrovsky and Piskunov (KPP) equation [6], and it describes the
propagation of an advantageous gene within an one-dimensional habitat. When
fu) = u™(1—u), where m is an integer greater than two, it is called the mth-order
Fisher’s equation. In particular, it is called the Zeldovich equation if m = 2. For a
cubic nonlinearly f(u) = u(1 —u)(u — a), it is called the Allen-Cahn equation (a =
1/2) in phase transition and also the Nagumo equation (a € (0, 1)) in propagation of
nerve excitation. A great deal of work has been carried out to extend this equation
to take into account other biological, chemical or physical factors.

A solution u(zx,t) of (1.1) is called a travelling wave with speed c if there exists a
function U : R — [0, 1] such that u(x,t) = U(z + ct), which connects two equilibria
u = 0,1. Such solution (c,U) satisfies the following travelling wave problem and it
is unique up to translation

(1.3) { cU)=U(+1)4+U(-1)=2U()+ f(U(-)) on R,
‘ U(-0) =0, U(oo) =1, 0<U <1lonR.
When f is Lipschitz continuous on [0,1] with f(0) = f(1) = 0 < f(u) for all
u € (0,1), it has been shown in [2] that there exists ¢, > 0 such that (1.3) admits
a solution if and only if ¢ > c¢nin - The existence, uniqueness and asymptotic
stability of travelling waves, we refer the readers to [2, 3] and the references therein.
From the dynamical point of view, the travelling wave solution is not enough
to understand the whole dynamics of a reaction-diffusion equation. Therefore,
there have been many studies done recently for other types of entire solutions. For
example, Chen and Guo in [2] constructed entire solutions which behave as two
opposite wave fronts coming from both sides of z-axis and then annihilating in a
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finite time. Here the entire solution is meant by a solution which is defined for all
(z,t) € R%. Entire solutions play an important role in the whole dynamics. The
study for entire solutions is crucial in the following sense: firstly, it helps us for
the mathematical understanding of transient dynamics. As mentioned above, some
transient dynamics can be characterized by the behavior of the past ¢ ~ —oco, even
though we cannot describe the whole transient behavior. Secondly, structure of the
maximal invariant set (or the global attractor) is one of the ultimate goal.

In [5], Guo and Morita studied (1.1) and (1.2) where f(0) = f(1) =0, f'(1) <0,
and f/(0) # 0. They proved there exist entire solutions which behave as two
opposite wave fronts coming from both sides of z-axis. The technique they used
was to characterize the asymptotic behavior of the solutions as t — +00 in terms
of appropriate subsolutions and supersolutions and use the comparison argument.
This argument can apply not only to a general bistable reaction-diffusion equation
but also to the Fisher-KPP equation. They also extended it to a discrete diffusive
Fisher-KPP equation.

In this paper, we focus on (1.1), where f(u) = u?(1—u). We note that f’(0) =0
in this case. Following the method of [5], we prove the existence of entire solutions
for ¢ = ¢nin in the following theorem.

Theorem 1.1. Consider (1.1), where f(u) = u?(1 —u). Let U be a solution of
(1.3) with ¢ = ¢min- Then, for any given constants 01, 02, there exists an entire
solution u(z,t) of (1.1) such that

(1.4) . lim {sup |u(z,t) — U(x + ct + 01)| +sup |u(z,t) — U(—z + ct + 62)|} = 0.

== x>0 <0

2. PRELIMINARIES

First, we define and make the notion of subsolution and supersolution of (1.1)
as follows.

Definition 2.1. A4 function u(z,t) defined on Rx[s, S] is called a subsolution of
(1.1) if u(x,t) < u(z,t) ((x,t) € Rx|[s,S]) for any solution u(x,t) of (1.1) such that
w(x,s) < u(z,s) (x € R). We call u(z,t) a subsolution of (1.1) in R x (—oo, =T
for some T > 0, if u(z,t) is a subsolution of (1.1) defined on R x [s, —T] for any
s < =T. Similarly, a supersolution can be defined by reversing the inequalities.

Lemma 2.2. Let ¢;(x,t), i = 1,2, be functions satisfying 0 < ¢;(z,t) < 1 and

(@i)e(- 1) =i+ +1,8) = di(- =1, 1) +265 (-, 1) = f (&4 (-, 1)) < 0 ((w,t) € Rx(—00, =T]).
Then u(x,t) := max{p1(z,t), p2(x,t)} is a subsolution of (1.1) in R x (—oo, =T7.

Proof. Given any s < —T. Set Q := R x [s,—T]. Let u(x,t) be a solution of
(1.1) in Q with u(x,s) > u(x,s) for all z € R. Applying the strong maximum
principle (see [1]) to w;(x,t) = u(z,t) — ¢i(x,t), i = 1,2, we assert that w;(z,t) >0
in Q, ¢ = 1,2.Thus u(z,t) > ¢i(x,t) in Q, ¢ = 1,2, which yields the desired

conclusion. O

We note that a bounded function ¢(z,t) of C? is a subsolution of (1.1) in R x
(—OO, _T] if ¢t(at)_d)(+1vt)_d)(_1at)+2¢)(7t)_f(¢(vt)) S 0in Rx (_007 _T]a
while it is a supersolution if ¢¢(-,t) — ¢(- +1,t) —d(- — 1, ) +2¢(-, t) — f(&(-, 1)) >0
in R x (—o0,=T) (see [1]).
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From now on, we alway assume ¢ = c¢p;,. Let A be the larger root of the
characteristic equation

(2.1) A—er—e M 42=0.

Concerning the asymptotic behaviors of the traveling wave solution U(x) near x =
+o0 in [3], we have the following estimates for « < 0:

(2.2) ke* < U(z) < Ke??,

for some positive k,K. Also, for x > 0 we have

(2.3) veTHT <1 —-Ulzx) < de™H7,

for some positive v, § and g is the unique positive root of
(2.4) cp+e +e*—-3=0.
Moveover, there are positive numbers v; (i = 1,2) such that

U . U'(x
¢ ()=¢1,;1;f0 (z)

(25) 20 TU(e) 1= U(2)

= 2.

3. EXISTENCE OF ENTIRE SOLUTIONS

Consider the following ordinary differential equation:
(3.1) p(t) = c+ Ne*?®™, (¢ <0),

where N, ¢ and « are constants with ¢, « > 0. We can solve this equation easily
and obtain the solution as

(32) p(t) = p(0) + ct — élog {1 + %e(w(o)g - ecat)} .

If N >0, it is clear that the solution p(t) is monotone increasing. Let

(3.3) w:=p(0) — élog (1 + ]Ze‘”’(o)> )

Then we obtain

(3.4) 0 < p(t) —ct —w < Roe™, (¢t <0),

for some positive constant Ry. Now, we have the following lemma.

Lemma 3.1. Let p(t) be the solution of (2.6) with p(0) < 0, « = A, N >
max{K?2/(1k), 2K /(27)} and let w be defined by (2.8). Suppose that X > p.
Then

(3.5) u(z,t) = Uz +p(t)) + U(—z + p(t))
and
(3.6) w(x,t) ;= max{U(x + ct +w),U(—x+ct+w)}

are a supersolution and a subsolution of (1.1) for t < 0, respectively.



4 S. C. FU AND H. J. WANG

Proof. First, by Lemma 2.2, we see that u(x,t) := max{U (z+ct4w),U(—z+ct4w)}
is a subsolution of (1.1) for ¢ < 0. Next, we prove that @(z,t) is a supersolution.
Let U(z + p(t)) = Uy, U(—x + p(t)) = Ua. Set Nv](z,t) = v(z,t) —v(z+1,t) —
v(ix —1,t) 4+ 2v(x,t) — f(v(z,t)). By a simple computation, we have

(3.7) NTa] = (U] + Uy)(Ne — G(x, 1)),

where

U\Us(2 — 3U; — 3U,)

. t) =

We also see from (2.2), (2.3) and (2.5) that

(3.9) ke < Ul(y) < Ke', (y<0),
(3.10) PrkeV < U (y) <U'(y), (y<0),
(3.11) Poye M < h(1-Uly)) <U'(y), (y=0).

Note that p(t) < 0 for all ¢ < 0. We divide R into three regions to estimate G(z,t).
(1) p <z < —p: Using (2.14) and (2.15), we obtain

G(z,t) < 20,02 _ 2K 2eMz+p) pA(—2+p)
(3.12) ’ S U4 U, ~ i k(eXetp) 4 eA—atp))
| - 2 252
T k(e e ) < 2k

(2) z < p: It follows from (2.14)-(2.16) that

22U, 2K eMwtp)
< <
- U{ + Ué - ’L/Jlke)‘($+17) -+ ¢27€*M(*$+P)
K

2
(3.13) = ekp
%}?ekp + Poye~(A—n)ze—up

G(z,t)

25 e,

<
Yy

(3) —p < z: By the symmetry G(—=z,t) = G(z,t) and (2.18), we obtain

2K
3.14 Gz, t) < ——er.
(3.14) @< —
Hence we obtain

N = (U] + Up)(Ne* — G(a,t)) > 0.

Therefore, @ is a supersolution of (1.1) for ¢ < 0. This proves the lemma. g
Remark 3.2. The assumption X > p in Lemma 2.3 is valid provided that cpin >

1
2log2”

Lemma 3.3. Let u(xz,t) and u(x,t) be the supersolution and the subsolution given
in Lemma 2.3. Suppose all the assumption of Lemma 2.3 holds. Then there is a
positive constant My such that

(3.15) 0 < T(z,t) — u(z,t) < Mie ((z,t) € R x (—o0,0]).
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Proof. Suppose that t < 0. Since U’ > 0, we have U(x + ¢t + w) > U(—x + ¢t + w)
for x > 0. Thus u(x,t) = U(z + ¢t + w) for > 0 and u(z,t) = U(—x + ¢t + w) for
x < 0. For x > 0, we have

0 <u(x,t) —u(zx,t) =U(x+pit)+U(—x+p()) — Uz +ct +w)
(3.16) < Ker=ot2) 4 sup |U’(2)|Roe
< Ke/\p(t) + M2ec)\t < Mlec/\t,

for some M7 > 0. On the other hand, for z < 0, we have

0 <u(z,t) —u(zx,t) =U(x+pi)+U(—z+p(t)) —U(—z+ct +w)
(3.17) < Ker@+p®) 4 sup, |U'(2)|RoeM
< Ke)\p(t) + M2€C/\t < Mlec’\t.

This completes the proof. ([
Following [5], we have the following proposition.

Proposition 3.4. Under the same assumptions of Lemma 2.3, there is an entire
solution u*(x,t) of (1.1) such that

(3.18) u(z,t) < u*(z,t) <a(z,t) ((x,t) € R x (—o00,0]),
where w is defined by (2.8), u(x,t) and u(x,t) are given in Lemma 2.3.

Proof. Denote by u(z, t; 1) a solution to (1.1) with the initial condition u(x, 0; vy(+)) =
vo(x). Set

Vn(z,t) = u(z, t;u(,—n)), n=1,2,....
Since u is a subsolution and u(z, —n — 1+ 0) = u(z,0;u(-, —(n + 1))), we have
w(x,—n —14+1t) <u(z,t;u(, —(n+1))).
By taking ¢t = 1, we obtain
(2, 0) = u(z, —n) < ue, Tu(, —(n + 1)) = vy (@, 1).
Thus the maximum principle yields
Un(xz,n) <vpgpr(z,n+ 1),

which implies {v,, (-, n)} is monotone increasing. On the other hand, since v, (z,n) <
u(x,0), there is a function v* such that v, converges uniformly to v*. Therefore,
u*(xz,t) := u(z,t;v*) is a solution for all ¢ > 0.

Next, we show that u*(x,t) is defined for all ¢ < 0. Given T > 0, there is an
integer nq such that n; > T. Then, for n > ny, we have

u(, =T ) = u(z, =T u(z, n; u(, —n))) = u(z,n — T;u(, —n)).
Set
(3.19) wp () = u(z,n — T;u(-, —n)).
Then v, (z,n) = u(z, T;wy,(z,t)) and
Wpt1(z) =w(le,n+1-Tu(-,—(n+1))) > ulx,n —T;u(-, —n)) = wy(x).

This implies the sequence {w,} is monotone increasing. Applying the same argu-
ment, there is a function v to which w, converges uniformly. We see that

v* = lim v, = lim u(z, T;w,(z,t)) = u(z, T;vr).
n—oo n—oo
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Thus we obtain
vr = u(x, =T;v").

Since T > 0 is arbitrary, we conclude that u*(z,t) := u(z,¢;v*) is defined for all
teR.
Finally, we show that (2.23) holds. From above, we have

(3.20) uw(z,-T) = u(x,-T;v") =vr = lim w,

n— o0
Since u is a subsolution and @(z, —n) > u(x, 0;u(-,—n)) = u(z, —n), we have
w(x,—n+t) > u(z,t;u(-, —n)) > u(z, —n + 1) ¥(x,t) € R x [0, n].
By taking t = n — T, we obtain

(3.21) w(x,—T) > wy, = u(z,n — T;u(-, —n)) > u(z, -T).
Hence, it follows from (2.25) and (2.26) that u(xz,—T) < u*(x,-T) < u(z,—T).
Since T > 0 is arbitrary, (2.23) holds. This proves the proposition. |

Remark 3.5. By virtue of the condition A > p we can check that the supersolution
u(x,t), defined fort <0, is bounded by 1 for large |t|. In fact, we may assume that
K < 1/2 in the condition (2.2) by shifting appropriately. Then

Uz +p(t) + U(=z +p(t)) < K(N + e ) (p < < —p),
while
U+p)+U(—z+p) <1—ye#@FP) 4 Ke—A(z —p)
<1 — (7 — KePtwpe=Q-maye—pl@tp) (_p < ),
Uz +p)+U(—z+p) <Kot 41 —yeprle=r)
<1—(y-— Ke(/\+#)p6(>\*#)r)6u(w*p) (z <p).
This implies w(x,t) < 1 for t < =T with a large T > 0. Hence, by the strong maz-

imum principle, we can assert that the solution u(xz,t) of Proposition 2.6 satisfies
0 < u(z,t) <1 for all (z,t) € R%

Proposition 3.6. Let u(x,t) be an entire solution constructed in Proposition 2.6.
Under the same assumptions of Lemma 2.3 and Proposition 2.6, there is a positive
number My such that fort <0,

0 <sup,>q {u(z,t) — Uz +ct +w)}

+sup, <o {u(z,t) —U(—z + ct + w)} < Mye™.

Proof. Suppose that ¢t < 0. For x > 0,

0 <U(z+p(t) +U(-2+p(t) = Ulz +ct +w)
(3.23) < Ker=otp0) 4 gup, |U'(2)|Roe™
< KM 4+ Moet < 1Mqec,

for some M; > 0. Combining (2.23) and (2.28), we obtain

(3.22)

1
0< u(z,t) —Ulx+ct+w) <a(x,t) —U(x+ct+w) < iMleCAt.
On the other hand, for x < 0, we have
0 <U(x+pt)+U(—x+pk) —U(—z+ct+w)

KeM#tr(®) 4ogup_ |U’(2)| RoeM

(3.24) <
< Kekp(t) + MQec/\t < %Mlec)\t_



ENTIRE SOLUTIONS FOR DISCRETE REACTION-DIFFUSION EQUATIONS 7

Therefore it follows from (2.23) and (2.29) that
1
0< u(z,t) —U(—z+ct+w) <u(z,t) —U(—x + ct+w) < iMleC)‘t.

Hence (2.27) holds. O
Proof of Theorem 1.1: Given arbitrary 6;, 6, we consider the translation and
the time-shift as
U+&+c(t+7)=U(x+ct+&+cr),
U(—x—&+4c(t+7)=U(—x+ct — &+ cer).
Define u(z,t) := u(z + &, t + 7) with
¢ 01 — 0y - 01+ 609 — 2w
o2 T 2¢ ’
where u(z,t) is the entire solution of Proposition 2.6. Then we easily obtain
max{U(z 4+ ct+01),U(—x + ct + 02)}
<a(x,t) <ulzr+&t+71) (< —7).

On the other hand, (1.4) immediately follows from (2.27). Thus we complete the
proof of Theorem 1.1. O

Remark 3.7. Entire solutions can also be constructed by using traveling wave with
speed ¢ > Cmin if one can find a pair of suitable supersolution and subsolution.
However, we cannot find such one. Therefore we left it as an open problem.
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