行政院國家科學委員會專題研究計畫 成果報告

反應擴散方程全解之研究 研究成果報告(精簡版)

計畫類別:個別型

計 畫 編 號 : NSC 95-2115-M-004-001-

執 行 期 間 : 95年08月01日至96年07月31日

執 行 單 位 : 國立政治大學應用數學學系

計畫主持人: 符聖珍

計畫參與人員:碩士班研究生-兼任助理:王宏嘉

處 理 方 式 : 本計畫可公開查詢

中 華 民 國 96年10月16日

ENTIRE SOLUTIONS FOR DISCRETE REACTION-DIFFUSION EQUATIONS

S. C. FU AND H. J. WANG

ABSTRACT. This paper deals with a discrete reaction-diffusion equation $u_t(x,t) = u(x+1,t) - 2u(x,t) + u(x-1,t) + f(u(x,t))$, where $f(u) = u^2(1-u)$. Here, we prove there exist entire solutions which behave as two travelling waves coming from both sides of x-axis

1. Introduction

In this paper, we consider the following discrete reaction-diffusion equation

$$(1.1) u_t(x,t) = u(x+1,t) - 2u(x,t) + u(x-1,t) + f(u(x,t)),$$

which is a discrete version of the following semilinear parabolic equation

$$(1.2) u_t = u_{xx} + f(u).$$

When the function f(u) is such that f(0) = f(1) = 0, f'(0) > 0, f'(1) < 0 and f(u) > 0 for any 0 < u < 1, (1.2) is called the Fisher's equation [4] or Kolmogorov, Petrovsky and Piskunov (KPP) equation [6], and it describes the propagation of an advantageous gene within an one-dimensional habitat. When $f(u) = u^m(1-u)$, where m is an integer greater than two, it is called the mth-order Fisher's equation. In particular, it is called the Zeldovich equation if m = 2. For a cubic nonlinearly f(u) = u(1-u)(u-a), it is called the Allen-Cahn equation (a = 1/2) in phase transition and also the Nagumo equation $(a \in (0,1))$ in propagation of nerve excitation. A great deal of work has been carried out to extend this equation to take into account other biological, chemical or physical factors.

A solution u(x,t) of (1.1) is called a travelling wave with speed c if there exists a function $U: \mathbb{R} \to [0,1]$ such that u(x,t) = U(x+ct), which connects two equilibria u=0,1. Such solution (c,U) satisfies the following travelling wave problem and it is unique up to translation

(1.3)
$$\begin{cases} cU'(\cdot) = U(\cdot + 1) + U(\cdot - 1) - 2U(\cdot) + f(U(\cdot)) \text{ on } \mathbb{R}, \\ U(-\infty) = 0, \ U(\infty) = 1, \ 0 \le U \le 1 \text{ on } \mathbb{R}. \end{cases}$$

When f is Lipschitz continuous on [0,1] with f(0) = f(1) = 0 < f(u) for all $u \in (0,1)$, it has been shown in [2] that there exists $c_{min} > 0$ such that (1.3) admits a solution if and only if $c \geq c_{min}$. The existence, uniqueness and asymptotic stability of travelling waves, we refer the readers to [2,3] and the references therein.

From the dynamical point of view, the travelling wave solution is not enough to understand the whole dynamics of a reaction-diffusion equation. Therefore, there have been many studies done recently for other types of entire solutions. For example, Chen and Guo in [2] constructed entire solutions which behave as two opposite wave fronts coming from both sides of x-axis and then annihilating in a

2000 Mathematics Subject Classification: 30D30, 30D35.

Key words and phrases: discrete reaction-diffusion equation, entire solution

finite time. Here the entire solution is meant by a solution which is defined for all $(x,t) \in \mathbb{R}^2$. Entire solutions play an important role in the whole dynamics. The study for entire solutions is crucial in the following sense: firstly, it helps us for the mathematical understanding of transient dynamics. As mentioned above, some transient dynamics can be characterized by the behavior of the past $t \approx -\infty$, even though we cannot describe the whole transient behavior. Secondly, structure of the maximal invariant set (or the global attractor) is one of the ultimate goal.

In [5], Guo and Morita studied (1.1) and (1.2) where f(0) = f(1) = 0, f'(1) < 0, and $f'(0) \neq 0$. They proved there exist entire solutions which behave as two opposite wave fronts coming from both sides of x-axis. The technique they used was to characterize the asymptotic behavior of the solutions as $t \to \pm \infty$ in terms of appropriate subsolutions and supersolutions and use the comparison argument. This argument can apply not only to a general bistable reaction-diffusion equation but also to the Fisher-KPP equation. They also extended it to a discrete diffusive Fisher-KPP equation.

In this paper, we focus on (1.1), where $f(u) = u^2(1-u)$. We note that f'(0) = 0 in this case. Following the method of [5], we prove the existence of entire solutions for $c = c_{min}$ in the following theorem.

Theorem 1.1. Consider (1.1), where $f(u) = u^2(1-u)$. Let U be a solution of (1.3) with $c = c_{min}$. Then, for any given constants θ_1 , θ_2 , there exists an entire solution u(x,t) of (1.1) such that

$$(1.4) \quad \lim_{t \to -\infty} \{ \sup_{x \ge 0} |u(x,t) - U(x+ct+\theta_1)| + \sup_{x \le 0} |u(x,t) - U(-x+ct+\theta_2)| \} = 0.$$

2. Preliminaries

First, we define and make the notion of subsolution and supersolution of (1.1) as follows.

Definition 2.1. A function $\underline{u}(x,t)$ defined on $\mathbb{R} \times [s,S]$ is called a subsolution of (1.1) if $\underline{u}(x,t) \leq u(x,t)$ $((x,t) \in \mathbb{R} \times [s,S])$ for any solution u(x,t) of (1.1) such that $\underline{u}(x,s) \leq u(x,s)$ $(x \in \mathbb{R})$. We call $\underline{u}(x,t)$ a subsolution of (1.1) in $\mathbb{R} \times (-\infty, -T]$ for some $T \geq 0$, if $\underline{u}(x,t)$ is a subsolution of (1.1) defined on $\mathbb{R} \times [s, -T]$ for any s < -T. Similarly, a supersolution can be defined by reversing the inequalities.

Lemma 2.2. Let $\phi_i(x,t)$, i=1,2, be functions satisfying $0<\phi_i(x,t)<1$ and $(\phi_i)_t(\cdot,t)-\phi_i(\cdot+1,t)-\phi_i(\cdot-1,t)+2\phi_i(\cdot,t)-f(\phi_i(\cdot,t))\leq 0$ $((x,t)\in\mathbb{R}\times(-\infty,-T])$. Then $\underline{u}(x,t):=\max\{\phi_1(x,t),\phi_2(x,t)\}$ is a subsolution of (1.1) in $\mathbb{R}\times(-\infty,-T]$.

Proof. Given any s < -T. Set $\Omega := \mathbb{R} \times [s, -T]$. Let u(x,t) be a solution of (1.1) in Ω with $u(x,s) \geq \underline{u}(x,s)$ for all $x \in \mathbb{R}$. Applying the strong maximum principle (see [1]) to $\omega_i(x,t) = u(x,t) - \phi_i(x,t)$, i = 1, 2, we assert that $\omega_i(x,t) \geq 0$ in Ω , i = 1, 2. Thus $u(x,t) \geq \phi_i(x,t)$ in Ω , i = 1, 2, which yields the desired conclusion.

We note that a bounded function $\phi(x,t)$ of C^2 is a subsolution of (1.1) in $\mathbb{R} \times (-\infty, -T]$ if $\phi_t(\cdot, t) - \phi(\cdot + 1, t) - \phi(\cdot - 1, t) + 2\phi(\cdot, t) - f(\phi(\cdot, t)) \leq 0$ in $\mathbb{R} \times (-\infty, -T]$, while it is a supersolution if $\phi_t(\cdot, t) - \phi(\cdot + 1, t) - \phi(\cdot - 1, t) + 2\phi(\cdot, t) - f(\phi(\cdot, t)) \geq 0$ in $\mathbb{R} \times (-\infty, -T)$ (see [1]).

From now on, we alway assume $c = c_{min}$. Let λ be the larger root of the characteristic equation

$$(2.1) c\lambda - e^{\lambda} - e^{-\lambda} + 2 = 0.$$

Concerning the asymptotic behaviors of the traveling wave solution U(x) near $x = \pm \infty$ in [3], we have the following estimates for $x \leq 0$:

$$(2.2) ke^{\lambda x} \le U(x) \le Ke^{\lambda x},$$

for some positive k,K. Also, for $x \geq 0$ we have

$$(2.3) \gamma e^{-\mu x} \le 1 - U(x) \le \delta e^{-\mu x},$$

for some positive γ , δ and μ is the unique positive root of

$$(2.4) c\mu + e^{\mu} + e^{-\mu} - 3 = 0.$$

Moveover, there are positive numbers ψ_i (i = 1, 2) such that

(2.5)
$$\inf_{x \le 0} \frac{U'(x)}{U(x)} = \psi_1, \ \inf_{x \ge 0} \frac{U'(x)}{1 - U(x)} = \psi_2.$$

3. Existence of entire solutions

Consider the following ordinary differential equation:

(3.1)
$$\dot{p}(t) = c + Ne^{\alpha p(t)}, \ (t \le 0),$$

where N, c and α are constants with c, $\alpha > 0$. We can solve this equation easily and obtain the solution as

$$(3.2) \hspace{1cm} p(t)=p(0)+ct-\frac{1}{\alpha}log\left\{1+\frac{N}{c}e^{\alpha p(0)}(1-e^{c\alpha t})\right\}.$$

If N > 0, it is clear that the solution p(t) is monotone increasing. Let

(3.3)
$$\omega := p(0) - \frac{1}{\alpha} log \left(1 + \frac{N}{c} e^{\alpha p(0)} \right) .$$

Then we obtain

(3.4)
$$0 < p(t) - ct - \omega \le R_0 e^{c\alpha t}, \ (t \le 0),$$

for some positive constant R_0 . Now, we have the following lemma.

Lemma 3.1. Let p(t) be the solution of (2.6) with p(0) < 0, $\alpha = \lambda$, $N > \max\{K^2/(\psi_1 k), 2K/(\psi_2 \gamma)\}$ and let ω be defined by (2.8). Suppose that $\lambda \geq \mu$. Then

(3.5)
$$\overline{u}(x,t) := U(x+p(t)) + U(-x+p(t))$$

and

$$(3.6) \underline{u}(x,t) := \max\{U(x+ct+\omega), U(-x+ct+\omega)\}\$$

are a supersolution and a subsolution of (1.1) for $t \leq 0$, respectively.

Proof. First, by Lemma 2.2, we see that $\underline{u}(x,t) := \max\{U(x+ct+\omega), U(-x+ct+\omega)\}$ is a subsolution of (1.1) for $t \leq 0$. Next, we prove that $\overline{u}(x,t)$ is a supersolution. Let $U(x+p(t)) = U_1$, $U(-x+p(t)) = U_2$. Set $\mathcal{N}[\nu](x,t) := \nu_t(x,t) - \nu(x+1,t) - \nu(x+1,t)$ $\nu(x-1,t)+2\nu(x,t)-f(\nu(x,t))$. By a simple computation, we have

(3.7)
$$\mathcal{N}[\overline{u}] = (U_1' + U_2')(Ne^{\lambda p} - G(x,t)),$$

where

(3.8)
$$G(x,t) := \frac{U_1 U_2 (2 - 3U_1 - 3U_2)}{U_1' + U_2'}.$$

We also see from (2.2), (2.3) and (2.5) that

$$(3.9) ke^{\lambda y} < U(y) < Ke^{\lambda y}, (y < 0),$$

$$(3.10) \psi_1 k e^{\lambda y} \le \psi_1 U(y) \le U'(y), (y \le 0),$$

(3.9)
$$ke^{\lambda y} \le U(y) \le Ke^{\lambda y}, (y \le 0),$$

(3.10) $\psi_1 ke^{\lambda y} \le \psi_1 U(y) \le U'(y), (y \le 0),$
(3.11) $\psi_2 \gamma e^{-\mu y} \le \psi_2 (1 - U(y)) \le U'(y), (y \ge 0).$

Note that p(t) < 0 for all $t \le 0$. We divide \mathbb{R} into three regions to estimate G(x,t). (1) $p \le x \le -p$: Using (2.14) and (2.15), we obtain

(3.12)
$$G(x,t) \leq \frac{2U_1U_2}{U_1' + U_2'} \leq \frac{2K^2 e^{\lambda(x+p)} e^{\lambda(-x+p)}}{\psi_1 k(e^{\lambda(x+p)} + e^{\lambda(-x+p)})} = \frac{2K^2 e^{2\lambda p}}{\psi_1 k(e^{\lambda x} + e^{-\lambda x}) e^{\lambda p}} \leq \frac{2K^2}{2\psi_1 k} e^{\lambda p}.$$

(2) x < p: It follows from (2.14)-(2.16) that

(3.13)
$$G(x,t) \leq \frac{2U_1}{U_1' + U_2'} \leq \frac{2Ke^{\lambda(x+p)}}{\psi_1 k e^{\lambda(x+p)} + \psi_2 \gamma e^{-\mu(-x+p)}} \\ = \frac{2K}{\psi_1 k e^{\lambda p} + \psi_2 \gamma e^{-(\lambda-\mu)x} e^{-\mu p}} e^{\lambda p} \\ \leq \frac{2K}{\psi_2 \gamma} e^{\lambda p}.$$

(3) $-p \le x$: By the symmetry G(-x,t) = G(x,t) and (2.18), we obtain

(3.14)
$$G(x,t) \le \frac{2K}{\psi_2 \gamma} e^{\lambda p}.$$

Hence we obtain

$$\mathcal{N}[\overline{u}] = (U_1' + U_2')(Ne^{\lambda p} - G(x,t)) \ge 0.$$

Therefore, \overline{u} is a supersolution of (1.1) for $t \leq 0$. This proves the lemma.

Remark 3.2. The assumption $\lambda \geq \mu$ in Lemma 2.3 is valid provided that $c_{min} \geq 1$ $\frac{1}{2\log 2}$

Lemma 3.3. Let $\overline{u}(x,t)$ and $\underline{u}(x,t)$ be the supersolution and the subsolution given in Lemma 2.3. Suppose all the assumption of Lemma 2.3 holds. Then there is a positive constant M_1 such that

$$(3.15) 0 < \overline{u}(x,t) - \underline{u}(x,t) \le M_1 e^{c\lambda t} ((x,t) \in \mathbb{R} \times (-\infty,0]).$$

Proof. Suppose that $t \leq 0$. Since U' > 0, we have $U(x+ct+\omega) \geq U(-x+ct+\omega)$ for $x \geq 0$. Thus $\underline{u}(x,t) = U(x+ct+\omega)$ for $x \geq 0$ and $\underline{u}(x,t) = U(-x+ct+\omega)$ for $x \leq 0$. For $x \geq 0$, we have

(3.16)
$$0 \leq \overline{u}(x,t) - \underline{u}(x,t) = U(x+p(t)) + U(-x+p(t)) - U(x+ct+\omega) \\ \leq Ke^{\lambda(-x+p(t))} + \sup_{z} |U'(z)|R_0e^{c\lambda t} \\ \leq Ke^{\lambda p(t)} + M_2e^{c\lambda t} \leq M_1e^{c\lambda t},$$

for some $M_1 > 0$. On the other hand, for $x \leq 0$, we have

(3.17)
$$0 \leq \overline{u}(x,t) - \underline{u}(x,t) = U(x+p(t)) + U(-x+p(t)) - U(-x+ct+\omega) \\ \leq Ke^{\lambda(x+p(t))} + \sup_{z} |U'(z)|R_0e^{c\lambda t} \\ \leq Ke^{\lambda p(t)} + M_2e^{c\lambda t} \leq M_1e^{c\lambda t}.$$

This completes the proof.

Following [5], we have the following proposition.

Proposition 3.4. Under the same assumptions of Lemma 2.3, there is an entire solution $u^*(x,t)$ of (1.1) such that

$$(3.18) \underline{u}(x,t) \le u^*(x,t) \le \overline{u}(x,t) \ ((x,t) \in \mathbb{R} \times (-\infty,0]),$$

where ω is defined by (2.8), u(x,t) and $\overline{u}(x,t)$ are given in Lemma 2.3.

Proof. Denote by $u(x, t; \nu_0)$ a solution to (1.1) with the initial condition $u(x, 0; \nu_0(\cdot)) = \nu_0(x)$. Set

$$\nu_n(x,t) = u(x,t;u(\cdot,-n)), \quad n = 1,2,\dots$$

Since \underline{u} is a subsolution and $\underline{u}(x, -n - 1 + 0) = u(x, 0; \underline{u}(\cdot, -(n + 1)))$, we have

$$u(x, -n - 1 + t) \le u(x, t; u(\cdot, -(n + 1))).$$

By taking t = 1, we obtain

$$\nu_n(x,0) = u(x,-n) \le u(x,1; u(\cdot,-(n+1))) = \nu_{n+1}(x,1).$$

Thus the maximum principle yields

$$\nu_n(x,n) \le \nu_{n+1}(x,n+1),$$

which implies $\{\nu_n(\cdot,n)\}$ is monotone increasing. On the other hand, since $\nu_n(x,n) \leq \overline{u}(x,0)$, there is a function ν^* such that ν_n converges uniformly to ν^* . Therefore, $u^*(x,t) := u(x,t;\nu^*)$ is a solution for all $t \geq 0$.

Next, we show that $u^*(x,t)$ is defined for all $t \leq 0$. Given $T \geq 0$, there is an integer n_1 such that $n_1 > T$. Then, for $n \geq n_1$, we have

$$u(x, -T; \nu_n) = u(x, -T; u(x, n; \underline{u}(\cdot, -n))) = u(x, n - T; \underline{u}(\cdot, -n)).$$

Set

$$(3.19) w_n(x) = u(x, n - T; \underline{u}(\cdot, -n)).$$

Then $\nu_n(x,n) = u(x,T;w_n(x,t))$ and

$$w_{n+1}(x) = u(x, n+1-T; \underline{u}(\cdot, -(n+1))) \ge u(x, n-T; \underline{u}(\cdot, -n)) = w_n(x).$$

This implies the sequence $\{w_n\}$ is monotone increasing. Applying the same argument, there is a function ν_T to which w_n converges uniformly. We see that

$$\nu^* = \lim_{n \to \infty} \nu_n = \lim_{n \to \infty} u(x, T; w_n(x, t)) = u(x, T; \nu_T).$$

Thus we obtain

$$\nu_T = u(x, -T; \nu^*).$$

Since T > 0 is arbitrary, we conclude that $u^*(x,t) := u(x,t;\nu^*)$ is defined for all $t \in \mathbb{R}$.

Finally, we show that (2.23) holds. From above, we have

(3.20)
$$u^*(x, -T) = u(x, -T; \nu^*) = \nu_T = \lim_{n \to \infty} \omega_n$$

Since \underline{u} is a subsolution and $\overline{u}(x,-n) \geq u(x,0;\underline{u}(\cdot,-n)) = \underline{u}(x,-n)$, we have

$$\overline{u}(x, -n + t) \ge u(x, t; \underline{u}(\cdot, -n)) \ge \underline{u}(x, -n + t) \ \forall (x, t) \in \mathbb{R} \times [0, n].$$

By taking t = n - T, we obtain

$$(3.21) \overline{u}(x, -T) \ge \omega_n = u(x, n - T; \underline{u}(\cdot, -n)) \ge \underline{u}(x, -T).$$

Hence, it follows from (2.25) and (2.26) that $\underline{u}(x, -T) \leq u^*(x, -T) \leq \overline{u}(x, -T)$. Since T > 0 is arbitrary, (2.23) holds. This proves the proposition.

Remark 3.5. By virtue of the condition $\lambda \geq \mu$ we can check that the supersolution $\overline{u}(x,t)$, defined for $t \leq 0$, is bounded by 1 for large |t|. In fact, we may assume that K < 1/2 in the condition (2.2) by shifting appropriately. Then

$$U(x+p(t)) + U(-x+p(t)) \le K(e^{\lambda x} + e^{-\lambda x})e^{\lambda p} \ (p \le x \le -p),$$

while

$$\begin{array}{ll} U(x+p) + U(-x+p) & \leq 1 - \gamma e^{-\mu(x+p)} + Ke - \lambda(x-p) \\ & \leq 1 - (\gamma - Ke^{(\lambda+\mu)p} e^{-(\lambda-\mu)x}) e^{-\mu(x+p)} \ (-p \leq x), \\ U(x+p) + U(-x+p) & \leq Ke^{\lambda(x+p)} + 1 - \gamma e^{\mu(x-p)} \\ & \leq 1 - (\gamma - Ke^{(\lambda+\mu)p} e^{(\lambda-\mu)x}) e^{\mu(x-p)} \ (x \leq p). \end{array}$$

This implies $\overline{u}(x,t) \leq 1$ for t < -T with a large T > 0. Hence, by the strong maximum principle, we can assert that the solution u(x,t) of Proposition 2.6 satisfies 0 < u(x,t) < 1 for all $(x,t) \in \mathbb{R}^2$.

Proposition 3.6. Let u(x,t) be an entire solution constructed in Proposition 2.6. Under the same assumptions of Lemma 2.3 and Proposition 2.6, there is a positive number M_1 such that for $t \leq 0$,

(3.22)
$$0 \le \sup_{x \ge 0} \{ u(x,t) - U(x+ct+\omega) \} + \sup_{x < 0} \{ u(x,t) - U(-x+ct+\omega) \} \le M_1 e^{c\lambda t}.$$

Proof. Suppose that $t \leq 0$. For $x \geq 0$,

(3.23)
$$0 \leq U(x+p(t)) + U(-x+p(t)) - U(x+ct+\omega) \\ \leq Ke^{\lambda(-x+p(t))} + \sup_{z} |U'(z)| R_0 e^{c\lambda t} \\ \leq Ke^{\lambda p(t)} + M_2 e^{c\lambda t} \leq \frac{1}{2} M_1 e^{c\lambda t},$$

for some $M_1 > 0$. Combining (2.23) and (2.28), we obtain

$$0 \le u(x,t) - U(x+ct+\omega) \le \overline{u}(x,t) - U(x+ct+\omega) \le \frac{1}{2}M_1e^{c\lambda t}.$$

On the other hand, for $x \leq 0$, we have

(3.24)
$$0 \leq U(x+p(t)) + U(-x+p(t)) - U(-x+ct+\omega) \\ \leq Ke^{\lambda(x+p(t))} + \sup_{z} |U'(z)| R_0 e^{c\lambda t} \\ \leq Ke^{\lambda p(t)} + M_2 e^{c\lambda t} \leq \frac{1}{2} M_1 e^{c\lambda t}.$$

Therefore it follows from (2.23) and (2.29) that

$$0 \le u(x,t) - U(-x + ct + \omega) \le \overline{u}(x,t) - U(-x + ct + \omega) \le \frac{1}{2}M_1e^{c\lambda t}.$$

Hence (2.27) holds.

Proof of Theorem 1.1: Given arbitrary θ_1 , θ_2 , we consider the translation and the time-shift as

$$\begin{split} U(x+\xi+c(t+\tau)) &= U(x+ct+\xi+c\tau),\\ U(-x-\xi+c(t+\tau)) &= U(-x+ct-\xi+c\tau). \end{split}$$

Define $\widetilde{u}(x,t) := u(x+\xi,t+\tau)$ with

$$\xi := \frac{\theta_1 - \theta_2}{2}, \ \tau := \frac{\theta_1 + \theta_2 - 2\omega}{2c},$$

where u(x,t) is the entire solution of Proposition 2.6. Then we easily obtain

$$\max\{U(x+ct+\theta_1), U(-x+ct+\theta_2)\}$$

 $\leq \tilde{u}(x,t) \leq \overline{u}(x+\xi,t+\tau) \ (t \leq -\tau).$

On the other hand, (1.4) immediately follows from (2.27). Thus we complete the proof of Theorem 1.1.

Remark 3.7. Entire solutions can also be constructed by using traveling wave with speed $c > c_{min}$ if one can find a pair of suitable supersolution and subsolution. However, we cannot find such one. Therefore we left it as an open problem.

References

- 1. X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, *Journal of Differential Equations* 184 (2002), 549-569.
- X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Mathematische Annalen 326 (2003), 123-146.
- 3. X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM Journal on Mathematical Analysis 38 (2006), 233-258.
- 4. R.A Fisher, The advance of adavantageous genes, Annals Eugenics 7 (1937), 355-369.
- J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete and Continuous Dynamical Systems 12 (2005), 193-212.
- 6. A. Kolmogorov, I. Petrovsky, and N. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Universite d'Etat a Moscow Series Internationale Section A 1 (1937), 1-26.

SHENG-CHEN FU

DEPARTMENT OF MATHEMATICAL SCIENCES

NATIONAL CHENGCHI UNIVERSITY

Taipei, Taiwan.

 $E ext{-}mail\ address: denise_fu@yahoo.com.tw}$

Hong-Jia Wang

DEPARTMENT OF MATHEMATICAL SCIENCES

NATIONAL CHENGCHI UNIVERSITY

Taipei, Taiwan.

E-mail address: ogagigi@alumni.nccu.edu.tw