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Estimates for the Life-Span of positive Solutions of
some Semilinear Wave Equations in n-dimensional
ou-u=0,n<3 (H)

Meng-Rong Lit

1 1. Introduction
Haveing obtain the estimates for the life-span of positive solutions of semilinear
wave equations in n-dimensional

Ou — u?>=0,n<2.

We want to estimate the life-span and later seek for the life-span of positive
solutions for the 3—dimensional semilinear wave equation

Ou=u’in [0,T) x Q,Q CR? (1.1)

with initial values u (0,2) = ug (z) € H? (Q) N HE (Q) and 4 (0,2) = u1 (z) €
H} (Q), that is, the superlinear case. We will use the following notations:
0 0? 0?

=, Dui=(U,uy), O0:=— — —,
g D= (i) o o2

a(t) = /Q W2 (1, 7) dz, B (1) = /Q <|Du|2 _ §u3> (t,z) dz.

For a Banach space X and 0 < T < oo we set
C*(0,T, X) = Space of C* — functions : [0,T) — X,
H1:=C'(0,T,Hg () n C?(0,T,L*()) .
Jorgens [3] published the first exist Theorem for global solutions to the wave
equation of the form
Ou+f(u)=0in [0,T) x R? (1.2)

for f(u) =g (uz) -, his result can be applied to the equation Tu + u3 = 0;
and Browder [1] generalized Jorgens’s result to n > 2. For local Lipschitz f |
Li [10] proved the nonexistence of global Solution of the initial-boundary value
problem of semilinear wave equation (1.2) in bounded domain Q C R? under
the assumption

E(0) = ||Du|\§<o>+2/ £ (w) (0,2) dz < 0,
Q

nf(n)—2(1+2a)/0nf(r)dr§/\1an2 Ve R
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where o > 0, Ay := sup {[|ull, / |Vull, : v € H} ()} and o’ (0) > 0. There we
have a rough estimate for the life-span

T < By:=2 {1 - (1 — ks (0)“")1/2] ks,

where k1 = aa (0) """ \/a’ (0)° — 4E (0)a (0), ks := (~4a2E (0) /k2)"/" "

For f(u) = —u?, there exist global solutions of (SL) for small initial data [8];
but if £(0) < 0 and a’(0) > 0 then the solutions are only local, i.e. T < oo [11].

John [4] showed the nonexistence of solutions of the initial-boundary value
problem for the wave equation Ou = A|ulP, A > 0,

1<p<l4+V2 Q=R>

This problem was considered by Glassey [2] in two dimensional case n = 2;
for n > 3 Sideris [15] showed the nonexistence of global solutions under the
conditions

lluoll; >0 and ||lui|l; > O.

According to this result Strauss [13, p.27] guessed that the solutions for the
above mentioned wave equation are global for p > 1+ /2.

Further literature about blow up one can see [4], [5], [6], [12] and [13] and
their reference.

In this paper we treat the blow-up rate, blow-up constante and the asymp-
totic behavior of the solution to the equation (0.1).

2 Definition and Fundamental Lemmas

There are many definitions of the weak solutions of the initial-boundary prob-
lems of the wave equation, we use here as following.

Definition 2.1: For u € H1 is called a positive weakly solution of equation

(1.1), if

Y e P
nd

a
t
/ / u(ryz) Y (r,x) dedr >0
0 Ja
for each positive 1 € C§° ([0,T) x Q).

Remark 2.1: 1) This definition 2.1 is resulted from the multiplication with
¢ to the equation (1.1) and integration in Q from 0 to t.



2) From the local Lipschitz functions u2, the initial-boundary value problem
(1.1) possesses a unique solution in H1 [9]. Hereto we use the notations:

1
ci=m=sw{|ul, / [Dul,:ueH ()},

A =sup{llul, / IDully:we B (@) N Ly ()},

for ¢ > 1.

In this paper we need the following lemmas

Lemma 2.1: Suppose that uw € H1 is a weakly positive solution of (SL)
with E (0) =0 for a (0) > 0, then we have:

(i) a € C?(0,T) and E (t) = E(0) Vt e [0,T).

(i) @’ (t) >0 WVt €0,T), provided a’ (0) > 0.

(iii) ' (t) >0 Vt e (0,7), ifa’ (0) =
(

iv) For a' (0) < 0, there exists a constant to > 0 with

a(t)>0=d (to) Vt>to.

Lemma 2.2: Suppose that u is a positive weakly solution in H1 of equation
(1.1) with u (0,-) = 0=1(0,-) in L* (), we have u =0 in H1.

3 Estimates for the Life-Span of the Solutions of (1.1)
under Null-Energy

In this section we focus on the case that E (0) = 0 and divide it into two parts
(i) a(0) > 0,a’ (0) > 0 (ii) a(0) > 0,a’ (0) <O

3.1 Estimates for the Life-span of the Solutions of (1.1) under
a (0) >0

Theorem 3.1: Suppose that u € H1 is a positive weakly solution of equation
(1.1) with o’ (0) > 0 and E (0) = 0. Then the Life-span of u is finite, further

T<aqp:= k;l sin™? (lcf)
kia1 (O)

with

1
ky = a 1(0)+/a' (0 0) 4+4C2 ko := 20



If T = ay, then a(t) — oo,t — T. Furthermore, we have also the estimate for
a(t):
ko \* 4
alt)> <1j> (sin (koo — kat)) ™ Ve e 0,T).
1

This means that the blow-up rate of u is 4 in the sin-growth.

Remark 3.1 1) The Theorem 3.1 is a extension of my own Satz 2 in [9].
And the local existence and uniqueness of solutions of equation (1.1) in H1 are
known [10].

2) For special cases:

i) For n = 2 and E (0) = 0, the life-span of the positive solution v € H1 of
equation (1.1) is bounded by T < «;.

ii) For n = 3 and E (0) = 0, the life-span of the positive solution u € H1 of
equation (1.1) is bounded

T < ag := 20 sin~? (20 (a’ 0)%a(0)"2 + 402)2> .

If T = a, then a (t) — oco,t — T.

iii) For o’ (0) = 0, we have ay = wC.

a (0)
a' (0)

1
As |Q] — 0, then a; — 2sin™! (40> .

iv) For || — oo, we have also a; —

3.2 Estimates for the Life-span of the Solutions of equation (1.1)
under @’ (0) <0

Theorem 3.2.1: Suppose that v € H1 is a positive weakly solution of the
initial-boundary value problem equation (1.1) with a(0) > 0, E(0) = 0 and
a’ (0) < 0. Then the life span of u is bounded:

T <as:= 5 —4d (0) (A3)°

If T = a5, then a(t) — oo, T — as. Further, we have the estimate for the
blow-up rate of a (t) in the neighborhood of a:

a(t) > a(to) <sin (S (a5 — t)>>_4 Vt € [to,T) ,to < 11

with ty == —5A5a’ (0).



Theorem 3.2.2: Suppose that u is a positive weakly solution of equation
(1.1) with a (0) >0, E(0) =0, and

. 1 , L TMa (0) — 24’ (0) 2rity
(i) — 3ra (0) < a’ (0) < 05 (42) 1 (0) + 207 (0) Sett,

where 1 := /2C. Then the life-span of u is bounded:

v 1 r1a(0) — 2a’ (0)
T< ==+ —In|{———= | <as.
== G + 2rq o (rla (0) + 2a’ =5

And there is a constant t4 > 0 with

1 ria (0) — 24’ (0
< =—n|—F——-—=
(@) ta <ty 2ry . (rla (0) +2a’ (0) )’

ot sn (3 e -0))

4 Estimates for the Life-Span of the Solutions of equa-
tion (1.1) under Negativ-Energy

(iv) alt)

v

In this chapter we suppose the energy F (0) is negative and consider the following
cases:

(i) @ (0) > 0,a’ (0) > 0 (ii) a (0) > 0,a’ (0) = 0 (iii) a (0) > 0,a’ (0) < 0.

4.1 Fundamental Lemmas

In this section we use the following lemmas and those argumentations of proof
to lemmas are not true for positive energy, so under positive energy we need to
seek another method to show the results.

Lemma 4.1: Suppose that u € H1 is a positive weakly solution of equation
(1.1) with a (0) > 0 and E(0) < 0. Then

(i) for a’ (0) > 0, we have a’ (t) >0 V¢ > 0.

(i1) for o’ (0) < 0, there exists a constant t5 > 0 with a/ (t) > 0 Vt >
ts, a' (t5) =0 and

ls <lg = 5——

where & is the positive root of the equation 2)3 - r® — 3r? + 3E (0) = 0.



4.2 Estimates for the Life-Span of the Solutions of equa-
tion (1.1) under E (0) < 0, a’ (0) > 0.

Theorem 4.2: Suppose that u € H1 is a positive weakly solution of equation
(0.1) with E(0) <0, and a’ (0) > 0. Then the life-span of u is bounded:

T < as:= ko_lkg_l sin™! <]<126L (O)_%)

where

x>
Sy

boim (1) ko= LB BT,

Further we have

a(t) >k (sin (koko (a5 —t )))

o

Remark 4.2: We can good estimate the rate of the singularity of a (t) and
the life-span of u, but we can not get them contemporaneously:

1 tan—?! (kga(0)7%>

1
1-k2a(0)” 2

)—k0k2 1— k2a(0) %t }}_4

T < ag:=ky'ky

Bl

a(t) > ki {tan {tan—l [(kga (0)”

for each t € [0,77.

4.3 Blow-up set of the solution

According to the above results concerning blow-up solution, we want to seek
the (set of ) blow-up point(s) and the blow-up rate and blow-up constant of the
solution for the semilinear wave equation (Ju = u? with smooth initial values,
for instance, wug, u1 are both in C§° (2) and we consider the sets

§ = {(to,a0) € B? [u(t,2)* =0, for (t,a) = (to,m0)},
Spx 1= {xo eR ‘u (t,z)"> =0, for (t,z)— (T*,xo)},

. —1
limy_7- ( S oy 1ul” (8. 2) dx) =0

1 for each r > 0
limy - (fR—BT(:E()) lul? (t, z) d;v) >0

ST*’ La:=<xg €R



where B, (xg) = {:z: ER : |z —xo| < r} . We call S, S« and Sp-«, ra the blow-
up set, blow-up set at time 7™ and the blow-up set in the sense of L? of u. The
problems are:

(1) What are the sets S, Sp- and Sy« pa?

(2) How large are these sets?

(3) What are the blow-up rate of w in the neighborhoods of S, S« and
St«, ra?

(4) What are the blow-up constants of « in the neighborhoods of S, St« and
St+, ra?

To study the above hard problems we concentrate on the properties later.
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