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I. _Abstract

This paper proposes a Conditional Value-at-Risk Minimization (CVaRM) approach to optimize
an insurer's product mix. By incorporating the natural hedging strategy of Cox and Lin (2007)
and the two-factor stochastic mortality model of Cairns et. al. (2006b), we calculate an optimize
product mix for insurance companies to hedge against the systematic mortality risk under
parameter uncertainty. To reflect the importance of required profit, we further integrate the
premium loading of systematic risk. We compare the hedging results to those using the duration
match method of Wang et. al. (2009), and show that the proposed CVaRM approach has a
narrower quantile of loss distribution after hedging— thereby effectively reducing systematic
mortality risk for life insurance companies.

Keywords: systematic mortality risk, product mix, natural hedging, parameter risk, Conditional
VaR.



1. Introduction

Over the past decade, a longevity shock has spread across human society. Benjamin and
Soliman (1993) and McDonald et. al. (1998) confirm that unprecedented improvements in
population longevity have occurred worldwide. The decreasing trend in the mortality rate has
created a great risk for insurance companies. The existing literature has proposed a number of
solutions to mitigate the threat of longevity risk to life insurance companies. These solutions can
be classified into three categories. The capital market solutions include mortality securitization
(see, for example, Dowd 2003; Lin and Cox 2005; Blake et. al. 2006a, 2006b; Cox et. al. 2006),
survivor bonds (e.g., Blake and Burrows 2001; Denuit et. al. 2007), and survivor swaps (e.g.,
Dowd et. al. 2006). These studies suggest that insurance companies can transfer their exposures
to the capital markets. Cowley and Cummins (2005) provide an excellent overview of the
securitizations of life insurance assets and liabilities. The second set of solutions, the industry
self-insurance solutions, include the natural hedging strategy of Cox and Lin (2007), the duration
matching strategy of Wang et. al. (2009), and the reinsurance swap of Lin and Cox (2005). The
advantages of these solutions are that the hedging does not require a liquid market and can be
arranged at a lower transaction cost. Insurance companies can hedge longevity risk by themselves
or with counterparties. The third kind of solution, known as mortality projection improvement,
provides a more accurate estimation of mortality processes. As Blake et. al. (2006b) propose,
these studies fall into two areas: continuous-time frameworks (e.g., Milevsky and Promislow
2001; Dahl 2004; Biffis 2005; Schrager 2006) and discrete-time frameworks, e.g., Brouhns et. al.
2002; Renshaw and Haberman 2003; Cairns et. al. 2006b. Parameter uncertainty and model
specification in relation to the mortality process have also attracted more attention in recent years.

Among the industry self-insurance solutions, the natural hedging strategy suggests that life
insurance can serve as a hedging vehicle against longevity risk for annuity products. Wang et. al.
(2009) employ duration as a measure of the product sensitivity to mortality change, and propose a
mortality duration matching (MDM) approach to calculate the optimal product mix. Their work,
however, is based on several restrictive assumptions. First, they assume that future mortality
changes involve parallel shifts in the mean, and do not measure the higher-order moments of the
mortality risk distribution. Second, the MDM approach applies to only two products. Third, the
MDM approach is a pure risk-reduction method because the profit loading is not considered
during the hedging procedure. Fourth, Melnikov and Romaniuk (2006) and Kaoissi et. al. (2006)
suggest that parameter risk is crucial when dealing with longevity risk. The parameter uncertainty
does not play a role in the MDM approach, since Wang et. al. (2009) consider the mortality shift
only in terms of its mean.

To overcome these problems, we employ the two-factor stochastic mortality model of Cairns
et. al. (2006b) and construct the Conditional Value-at-Risk Minimization (CVaRM) approach to
control the possible loss. Managing products risk with parameter uncertainty is one feature of the
CVaRM approach. The other feature is that we add the profit-loading constraint into the
optimization. The premium-pricing principle suggested by Milevsky et. al. (2006) is employed to
estimate the required profit loadings, i.e., in order to compensate the stockholders bearing
systematic mortality risk with the same Sharpe ratio as other asset classes in the economy.
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Furthermore, the CVaRM approach could be easily implemented using linear programming
(Rockafellar and Uryasev 2000), and insurance companies could adopt it as their own internal
risk-management tool.

The results of our simulation reveal that the proposed CVaRM approach yields a less
dispersed product distribution after hedging and so effectively reduces systematic mortality risk
for life insurance companies. The MDM approach, on the other hand, has a limited effect on the
dispersion of the product distribution. In addition, the CVaRM approach considers not only risk
reduction but also the required-profit constraint. We found that the required loading substantially
changes the optimal product mix and so cannot be ignored.

I11. Data and Methodology

We employ the data from Cairns et. al. (2007) and the JPMorgan LifeMetrics model (2006); a
sample of US men aged 60-84 from 1968 to 1979 and US men aged 60-89 from 1980 to 2003.
There are three types of products in our numerical examples: whole-life annuity, whole-life
insurance, and 20-year term-life insurance. The whole-life annuity is issued to men aged 60, and
the cohort groups are paid $1 at the end of each year. The whole-life insurance is issued to men
aged 40 or 60, and the payout benefit is $100. The term-life insurance is issued to men aged 40,
and the payout benefit is also $100. Both premiums are collected in a single premium today.
For the sake of simplicity, the deferred periods are zero. The interest rate is 3%, and the mortality
process follows the CBD two-factor model. The products' expected values for the whole life
annuity, whole life insurance and 20 year term life insurance are $14.94, $54.41/$74.72, and
$29.76, respectively. We calculate the expected values of products on the basis of the mortality
distributions generated by JPMorgan LifeMetrics (2006).

3.1 The Two-Factor Stochastic Mortality Model

Several stochastic models proposed in the literature attempt to capture the mortality
processes. We chose the two-factor mortality model, i.e., CBD model, as the underlying mortality
process for two reasons. First, the CBD model characterizes not only a cohort effect but also a
quadratic age effect. The two factors A (t) and A,(t) in the CBD model represent all age general
improvements in mortality over time and different improvements for different age groups. These
two factors reflect both the trend effect and the age effect. Thus, the analysis will be economically
or biologically meaningful when we consider the parameter changes of the factors over time.
Second, the CBD model is a discrete time model and can be more conveniently implemented in
practice. This paper offers a brief description of the two-factor model; for a more detailed
discussion, see Cairns et. al. (2006b).

Let g, be the realized mortality rate for age x insured fromtime t to t+1. Assume that

the mortality curve has a logistic functional form as follows:

eAi(t+1)+A2(t+1)-(x+t)

O x = 1+ eATD A D) 1)
The two stochastic trends A(t+1) and A,(t+1) follow a random-walk process with drift
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parameter p and diffusion parameter C:

Alt+1) = A(t)+ u+CZ(t+1), (2)
Where A(t+1)=(A((t+1), Az(t+1))T and  p=(u, ,uz)T are 2 x 1 constant parameter

vectors. C isa2 x 2 constant upper-triangular Cholesky square-root matrix of the covariance
matrix V =CC" and Z(t) is a two-dimensional standard normal random variable. To include
the uncertainty of 4 and C, Cairns et. al. (2006b) invoke a normal-inverse-Wishart
distribution from a non-informative prior distribution:

VD ~Wishart(n-1, n"vV ")
4NV, D ~ MVN (1, nV),

where  D(t) = A(t) - A(t-1), 3)
i=23D0),
Nnt=1
and V:%é(D(t)—ﬂ)(D(t)—y)T.

Thus, we can generate A(t) from equation (2) with the parameters ¢ and C from equation

(3). Then we get ¢, ,, as equation (1) suggests.

3.2 The Mortality Duration Matching (MDM) Method
Wang et. al. (2009) propose the MDM approach to calculate an optimal life insurance/annuity
weight to immunize the value change from mortality risk. They propose the following product
mix of life insurance:

Da

wl=—— | 4
D% + D' @

where D* denotes the effective duration of the annuity and D' denotes the effective duration
of the life insurance. Formally, the effective duration can be calculated as follows:
. Va+ Va— V|+ _Vl—

— and D'= —.
2VAAQ 2V'Aq

The Aq refers to the change in the mortality rate, V* and V'* represent the product values at
higher mortality rate (q+Aq) and V* and V'~ represent the values at the lower mortality rate
(g—AQq). If the change is small, this strategy leads to the product immunization as follows:

AV =wPD' —(1-w°)D* =0. (5)
Wang et. al. (2009) also propose the mortality convexity adjustment for a large change as

I VARSRVL . V& VARV g YA
= a 2 and C = I 2
V*(Aq) V' (Aq)

Then the product-mix weight with convexity on life insurance is



a_ﬂ a
WC= D 2 C ) (6)
Da+D'+%(C'—Ca)

Here, the change is set as Aq=q(l+s)—q, where @ is the mean of the mortality process and
s is a shift proportion such as 1%. Thus, the change here involves a parallel shift in the mean.

3.3 Profit-Loading Estimation: The Sharpe Ratio Method

Milevsky et. al. (2006) show that when the mortality rate is stochastic, the standard
deviation per policy does not vanish despite the law of large numbers. Rather there exists
systematic or market risk even in a large diversified product portfolio. The shareholders of an
insurance company request a risk premium for bearing the systematic risk. Milevsky et. al. (2006)
propose that the risk premium 7, which is used to compensate shareholders, be specified using
the Sharpe ratio. The Sharpe ratio for the product premium is defined as

sr_ EMA+m)-E(V) 0

o(V)
where E(V) is the expected or actuarially fair price of the product under the law of large
numbers, and o (V) is the standard deviation of product values. When the capital market is in

equilibrium, the SR in equation (7) may be set equal to the Sharpe ratio of some broadly
diversified portfolio, such as the S&P500 index; then the risk premium 7 is implicitly specified
by (7). For more details please see section 4.2.

2.4 The Conditional Value-at-Risk Minimization (CVaRM) Approach

Let the random variable v' be the value of the i"™ product. Similarly let E(v') be its present
value or actuarially fair price. Since q is stochastic, v' will generate deviations from E(v').
The loss proportions for each product are denoted as

r=————* (8)

The total loss proportion is
r= Zwir‘, 9)
where w' is the weight of the i" product in relation to the whole product. The i" product

could refer to life insurance or an annuity. We engage in natural hedging to minimize the risk r

by choosing different w'. The Conditional VaR (CVaR) is proposed as a measure of the product
risk. CVaR is chosen as a risk measure instead of VaR, because CVaR is a coherent measure,
whereas VaR is not; this is shown by Artzner et. al. 1997, 1999 and Deprez and Gerber 1985.
The CVaRM approach is expressed as

Min E[rp = rp(a)J (10)

st. Xw-z' >7, (12)
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>Yw=1 and 0<w <1. (12)

where E{rp‘rp > rp(a)} is the conditional expected loss that exceeds the threshold, r («),

under the specified probability «. In equation (11), z' denotes the profit loading on the i"
product charged by the insurance company and is estimated using the Sharpe ratio noted in
section 2.3. The weighted profit YWw'-z' is constrained to be greater than or equal to 7.
Here we let the target profit 7 be exogenously given. We ensure that the sum of the weights is
equal to one and prohibit short selling via equation (12). Although CVaR is usually defined in
terms of monetary value, here we represent it as a percentage loss; this avoids confusion over
magnitude.

In the CVaRM approach, r, is generated as follows. First, we apply the CBD model to

p

simulate the mortality processes and corresponding distributions of v'. We compute E(V')

and substitute it into equation (8) to obtain the distribution of r'. We calculate r, with

equation (9). Also note that the CBD model allows parameter uncertainty to be considered and
this approach makes it possible to incorporate longevity risk and parameter uncertainty
simultaneously.

I11. Research Results and Conclusion

To demonstrate the hedging effect, we construct three examples in two scenarios. In scenario
one the insurer cares only about risk reduction and does not consider any profit loading. Here we
choose a two-product framework and compare the hedging effects of the CVaRM and MDM
approaches. We show that the CVaRM approach has a better hedging effect in terms of the
aggregate distribution than the MDM approach does. The analysis is then extended to the
multi-product framework in scenario two. We provide a three-product example with a required
profit-loading constraint and find the optimal product mix. The results show that the CVaRM
approach achieves a better hedging effect than the MDM approach under the required
profit-loading constraint.

This article proposes a new approach to optimize the insurer's product mix under systematic
mortality risk. By incorporating the natural hedging strategy of Cox and Lin (2007), the
two-factor stochastic mortality model of Cairns et. al. (2006b), and the Sharpe ratio-loading price
of Milevsky et. al. (2006), we construct a CVaRM approach to evaluate the product mix. We
consider two numerical scenarios: the two-product case without a loading constraint and the
multi-product case with a loading constraint. In the first scenario, the CVaRM approach exerts a
better risk-reduction effect than the MDM approach. In the second scenario, the three-product
example reveals a trade-off between the CVaR and the required loadings. The results show that
the proposed CVaRM approach leads to an optimal product mix and effectively reduces the
mortality risks associated with forecasting longevity patterns for life insurance companies.

Some important issues for future research and practice clearly deserve further investigation.
7



First, this paper deals with the parameter risk, but ignores the misspecification or modeling risk.
For example, the real mortality process may not follow the CBD model. Second, this paper omits
the basis risk of the mortality rate between life insurance and annuities because of the data
limitations. Our numerical example assumes that the mortality processes for life insurance and
annuities are the same. In fact, the mortality experiences may differ for these products. Third, in
this study, the premium loadings for each product are decided individually by means of the
Sharpe ratio. To maintain rigidity, they should be priced according to their contributions to the
aggregated risk, in a way similar to the beta concept of the Capital Asset Pricing Model (CAPM).
This work is beyond the scope of this paper, and so we leave it for future study. Finally, we
illustrate the hedging strategy with a mortality term structure, but a flat interest-rate yield curve.
An analysis of the combined effects of stochastic mortality and stochastic interest rate would
offer more realistic results.
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