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1. Introduction 

There is extensive literature in finance on the relationship between trading 

volume and volatility (Karpoff, 1987). The positive correlation between trading 

volume and return volatility is consistent with most theoretical market microstructure 

models (O’Hara, 1995). In this study, the volume-volatility relation is examined 

within the context of a model commonly known as the mixture-of-distributions 

hypothesis (MDH), which was first introduced by Tauchen and Pitts (1983). The 

central proposition of MDH is that daily price changes and trading volume are driven 

by the same underlying latent “news” arrival, or information flow, variable. The 

arrival of unexpected “good news” results in a price increase, whereas “bad news” 

results in a price decrease. Both of these events are accompanied by above-average 

trading activity in the market as it adjusts to a new equilibrium. Accordingly, volatility 

and trading volume should be positively correlated. 

However, the MDH and its empirical studies assume that joint distribution of 

volume and volatility is bivariate normal conditional upon the arrival of information. 

It is quite unrealistic to make such assumption. Recently, copula method has been 

emphasized because of its capability in modeling the dependencies between variables 

without the constraint of distributional assumption. Further, it can describe the 

structure of dependence as well as the degree of dependence, which would not only 
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take the non-linear property into account but would also allow a more comprehensive 

understanding of the volume-volatility relation.
1
 

In this paper, we employ single-parameter conditional copulas to represent the 

dependence between two index returns, conditional upon the historical information 

provided by previous pairs of index returns. The parameter of the conditional copula, 

like the marginal densities of the separate index returns, depends upon the 

conditioning information. The general theory of copulas is covered in the books by 

Joe (1997) and Nelsen (1999) and finance applications are emphasized by Cherubini 

et al. (2004). Important conditional theory has been developed and applied to financial 

market data by Patton (2006a, b). 

There is extensive evidence on the relation between price volatility and trading 

volume, and this relation is robust to various time intervals (hourly, daily, and weekly) 

and numerous financial markets (equity, currency, and futures)
2
. Despite so many 

empirical studies on the volatility-volume relation, there is no general consensus 

about what actually drives their relation. Chan and Fong (2000) examine the role of 

the number of trades, size of trades, and order imbalance in explaining the 

                                                      

1
 Copulas have recently become increasingly popular in various finance applications, such as 

modeling default correlations for credit risk management (Li (2000)), modeling portfolio allocation 

(Hennessy and Lapan (2002)), pricing multivariate contingent claims (Rosenberg (2003)), and 

modeling time-varying dependence (Patton (2006a,b)). 

2
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volatility-volume relation for a sample of NYSE and Nasdaq stocks. They found that 

the size of trade is better for explanation and daily order imbalance also plays a role in 

their relation. Besides market microstructure factors, we conduct an investigation of 

how volume-volatility relation vary with a measure of stock market uncertainty, as 

measured by the implied volatility from S&P500 index option (i.e. VIX index) 

(Connolly (2005,2007)). Our work is motivated by existing theory and empirical 

studies that suggest price information can be materially influenced by time-varying 

uncertainty with asset revaluations. 

So far, how the market condition affects their relationship has not been examined 

in the literature. Providing the evidence that market condition plays a role in the 

relationship between volatility and volume, especially for futures market, is our second 

contribution. The last contribution is to explain their time-varying dependence by the 

degree of investor fear gauge, which is measured by market implied volatility. 

Our time-varying copula model provides clear evidence that a distinction across 

market conditions exists. In general, irrespective of futures or spot data, the means of 

correlations during the turbulent period are higher than those during the normal period.  

The conditional upper tail dependences are significant during the turbulent period, 

whereas they are insignificant during the normal period. A significant asymmetric 

dependence structure during the turbulent period such as the US subprime market 
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crash indicates that the joint probability of volatility and volume will be higher during 

the turbulent market than it is during the normal period. In this case, the MDH can be 

supported if the market suffers severely. We also find that the increase in stock market 

uncertainty leads to the simultaneous increase in volatility and trading volume. The 

greater the stock market uncertainty is, the higher correlation between volatility and 

trading volume is. 

The paper is organized as follows. The time-varying copula methodology is 

presented in Section 2. Section 3 describes data and the empirical results. Finally, we 

conclude in Section 4. 
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2. Methodology 

Our study extends MDH to highlight an asymmetric dependence structure 

between return volatility and trading volume and conjectures that their dependence 

tends to be high in highly volatile markets. This copula method is increasing in 

popularity because it can analyze dependence structures beyond linear correlations. 

Darrat et al. (2003) examine their contemporaneous correlations by Pearson 

correlation and show no significant positive contemporaneous correlation between 

volatility and volume. Their results clearly fail to support the MDH. We argue that 

model/measurement risk may lead to incorrectly reject the MDH. Thus, this paper 

aims to provide a more robust method to avoid any misspecification and study how 

the market condition affects the relation. Moreover, compared with the MDH which 

relates volume and volatility on a “long-run” contemporaneous basis, our time-varying 

copula model regards their relationship as time variation. It is intuitive to study how 

their relationship varies over time and questions why it is time-varying or what drives 

it to be a dynamic behavior. The specified time-varying structure is particularly 

important for policy management, arbitrage, forecast, risk control and market 

efficiency examination.  

2.1. The conditional copula model 
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In a time-varying copula setting, the dependence parameters in the copula function 

can be modeled as a dynamic process conditional on currently available information. 

This allows a non-linear, time dependant relationship. The dependence between 

volume and volatility is therefore estimated conditional on previously estimated 

time-varying dependencies. The characteristics of dependence process will be 

discussed in the following section. A typical characteristic of asset returns is volatility 

clustering and the asymmetric information impact
3
. Like Darrat et al. (2003; 2007) 

and Girard and Biswas (2007), we assume that the marginal distribution for volatility 

is characterized by an GJR-GARCH(1,1)-AR(1)-t model. Let    and   
  denote 

return  and its conditional variance for period  , respectively.      denotes 

previous information set. The GJR-GARCH(1,1)-AR(1)-t model for return is defined 

by: 

                                     
                        (1a) 

  
         

        
            

                       (1b) 

 with        when      is negative and otherwise       .   is the degree of 

freedom. Eq. (1a) represents dynamic changes in the first moment (mean) of returns, 

while Eq. (1b) describes time variations in the conditional second moment (variance). 

The return volatility is measured by the conditional variance from Eq. (1b). 

                                                      

3
 The conditional densities of equity index returns are leptokurtic, and their variances are 

asymmetric functions of previous returns (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993) 
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Let    is the natural log of trading volume during time interval t. Assume that 

the conditional cumulative distribution functions of    and    are               

and              , respectively. The conditional copula function, denoted as 

              , is defined by the two time-varying cumulative distribution functions 

of random variables                  and                 . Let    be the 

bivariate conditional cumulative distribution functions of    and   . Using the Sklar 

theorem, we have 

                                 

                                                  (2) 

The bivariate conditional density function of    and    can be constructed by the 

product of their copula density and their two marginal conditional densities, 

respectively denoted by      and     : 

                   

                                                                    (3) 

where                
                

      
,               is the conditional density of 

   and               is the conditional density of   
4  

Copula also provides a higher degree of flexibility in estimation by separating 

marginal and joint distributions. This is convenient in maximum likelihood estimation, 

because it permits to estimate the parameters of the density in two steps: first the 

                                                      

4
 The appendix describes parameter estimation of the above conditional copula. 



8 
 

parameters of the marginals, and then the parameters of the copula. The two-step 

approach save computational burden, although it may have a cost in terms of 

efficiency. 

2.2. Bivariate copula density 

This study employs the Gaussian, the Gumbel and the Clayton copula for 

specification and calibration. The Gaussian copula is generally viewed as a 

benchmark for comparison during the normal period, while the Gumbel and the 

Clayton copula are used to capture the upper and lower tail dependence, respectively. 

We particularly focus on the Gumbel copula because we hypothesis that an 

asymmetric right tail dependence structure between return volatility and trading 

volume may exist; that is, their dependence tends to be high in highly volatile periods.  

The conditional Gaussian copula function is the density of joint standard uniform 

variables         because the random variables are bivariate normal with the 

time-varying correlation   . Let            and            , where     .) 

denotes the inverse of the cumulative density function of the standard normal 

distribution. The density of the time-varying Gaussian copula can be shown as  

  
              

 

     
    

          
    

 

      
  

 
  
    

 

 
  (4) 
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The Gumbel and the Clayton copula can efficiently capture the tail dependence 

arising from the extreme observations caused by asymmetry. The density of the 

time-varying Gumbel copula is  

  
              

       
           

    

    
               

            
     

 

    

          
             

     
 
    
  

 
 

                                
 
     
  

 
  (5) 

where          measures the degree of dependence between   and   .      

implies an independent relationship and     represents perfect dependence. The 

density of the time-varying Clayton copula is 

   
                        

      
      

 
     
    

       
         (6) 

where          measures the degree of dependence between   and   .      

implies an independent relationship and     represents perfect dependence. 

2.3. Parameterizing time-series variation in the conditional copula 

The central proposition of MDH is that daily volatility and trading volume are 

driven the same underlying latent “news” arrival, or information flow, variable. The 

degree of contemporaneous relationship indicates that how they simultaneously 

reflect the news, and it may become dynamic as information arrives randomly or 

variance of information substantially increases. Modeling their dynamic dependences 

by applying a time-varying copula allows us to better understand how the market 

dynamically responds the arrival of information.  
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Modeling a conditional copula with a time-varying dependence parameter has 

become prevalent in the literature (Patton, 2006a, b; Bartram et al., 2007; Jondeau and 

Rochinger, 2006; Rodriguez, 2007). We assume that the dependence parameter is 

determined by previous information such as its previous dependence and the historical 

absolute difference between cumulative probabilities of portfolio asset returns
5
. A 

conditional dependence parameter can be modeled as an AR(1)-like process. The 

dependence process of a Gaussian copula is therefore: 

                
          

          (7) 

The conditional dependence,    , depends on its previous dependence,      , and 

the product of the last one observations of the transformed variables           and 

         . We include      as a regressor to capture any persistence in the 

dependence parameter, and the product of the last one observation of the transformed 

variables           and          , to capture any variation in dependence. This 

formulation considers both the persistence and the variation in the dependence 

process.      is defined as                     
 

 
   which is the modified 

logistic transformation to keep    in (-1,1) at all times (Patton, 2006a). Time-varying 

                                                      

5
 There are different ways of capturing possible time variation in a conditional copula. This paper 

assumes that the functional form of the copula remains fixed over the sample whereas the parameters 

vary according to some evolution equation, as in Patton (2006a). 
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dependence processes for the Gumbel copula and the Clayton copula are described as 

Eq. (9) and (10), respectively. 

                           (8) 

                          (9) 

where          measures the degree of dependence in the Gumbel copula and has 

a lower bound equal to 1, indicating an independent relationship, whereas    

              measures the degree of dependence in the Clayton copula.  

Both the Gumbel and the Clayton copula are Archimedean copulas which have 

no linear dependence parameter in their density functions. For comparison with the 

linear correlations,    which is between -1 and 1, estimated from the Gaussian 

copula,    and    are first mapped to Kendall’s tau
6
. Kendall’s tau is called rank 

correlation since it can be interpreted as the linear correlation between some” ranks” 

of the data. A relation between     and Kendall’s tau,   , can be represented as 

       
  , and a relation between     and Kendall’s tau,   , can be represented 

as             . Further, we specify a relation between the linear dependence 

and Kendall’s tau for the Archimedean copulas, which is     
 

 
         as shown 

in Hult and Lindskog (2002). 

                                                      

6
 For general non-elliptical distributions, Joe (1997) introduced three copula-based measures of 

dependence- Kendall’s tau, Spearman’s rho, and tail dependence.  
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 Additionally, the parameters    and    estimated from the Gumbel and 

Clayton copula functions are linked to tail dependence. Tail dependence captures the 

behavior of the random variables during extreme events. In this study, it measures the 

probability that we will observe an extremely large trading volume, given an 

extremely increased volatility. The linkage between conditional Gumbel dependence 

parameter     and conditional upper tail dependence   
  is described as   

    

 
 

  , while the linkage between conditional Clayton dependence parameter     and 

conditional lower tail dependence   
  is described as   

   
 
 

  . 
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3.  Data description and empirical results 

3.1. Data 

The S&P 500 Index and its futures contracts are both employed in order to 

examine daily trading volume, volatility and their relationships. The volume-volatility 

relation in futures is not the same as it is in the equity markets because futures are 

essentially hedging and speculative vehicles
7
. The different purpose between futures 

traders and equity traders provides an advantage to examine whether the dynamic 

volume-volatility relationship varies between financial markets. 

As the conditional variance is characterized by a GJR-GARCH(1,1)-AR(1)-t 

model given by Eq. (1), the conditional volatility of S&P 500 Index and its futures 

contracts are depicted in Figure 1. We choose sample period from Jan 2004 to Aug 

2008 for two reasons. First, we find a very strong evidence of a structural 

changebreak
8
 in their conditional volatilities. The period from Jan 2004 to Feb 2007 

is relatively less volatile. After Mar 2007, the markets in both spot and futures become 

very volatile and their conditional volatilities substantially increase. We then divide 

our sample into two subperiods, a normal period from Jan 2004 to Feb 2007 and a 

turbulent period from Mar 2007 to Aug 2008. Second, the recent outbreak of U.S. 

                                                      

7
  

8
 A Chow test is conducted to test for a structural change. 
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subprime market crash is covered in the turbulent period. This provides a natural 

experiment to investigate relationship between volume and volatility when financial 

markets suffer severely and helps to realize whether their relationship varies with 

market conditions, especially for market crisis.  

[Insert Figure 1 here] 

3.2. The Measurement of Daily Volatility 

Besides the conventional conditional volatility, we also consider the range-based 

measure of volatility by Garman and Klass (GK) (1980). Chen et al. (2006) and Shu 

and Zhang (2006) show that the GK range-based measure of volatility provides 

essentially equivalent results to high-frequency realized volatility measures of 

volatility, as well as avoiding the problems caused by microstructure effects. For 

robust check, the classical GK range-based intraday volatility estimator is employed 

to construct the daily volatility as follows
9
: 

  
                                         

Where   is the difference in the natural logarithms of the high and low prices of the 

day, the   is the difference in the natural logarithms of the low and opening prices, 

the   is the difference in the natural logarithms of the closing and opening prices. 

The volatility values are multiplied by 100. Similarly, the Chow test shows that a very 

                                                      

9
 See GK for the details. 
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strong structural changebreak=
10

 in 26 July, 2007 is evident in the GK range-based 

measure of volatility. 

We form a detrended log trading volume time series by incorporating the 

procedure used by Campbell et al. (1993). The lead-lag relation should be controlled 

before studying their dependence structure. The VAR methodology is conducted 

firstly to examine the possibility of lead-lag interrelationships associated with the 

SAIH. If a lead-lag relationship is significant, the unexpected residuals from VAR 

model are used for further examination. Except for the data from S&P 500 Index 

during the turbulent period, we do not found any lead-lag relationship. Therefore, 

most of our data set does not support the SAIH
11

. 

In the following analysis, we therefore 

3.3. Estimation results of the time-varying copula models 

Table 1 reports the summary statistics for daily trading volume, conditional 

volatility, GK volatility from the S&P 500 index and its futures contracts. The 

statistics, especially for mean and standard deviation, are generally higher during the 

turbulent period, indicating that the turbulent period exhibits not only higher volatility 

                                                      

10
 A Chow test is conducted to test for a structural change. 

11
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but also larger trading volume. However, whether their dependence substantially 

increases during the turbulent period should be methodologically examined.   

[Insert Table 1 here] 

To avoid any misspecification for the marginal distributions, the copula method 

allows us do not impose any prior assumption on the distributional form of the 

marginals and relies on the concept of the “empirical marginal transformation”. The 

sample data can be directly transformed into uniform variables, and then be used to 

estimate copula parameters, which is a classical semi-parametric method and often 

called a Canonical Maximum Likelihood Method (CML) (see Cherubini et al., 

2004)
12

. 

Given that the empirical marginal distributions are obtained, the parameters of 

time-varying correlations in the Gaussian copula are calibrated and reported in Table 

2. In Eq. (7), the parameter   captures the degree of persistence in the dependence 

and   captures the adjustment in the dependence process. For futures data, 

irrespective of the measurement of volatility, the level of dependence substantially 

increases and the dynamic of dependence clearly changes. We compute the implied 

                                                      

12
 Kim et al. (2007) consider the semiparametric method proposed by Genest et al. (1995) and 

find that it performs better than the parametric method, such as maximum likelihood and inference 

function for margins method, when the marginal distributions are unknown which is almost always the 

case in practice. Chen and Fan (2006) study the property and estimation of copula-based 

semiparametric time series models, in which copulas are parameterized but the marginal distributions 

are left unspecified. 
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time path of conditional dependence between GARCH volatility and volume and 

present the results in Panel (A) of Figure 2. This figure shows quite clearly the 

structural break in dependence across different market conditions. Panel (B) of Figure 

2 is similar with Panel (A), except for the volatility is measured by Garman and Klass 

(1980) range-based volatility. For spot data, the dynamic of dependence clearly 

changes but the level of dependence substantially drops, when volatility is measured 

by GARCH model. This drop may be caused by the short sales restrictions, especially 

for market crash. Figure 3 are their implied time path of conditional dependence.  

[Insert Table 2 here] 

[Insert Figure 2 here] 

[Insert Figure 3 here] 

The estimated results of the time-varying Gumbel copula model are presented in 

Table 3. Figure 2 shows the dramatic changes in their dynamic dependence structure. 

It is noteworthy that the time-varying Gumbel copula fails to describe either spot 

market in whole period if the volatility is measured by a GARCH model (Figure 3) or 

futures market during the normal period (Figure 2), but it particularly performs well 

for futures market during the turbulent period
13

 (Figure 2). It also can be found that 

                                                      

13
 The likelihood value for futures during the turbulent period is significantly higher than others in 
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conditional upper tail dependences in Figure 4 are prominent during the turbulent 

period, indicating the dependence structures are asymmetric significantly during the 

turbulent period. This finding illustrates that the joint probability of volatility and 

volume will be higher during the turbulent market, which is consistent with the MDH 

where the correlation between variables increases with the variance of the information 

flow.  

Finally, Table 4 reports the estimated results of the time-varying Clayton copula 

model. It also can be evident that there exists a change in their dynamic structure in 

futures market across different market conditions. However, its failure in spot market 

is similar to that of the Gumbel copula, indicating that the Gaussian copula performs 

better in spot market, if the volatility is measured by a GARCH model. Their 

dependence structure in spot market is symmetric (Figure 3), whereas it is asymmetric 

in futures market (Figure 2). Figure 4 also exhibits the changes in their conditional 

lower tail dependences. In summary, our study provides the evidence that market 

condition plays a role in the relationship between volatility and volume, especially for 

futures market.  

[Insert Table 3 here] 

[Insert Table 4 here] 

                                                                                                                                                        
Table 3. 



19 
 

[Insert Figure 4 here] 

 Our time-varying copula model provides clear evidence that a distinction exits 

across different market conditions exists. Statistics of the correlations between 

GARCH volatility and volume are summarized in Table 5, while those between GK 

volatility and volume are summarized in Table 6. In general, irrespective of futures or 

spot data, the means of correlations during the turbulent period are higher than those 

during the normal period.  Moreover, the difference in means is significant, 

indicating that the correlations are found to significantly change as the condition of 

market changes. In particular, during the turbulent period, the means of correlation 

from the Gumbel copula are the highest which implies that their correlations are 

prominent and may be underestimated if they are specified by other copula functions.  

In Table 7 and 8, we can consistently find that the difference in statistics of the tail 

dependence is significant under different market conditions. The conditional upper tail 

dependences are significant during the turbulent period, whereas they are insignificant 

during the normal period. A significant asymmetric dependence structure during the 

turbulent period such as the US subprime market crash indicates that the joint 

probability of volatility and volume will be higher during the turbulent market than it is 

during the normal period. In this case, the MDH can be supported if the market suffers 

severely.  
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[Insert Table 5 here] 

[Insert Table 6 here] 

[Insert Table 7 here] 

[Insert Table 8 here] 

  



21 
 

4. The Impact of Market Uncertainty 

4.1. VIX and future volume-volatility comovment 

In this study, we analyze how the volume-volatility dependence varies with VIX. 

Whether the comovements between volume and volatility are reliably related to 

lagged VIX needs to be evaluated, which helps to realize how the volume-volatility 

dependence varies. Implied volatility from the Chicago Board Options Exchange’s 

Volatility Index is used to measure stock market uncertainty. We estimate the 

specification with time-varying Gaussian, Gumbel, Clayton, upper tail and lower tail 

dependences as dependent variables, respectively, and only        as an explanatory 

variable. 

As can be seen in Table 9, the estimated    coefficients are positive and 

statistically significant, indicating that there is a positive relation between the 

volume –volatility comovement and lagged VIX. Thus, the variation in the level of 

stock market uncertainty is informative about the future volume –volatility relation. 

[Insert Table 9 here] 

4.2.  Daily VIX changes and variations in contemporaneous volume-volatility 

comovment 

Furthermore, we ask whether the changes in stock market uncertainty
14

 are 

associated with differences in the volume –volatility relation. So far, the issue of 

                                                      

14
 The change in VIX is measured by absolute value of                      
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whether the volume –volatility relations are associated with the variations in stock 

market uncertainty has not been examined. In Table 10, we present this issue by 

sorting daily observations on the day’s change in VIX and then calculating subsample 

dependences for the different variation in VIX groups. Our results suggest that the 

dependence between the volume and volatility increases during the period with 

substantial VIX changes.  

[Insert Table 10 here] 

4.3. Evaluating the conditional copula models 

As the development of the multivariate conditional distribution has a dramatic 

growth, research regarding evaluating multivariate density models becomes 

prominent (Christoffersen,1998; Rivers and Vuong, 2002; Granger et al., 2006; Chen 

and Fan, 2006; Patton, 2006a). In addition, the evaluation of copula model is a special 

case of the more general problem of evaluating multivariate density models (Patton, 

2006a). The “region models” of Patton (2006a) are employed to conduct our 

goodness-of-fit tests and comparisons, which is discussed in the Appendix. 

The joint hit test results for the competing copula models are reported in Table 11. 

For futures data during the turbulent period, the conditional Gaussian and conditional 

Clayton copula models are rejected at the 5% significance level, whereas the 

conditional Gumbel copula model fails to the joint test for samples during the normal 
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period. The results of goodness-of-fit tests indicate that the conditional Gumbel 

copula model perform well during the turbulent period for samples from futures but 

not from spots, and imply that the turbulent period can produce an apparent 

asymmetric dependence for futures markets. In this case, their dependence may be 

underestimated if they are specified by other conditional copula functions. However, 

the multivariate normal model is more desirable to describe the normal period than 

any of the asymmetric copula models considered. 

[Insert Table 11 here] 

 

 

 



24 
 

5. Conclusion 

This study aims to provide a more robust method to avoid misspecifying 

volume-volatility relation and examine whether the market condition plays a role. 

Compared with the MDH which relates volume and volatility on a “long-run” 

contemporaneous basis, our time-varying copula model regards their relationship as 

time variation. The specified time-varying structure is particularly important for 

policy management, arbitrage, forecast, risk control and market efficiency 

examination. A pronounced distinction across market conditions is evident.  A significant 

asymmetric dependence structure during the turbulent period such as the US subprime 

market crash implies that the joint probability of volatility and volume may be higher 

during the turbulent market than it is during the normal period. We also find that the 

increase in stock market uncertainty leads to the simultaneous increase in volatility 

and trading volume.  
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Appendix: Evaluation of Conditional Copula Models 

Patton(2006a) decomposes the density model into a set of “region” models
15

, and 

each of which should be correctly specified under the null hypothesis that the entire 

density is correctly specified. The intuition is to compare the number of observations 

in each region with what would be expected under the null hypothesis. Let    be the 

multivariate random variables and      
 

 be regions, and define     
 
          

as a Bernoulli distribution and       
             as a Multinomial 

distribution. Whether the proposed density model is correctly specified in all K+1 

regions simultaneously is tested under the hypothesis  

                               versus                            . 

Under the null hypothesis, we have that       where    be the vector of 

true probabilities and    be the vector of the probabilities suggested by the model. 

His logit model for the hits can be specified as    to be function of both    and 

variables in the time     information set. 

                             
     
   

   

                                                      

15
 Regions 1 and 2 correspond to the lower and upper joint 10% tail for each variable. Regions 3 

and 4 indicate that bivariate variables belong to the 10th and 25th or 75th and 90th quantiles, 

respectively. Region 5 is the median region. Regions 6 and 7 are extremely asymmetric if one variable 

is in the 75th quantile, whereas the other is in the 25th quantile. 
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Where     
 

     
is the logistic transformation,               

  is a matrix 

containing elements from the information set at time     and             
  is 

a vector of parameters to be estimated. Due to the logit model with a restriction 

               for all   , the competing hypotheses can be expressed as     

versus    . The likelihood function, therefore, to be maximized to obtain the 

parameter   is                        
 
   

 
             and the joint test 

can be conducted as likelihood ratio test:  

                                       
 . 
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Table 1 Summary statistics 

This table shows summary statistics for daily trading volume, conditional volatility, GK volatility from 

the S&P 500 index and its futures contracts. The full sample covers the period from Jan 2004 to Aug 

2008 and is divided into two subperiods: normal period (Jan 2004-Feb 2007) and turbulent period (Mar 

2007-Aug 2008). 

 Mean Standard 

Deviation 

Skewness Kurtosis 

Panel A: Futures during Turbulent Period 

GARCH volatility 1.16556 0.56083 0.12201 -1.05081 

GK volatility 0.34684 0.38755 2.42161 7.74233 

Volume 10.82068 0.63370 0.64701 1.60149 

Panel B: Futures during Normal Period 

GARCH volatility 0.40004 0.18837 0.88072 0.00375 

GK volatility 0.10067 0.11643 2.48549 7.50052 

Volume 10.76542 0.61602 1.08606 1.07046 

Panel C: Spots during Turbulent Period 

GARCH volatility 1.26208 0.61289 0.24638 -0.85229 

GK volatility 0.36217 0.44879 2.67583 9.90287 

Volume 0.01180 0.16102 -0.15804 2.35204 

Panel D: Spots during Normal Period 

GARCH volatility 0.41266 0.17599 0.92736 0.25963 

GK volatility 0.09554 0.11600 2.54414 7.85821 

Volume 0.01030 0.12165 0.11536 5.69823 
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Table 2 Estimated parameters of time-varying Gaussian copula functions 

This table shows the estimated parameters of time-varying dependencies in the Gaussian copulas. The 

time-varying dependence models in Eq. (4) is estimated and calibrated. The parameter   captures the 

degree of persistence in the dependence and   captures the adjustment in the dependence process. 

LLF(c) is the maximum copula component of the log-likelihood function.  

 GARCH Volatility v.s. Volume GK Volatility v.s. Volume 

Panel A: Futures during Turbulent Period 

  0.57051 0.81508 

  0.12518 0.06646 

  0.16081 0.06794 

LLF(c) 46.87900 26.04429 

Panel B: Futures during Normal Period 

  0.48835 0.91151 

  0.02944 0.02913 

  0.17652 0.05315 

LLF(c) 70.94995 61.99650 

Panel C: Spots during Turbulent Period 

  0.84603 0.43289 

  0.00293 0.22979 

  0.03480 -0.06961 

LLF(c) 1.62405 15.50691 

Panel D: Spots during Normal Period 

  0.41293 0.51446 

  0.02634 0.11655 

  0.16429 0.01318 

LLF(c) 32.70562 25.12459 
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Table 3 Estimated parameters of time-varying Gumbel copula functions 

This table shows the estimated parameters of time-varying dependencies in the Gumbel copulas. The 

time-varying dependence models in Eq. (5) is estimated and calibrated. The parameter   captures the 

degree of persistence in the dependence and   captures the adjustment in the dependence process. 

LLF(c) is the maximum copula component of the log-likelihood function. 

 GARCH Volatility v.s. Volume GK Volatility v.s. Volume 

Panel A: Futures during Turbulent Period 

  0.65994 0.50972 

  0.69435 0.83763 

  -1.00000 -0.71853 

LLF(c) 43.91555 19.92044 

Panel B: Futures during Normal Period 

  0.02320 0.00010 

  0.14729 -0.19520 

  -0.76209 -0.16093 

LLF(c) 4.31540 2.20792 

Panel C: Spots during Turbulent Period 

  0.00010 0.32684 

  0.06468 0.75052 

  -0.08361 0.36844 

LLF(c) 4.31728 8.90433 

Panel D: Spots during Normal Period 

  0.04028 0.00010 

  -0.33350 -0.34965 

  -0.27176 -0.30292 

LLF(c) 0.95828 6.10989 
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Table 4 Estimated parameters of time-varying Clayton copula functions 

This table shows the estimated parameters of time-varying dependencies in the Clayton copulas. The 

time-varying dependence models in Eq. (6) is estimated and calibrated. The parameter   captures the 

degree of persistence in the dependence and   captures the adjustment in the dependence process. 

LLF(c) is the maximum copula component of the log-likelihood function. 

 GARCH Volatility v.s. Volume GK Volatility v.s. Volume 

Panel A: Futures during Turbulent Period 

  0.78059 0.66337 

  0.36721 0.45572 

  -1.00000 -1.00000 

LLF(c) 39.90310 30.17076 

Panel B: Futures during Normal Period 

  0.37914 0.82614 

  0.51732 0.22316 

  -1.00000 -0.47656 

LLF(c) 45.24892 68.53910 

Panel C: Spots during Turbulent Period 

  0.10667 0.88533 

  -0.54885 0.10515 

  -0.19525 -0.26462 

LLF(c) 0.54188 8.46003 

Panel D: Spots during Normal Period 

  0.10620 0.75889 

  -0.50539 0.15717 

  -0.28708 -0.30124 

LLF(c) 0.77408 24.59224 
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Table 5 Summary statistics of the dependence between GARCH volatility and 

volume  

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of 

conditional dependence between GARCH volatility and volume across sample period.  

 
Min 

volume- 

Max 

volume- 

Mean 

volume- 

Standard 

Deviation 

volume- 

 GARCH GK GARCH GK GARCH GK GARCH GK 

Panel A: Futures during turbulent period 

Gaussian 0.28775 0.30000 0.50870 0.44989 0.34723 0.35999 0.04015 0.02392 

Gumbel - - 0.70710 0.70710 0.38062 0.37369 0.21494 0.15637 

Clayton - 0.00331 0.58180 0.54979 0.34192 0.34872 0.17305 0.13764 

Panel B: Futures during normal period 

Gaussian 0.06261 0.19000 0.30665 0.42240 0.15708 0.33473 0.05185 0.02393 

Gumbel - - - - - - - - 

Clayton 0.00145 0.00441 0.50000 0.51036 0.23314 0.32495 0.12788 0.11025 

Panel C: Spots during turbulent period 

Gaussian 0.04887 0.30000 0.15867 0.36857 0.09010 0.34522 0.02044 0.01341 

Gumbel - 0.18357 - 0.70710 - 0.31963 - 0.07405 

Clayton - 0.00399 - 0.50000 - 0.20737 - 0.08341 

Panel D: Spots during normal period 

Gaussian 0.04917 0.20000 0.27382 0.25043 0.13288 0.23822 0.05109 0.00348 

Gumbel - - - - - - - - 

Clayton - 0.00558 - 0.50000 - 0.19738 - 0.06445 
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Table 6 Summary statistics of the tail dependences between GARCH volatility 

and volume 

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of 

conditional upper and lower tail dependence between GARCH volatility and volume across sample 

period. 

 Min Max Mean Standard 

Deviation 

Panel A: Futures during turbulent period 

Upper Tail 0 0.58578 0.31506 0.17658 

Lower Tail 0 0.58851 0.31152 0.19543 

Panel B: Futures during normal period 

Upper Tail 0 0 0 0 

Lower Tail 0 0.50000 0.17373 0.13374 

 

Table 7 Summary statistics of the tail dependences between GK volatility and 

volume 

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of 

conditional upper and lower tail dependence between GK volatility and volume across sample period. 

 Min Max Mean Standard 

Deviation 

Panel A: Futures during turbulent period 

Upper Tail 0.01 0.59578 0.32005 0.12801 

Lower Tail 0 0.55508 0.31371 0.15971 

Panel B: Futures during normal period 

Upper Tail 0 0 0 0 

Lower Tail 0 0.51178 0.27796 0.13539 

Panel C: Spots during turbulent period 

Upper Tail 0.15647 0.58578 0.26728 0.05994 

Lower Tail 0 0.50000 0.12039 0.09454 

Panel D: Spots during normal period 

Upper Tail 0 0 0 0 

Lower Tail 0 0.50000 0.10418 0.06726 
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Table 8 Lagged VIX and the dependence between volume and volatility 

A regression model is applied to study how the volume-volatility dependence varies with lagged level 

of VIX. The dependent variable can be conditional correlations or conditional tail dependences 

measured by copula functions. The lagged level of VIX is an explanatory variable, and    is its 

coefficient    is an intercept term. The symbol * denotes significance at the 5% levels. 

 Gaussian 

Correlation 

Gumbel 

Correlation 

Clayton 

Correlation 

Upper Tail 

Dependence 

Lower Tail 

Dependence 

Panel A: Futures data & GARCH volatility 

   -0.4039* -1.0601* -0.0058 -0.1126* -0.8784* 

   0.2285* 0.4343* 0.1005* 0.1213* 0.3598* 

   0.3775  0.3000  0.0322  0.0383  0.3020  

F-statistic 706.9588  499.6618  38.7355  46.3763  504.4157  

Panel B: Futures data & GK volatility 

   -0.1392* -1.1942* 0.1202* -1.0233* 0.0089  

   0.1482  0.4707* 0.0772* 0.4033* 0.1018* 

   0.4820  0.5312  0.0319  0.5404  0.0380  

F-statistic 1084.8410  1321.3450  38.4378  1370.9880  46.0509  

Panel C: Spot data & GK volatility 

   -0.1087* -1.0219* 0.1470* -0.8548* 0.0306  

   0.1366* 0.4028* 0.0193* 0.3369* 0.0283* 

   0.6541  0.6096  0.0058  0.6124  0.0108  

F-statistic 2207.2870  1822.2390  6.8027  1844.0880  12.7826  
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Table 9 Summary Statistics for the volume-volatility dependence sorted by VIX 

variation 

This table reports the association between daily VIX changes and the volume –volatility relation. The 

VIX change criteria refer to the percentile range for the daily change in VIX, from the smallest changes 

(0 to 5
th

 percentile) to the largest changes (95
th

 to 100
th

 percentile). Subsample dependences for the 

different variation in VIX groups are therefore calculated. 

VIX variation 

Criteria 

Gaussian 

Correlation 

Gumbel 

Correlation 

Clayton 

Correlation 

Upper Tail 

Dependence 

Lower Tail 

Dependence 

Panel A: Futures data & GARCH volatility 

0 to 5
th

 pctl. 0.19847 0.11528 0.29709 0.25112 0.09537 

5
th

 to 25
th

 pctl.
 
 0.20579 0.08755 0.25911 0.20283 0.07256 

25
th

 to 50
th

 pctl. 0.21306 0.10799 0.25329 0.20226 0.08932 

50
th

 to 75
th

 pctl. 0.21745 0.11511 0.26024 0.20996 0.09537 

75
th

 to 95
th

 pctl. 0.23376 0.16242 0.28209 0.23518 0.13437 

95
th

 to 100
th

 pctl. 0.26032 0.22538 0.32999 0.29320 0.18645 

Panel B: Futures data & GK volatility 

0 to 5
th

 pctl. 0.25652 0.06175 0.32906 0.05308 0.27714 

5
th

 to 25
th

 pctl.
 
 0.25775 0.06234 0.32940 0.05356 0.28755 

25
th

 to 50
th

 pctl. 0.26233 0.07504 0.32028 0.06426 0.27361 

50
th

 to 75
th

 pctl. 0.26224 0.08436 0.33378 0.07231 0.28793 

75
th

 to 95
th

 pctl. 0.27604 0.12532 0.33171 0.10726 0.28991 

95
th

 to 100
th

 pctl. 0.27245 0.14997 0.36385 0.12763 0.32873 

Panel C: Spot data & GK volatility 

0 to 5
th

 pctl. 0.25714 0.04900 0.20586 0.04113 0.10986 

5
th

 to 25
th

 pctl.
 
 0.25868 0.05548 0.19650 0.04648 0.10240 

25
th

 to 50
th

 pctl. 0.25946 0.06751 0.19243 0.05637 0.09917 

50
th

 to 75
th

 pctl. 0.26239 0.07453 0.19446 0.06229 0.10451 

75
th

 to 95
th

 pctl. 0.27364 0.10181 0.20484 0.08520 0.11418 

95
th

 to 100
th

 pctl. 0.27470 0.12104 0.24350 0.10105 0.15830 

 

  



37 
 

Table 10 Joint hit test results for the copula models 

The p-values of joint hit tests if the models are correctly specified in all regions are reported. A p-value 

less than 0.05 indicates a rejection of the null hypothesis that the model is well specified. * denotes the 

significance at 5% level. 

 
Time-Varying 

Gaussian copula 

Time-Varying  

Gumbel copula 

Time-Varying  

Clayton copula 

Panel A: Time-varying dependence structure between GARCH volatility and volume 

Futures during 

turbulent period 
0.04178* 0.11322 0.03673* 

Futures during normal 

period 
0.33715 0.00010* 0.30784 

Spots during turbulent 

period 
0.14409 0.00010* 0.00010* 

Spots during normal 

period 
0.22398 0.00010* 0.00010* 

Panel B: Time-varying dependence structure between GK volatility and volume 

Futures during 

turbulent period 
0.04253* 0.12172 0.04167* 

Futures during normal 

period 
0.77308 0.00010* 0.82799 

Spots during turbulent 

period 
0.21870 0.23301 0.19799 

Spots during normal 

period 
0.31795 0.00010* 0.12525 
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Figure 1 The conditional volatility of S&P 500 Index and its futures contracts 

As the conditional variance is characterized by a GJR-GARCH(1,1)-AR(1)-t model given by Eq. (1), 

the conditional volatility of S&P 500 Index and its futures contracts are depicted in this Figure. A very 

strong evidence of a structural break
16

 in their conditional volatilities can be found. The period from 

2004 to Feb 2007 is relatively less volatile. After Mar 2007, the markets in both spot and futures 

become very volatile and their conditional volatilities substantially increase. 

 

  

                                                      

16
 A Chow test is conducted to test for a structural change. 
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Figure 2 Implied time path of conditional dependence between volatility and 

volume for futures data 

This figure depicts implied time path of conditional dependence between volatility and volume for 

futures data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass 

(1980) range-based volatility. This figure shows quite clearly the structural break in the dependence 

across different market conditions. 

(A) Conditional Volatility (B) GK Volatility 
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Figure 3 Implied time path of conditional dependence between volatility and 

volume for spot data 

This figure depicts implied time path of conditional dependence between volatility and volume for spot 

data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass (1980) 

range-based volatility.  

(A) Conditional Volatility (B) GK Volatility 
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Figure 4 Implied time path of conditional tail dependence between volatility and 

volume for futures data 

This figure depicts implied time path of conditional tail dependence between volatility and volume for 

futures data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass 

(1980) range-based volatility. This figure shows quite clearly the structural break in the upper tail 

dependence across different market conditions. 

(A)Conditional Volatility (B) GK Volatility 
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技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 
有關選擇權市場效率性及微觀結構設計的研究為目前財務金融的趨勢之ㄧ，許多的實證以

被提出。本計畫可在此領域有幾個明顯的貢獻：(1)本研究對於衍生性商品盤前期間交易

必要性的理論提供了實證的證據。(2)價格學習的行為雖然已在許多領域上作了探討，本

研究則首先將此探討應用至衍生性金融商品盤前期間的交易。(3)衍生性金融商品價格的

效率性雖已存在相當多的研究，本研究則從不同的角度來探討此議題，間接地也支持了此

盤前期間交易存在的必要性。(4)本研究的觀點及結果也提供了日內價格行為未來研究的

一個新的方向。(5)本研究已提供資訊理論研究的一個新視野。過去的資訊實證研究大都

使用以收盤價為主的日資料，本研究則將此領域的研究帶進了日內的資料及微觀結構的因

素。 

 


