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1. Introduction

There is extensive literature in finance on the relationship between trading

volume and volatility (Karpoff, 1987). The positive correlation between trading

volume and return volatility is consistent with most theoretical market microstructure

models (O’Hara, 1995). In this study, the volume-volatility relation is examined

within the context of a model commonly known as the mixture-of-distributions

hypothesis (MDH), which was first introduced by Tauchen and Pitts (1983). The

central proposition of MDH is that daily price changes and trading volume are driven

by the same underlying latent “news” arrival, or information flow, variable. The

arrival of unexpected “good news” results in a price increase, whereas “bad news”

results in a price decrease. Both of these events are accompanied by above-average

trading activity in the market as it adjusts to a new equilibrium. Accordingly, volatility

and trading volume should be positively correlated.

However, the MDH and its empirical studies assume that joint distribution of

volume and volatility is bivariate normal conditional upon the arrival of information.

It is quite unrealistic to make such assumption. Recently, copula method has been

emphasized because of its capability in modeling the dependencies between variables

without the constraint of distributional assumption. Further, it can describe the

structure of dependence as well as the degree of dependence, which would not only
1



take the non-linear property into account but would also allow a more comprehensive
understanding of the volume-volatility relation.*

In this paper, we employ single-parameter conditional copulas to represent the
dependence between two index returns, conditional upon the historical information
provided by previous pairs of index returns. The parameter of the conditional copula,
like the marginal densities of the separate index returns, depends upon the
conditioning information. The general theory of copulas is covered in the books by
Joe (1997) and Nelsen (1999) and finance applications are emphasized by Cherubini
et al. (2004). Important conditional theory has been developed and applied to financial
market data by Patton (2006a, b).

There is extensive evidence on the relation between price volatility and trading
volume, and this relation is robust to various time intervals (hourly, daily, and weekly)
and numerous financial markets (equity, currency, and futures)®. Despite so many
empirical studies on the volatility-volume relation, there is no general consensus
about what actually drives their relation. Chan and Fong (2000) examine the role of

the number of trades, size of trades, and order imbalance in explaining the

! Copulas have recently become increasingly popular in various finance applications, such as
modeling default correlations for credit risk management (Li (2000)), modeling portfolio allocation
(Hennessy and Lapan (2002)), pricing multivariate contingent claims (Rosenberg (2003)), and
modeling time-varying dependence (Patton (2006a,b)).
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volatility-volume relation for a sample of NYSE and Nasdaq stocks. They found that

the size of trade is better for explanation and daily order imbalance also plays a role in

their relation. Besides market microstructure factors, we conduct an investigation of

how volume-volatility relation vary with a measure of stock market uncertainty, as

measured by the implied volatility from S&P500 index option (i.e. VIX index)

(Connolly (2005,2007)). Our work is motivated by existing theory and empirical

studies that suggest price information can be materially influenced by time-varying

uncertainty with asset revaluations.

So far, how the market condition affects their relationship has not been examined

in the literature. Providing the evidence that market condition plays a role in the

relationship between volatility and volume, especially for futures market, is our second

contribution. The last contribution is to explain their time-varying dependence by the

degree of investor fear gauge, which is measured by market implied volatility.

Our time-varying copula model provides clear evidence that a distinction across

market conditions exists. In general, irrespective of futures or spot data, the means of

correlations during the turbulent period are higher than those during the normal period.

The conditional upper tail dependences are significant during the turbulent period,

whereas they are insignificant during the normal period. A significant asymmetric

dependence structure during the turbulent period such as the US subprime market



crash indicates that the joint probability of volatility and volume will be higher during

the turbulent market than it is during the normal period. In this case, the MDH can be

supported if the market suffers severely. We also find that the increase in stock market

uncertainty leads to the simultaneous increase in volatility and trading volume. The

greater the stock market uncertainty is, the higher correlation between volatility and

trading volume is.

The paper is organized as follows. The time-varying copula methodology is

presented in Section 2. Section 3 describes data and the empirical results. Finally, we

conclude in Section 4.



2. Methodology

Our study extends MDH to highlight an asymmetric dependence structure
between return volatility and trading volume and conjectures that their dependence
tends to be high in highly volatile markets. This copula method is increasing in
popularity because it can analyze dependence structures beyond linear correlations.
Darrat et al. (2003) examine their contemporaneous correlations by Pearson
correlation and show no significant positive contemporaneous correlation between
volatility and volume. Their results clearly fail to support the MDH. We argue that
model/measurement risk may lead to incorrectly reject the MDH. Thus, this paper
aims to provide a more robust method to avoid any misspecification and study how
the market condition affects the relation. Moreover, compared with the MDH which
relates volume and volatility on a “long-run” contemporaneous basis, our time-varying
copula model regards their relationship as time variation. It is intuitive to study how
their relationship varies over time and questions why it is time-varying or what drives
it to be a dynamic behavior. The specified time-varying structure is particularly
important for policy management, arbitrage, forecast, risk control and market

efficiency examination.

2.1. The conditional copula model



In a time-varying copula setting, the dependence parameters in the copula function
can be modeled as a dynamic process conditional on currently available information.
This allows a non-linear, time dependant relationship. The dependence between
volume and volatility is therefore estimated conditional on previously estimated
time-varying dependencies. The characteristics of dependence process will be
discussed in the following section. A typical characteristic of asset returns is volatility
clustering and the asymmetric information impact®. Like Darrat et al. (2003; 2007)
and Girard and Biswas (2007), we assume that the marginal distribution for volatility
is characterized by an GJR-GARCH(1,1)-AR(1)-t model. Let R, and h? denote
return and its conditional variance for period t, respectively. Q;_; denotes
previous information set. The GJIR-GARCH(1,1)-AR(1)-t model for return is defined
by:

Rt = Ui + Q)Rt—l + gt Ei't"’iid tvl.(O, h?) (161)
hi = w+Bhi_; +arel 1 + azs;_1&f4 (1b)

with s,_; =1 when &,_, is negative and otherwise s;_; = 0. v is the degree of
freedom. Eq. (1a) represents dynamic changes in the first moment (mean) of returns,
while Eqg. (1b) describes time variations in the conditional second moment (variance).

The return volatility is measured by the conditional variance from Eqg. (1b).

® The conditional densities of equity index returns are leptokurtic, and their variances are
asymmetric functions of previous returns (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993)
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Let V; is the natural log of trading volume during time interval t. Assume that
the conditional cumulative distribution functions of h, and V; are Fj,(h:|Q2.-1)
and Fy(V¢|Q2,-1), respectively. The conditional copula function, denoted as
C:(us, ve|2:—1), is defined by the two time-varying cumulative distribution functions
of random variables u; = Fy, ((h¢|2,-,) and v, = F,  (V|2,_,). Let ®, be the
bivariate conditional cumulative distribution functions of h, and V,. Using the Sklar
theorem, we have

D (he, Ve|Qe—1) = Ce(ue, vel2e-1)

= Ct(Fh,t(htl-Qt—l)'FV,t(th-Qt—l)l-Qt—l) (2)

The bivariate conditional density function of h, and V; can be constructed by the
product of their copula density and their two marginal conditional densities,

respectively denoted by f,,, and f,;:

@¢(he, Ve|Qe—1)

= Ct(Fh,t(htlgt—l)fFV,t(th-Qt—l)l-Qt—l) X fre(helQe—1) X fir e (VelQe—q)  (3)

92C(uevelQe—q)

Where Ct(ut, Utlﬂt—l) = 9107,

, fre(helQe_1) is the conditional density of
hy and fy . (V¢|2.—1) is the conditional density of /A
Copula also provides a higher degree of flexibility in estimation by separating

marginal and joint distributions. This is convenient in maximum likelihood estimation,

because it permits to estimate the parameters of the density in two steps: first the

* The appendix describes parameter estimation of the above conditional copula.
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parameters of the marginals, and then the parameters of the copula. The two-step
approach save computational burden, although it may have a cost in terms of
efficiency.
2.2. Bivariate copula density

This study employs the Gaussian, the Gumbel and the Clayton copula for
specification and calibration. The Gaussian copula is generally viewed as a
benchmark for comparison during the normal period, while the Gumbel and the
Clayton copula are used to capture the upper and lower tail dependence, respectively.
We particularly focus on the Gumbel copula because we hypothesis that an
asymmetric right tail dependence structure between return volatility and trading

volume may exist; that is, their dependence tends to be high in highly volatile periods.

The conditional Gaussian copula function is the density of joint standard uniform
variables (u;, v,) because the random variables are bivariate normal with the
time-varying correlation p,. Let x, = @ (u,) and y, = ® 1(v,) , where &71()
denotes the inverse of the cumulative density function of the standard normal

distribution. The density of the time-varying Gaussian copula can be shown as

2peXtYe—XE—YE + xf+yf

e (g, ve|pe) = Jll__mexp{ 2(1-p?) 2 } @




The Gumbel and the Clayton copula can efficiently capture the tail dependence

arising from the extreme observations caused by asymmetry. The density of the

time-varying Gumbel copula is

(— lnu)8t (= Inv,)01

Cg;um(ut' vt|6t) = v
tVt

1
exp {— [(— mu)d 1 + (= in vt)‘sf_l]5_t}
(52 (5%)
—[(=nu)dt + (= v, )N ) 4 (S — D[(—= Inu)d + (= Inw)0 1\ % } (5)
where §; € [1,0) measures the degree of dependence between u;and v,. &, =1
implies an independent relationship and 6, — o represents perfect dependence. The

density of the time-varying Clayton copula is

_20t41

C;iay(ut’ vtlgt) = (Bt + 1)(ut_9t + vt_et _ 1) 0 ut_et_lvt_et_l (6)

where 6, € [0,00) measures the degree of dependence between u;and v,. 8, =0

implies an independent relationship and 8, — oo represents perfect dependence.

2.3. Parameterizing time-series variation in the conditional copula

The central proposition of MDH is that daily volatility and trading volume are

driven the same underlying latent “news” arrival, or information flow, variable. The

degree of contemporaneous relationship indicates that how they simultaneously

reflect the news, and it may become dynamic as information arrives randomly or

variance of information substantially increases. Modeling their dynamic dependences

by applying a time-varying copula allows us to better understand how the market

dynamically responds the arrival of information.
9



Modeling a conditional copula with a time-varying dependence parameter has
become prevalent in the literature (Patton, 2006a, b; Bartram et al., 2007; Jondeau and
Rochinger, 2006; Rodriguez, 2007). We assume that the dependence parameter is
determined by previous information such as its previous dependence and the historical
absolute difference between cumulative probabilities of portfolio asset returns®. A
conditional dependence parameter can be modeled as an AR(1)-like process. The

dependence process of a Gaussian copula is therefore:

pr = ABper + @ +y @7 (Up—q) - P H(Ve1)) (7

The conditional dependence, p, , depends on its previous dependence, p;_; , and
the product of the last one observations of the transformed variables @~*(u,_,) and
@& Y(v,_y). We include p,_; as a regressor to capture any persistence in the
dependence parameter, and the product of the last one observation of the transformed
variables @ 1(u,_,) and ®~1(v,_,), to capture any variation in dependence. This
formulation considers both the persistence and the variation in the dependence
process. A(x) is defined as (1 —e™™)(1 + e ™) = tanh (g) which is the modified

logistic transformation to keep p, in (-1,1) at all times (Patton, 2006a). Time-varying

® There are different ways of capturing possible time variation in a conditional copula. This paper
assumes that the functional form of the copula remains fixed over the sample whereas the parameters
vary according to some evolution equation, as in Patton (2006a).
10



dependence processes for the Gumbel copula and the Clayton copula are described as
Eq. (9) and (10), respectively.

6¢ = Pybt—1 + 0 + ¥ |urg — V4| (8)
O = BLOt-1 + @+ y|urg — V4] 9)

where §; € [1,0) measures the degree of dependence in the Gumbel copula and has
a lower bound equal to 1, indicating an independent relationship, whereas 6, €
[—1,0) U (0, +o0) measures the degree of dependence in the Clayton copula.

Both the Gumbel and the Clayton copula are Archimedean copulas which have
no linear dependence parameter in their density functions. For comparison with the
linear correlations, p, which is between -1 and 1, estimated from the Gaussian
copula, &, and 6, are first mapped to Kendall’s tau®. Kendall’s tau is called rank
correlation since it can be interpreted as the linear correlation between some” ranks”
of the data. A relation between §; and Kendall’s tau, 7;, can be represented as
7, = 1— 671, and a relation between 8, and Kendall’s tau, 7., can be represented
as 1, = 6;/(0; + 2). Further, we specify a relation between the linear dependence
and Kendall’s tau for the Archimedean copulas, whichis 7, = (%) sin~! p, as shown

in Hult and Lindskog (2002).

® For general non-elliptical distributions, Joe (1997) introduced three copula-based measures of
dependence- Kendall’s tau, Spearman’s rho, and tail dependence.
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Additionally, the parameters 6, and 6, estimated from the Gumbel and
Clayton copula functions are linked to tail dependence. Tail dependence captures the
behavior of the random variables during extreme events. In this study, it measures the
probability that we will observe an extremely large trading volume, given an
extremely increased volatility. The linkage between conditional Gumbel dependence

parameter 8, and conditional upper tail dependence AY is described as AY = 2 —

1

28, while the linkage between conditional Clayton dependence parameter 6, and

1
conditional lower tail dependence A% is described as Ak = 2 ¢,

12



3. Data description and empirical results

3.1. Data

The S&P 500 Index and its futures contracts are both employed in order to
examine daily trading volume, volatility and their relationships. The volume-volatility
relation in futures is not the same as it is in the equity markets because futures are
essentially hedging and speculative vehicles’. The different purpose between futures
traders and equity traders provides an advantage to examine whether the dynamic
volume-volatility relationship varies between financial markets.

As the conditional variance is characterized by a GJR-GARCH(1,1)-AR(1)-t
model given by Eq. (1), the conditional volatility of S&P 500 Index and its futures
contracts are depicted in Figure 1. We choose sample period from Jan 2004 to Aug
2008 for two reasons. First, we find a very strong evidence of a structural
changebreak® in their conditional volatilities. The period from Jan 2004 to Feb 2007
is relatively less volatile. After Mar 2007, the markets in both spot and futures become
very volatile and their conditional volatilities substantially increase. We then divide
our sample into two subperiods, a normal period from Jan 2004 to Feb 2007 and a

turbulent period from Mar 2007 to Aug 2008. Second, the recent outbreak of U.S.

8 A Chow test is conducted to test for a structural change.
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subprime market crash is covered in the turbulent period. This provides a natural
experiment to investigate relationship between volume and volatility when financial
markets suffer severely and helps to realize whether their relationship varies with
market conditions, especially for market crisis.
[Insert Figure 1 here]

3.2. The Measurement of Daily Volatility

Besides the conventional conditional volatility, we also consider the range-based
measure of volatility by Garman and Klass (GK) (1980). Chen et al. (2006) and Shu
and Zhang (2006) show that the GK range-based measure of volatility provides
essentially equivalent results to high-frequency realized volatility measures of
volatility, as well as avoiding the problems caused by microstructure effects. For
robust check, the classical GK range-based intraday volatility estimator is employed
to construct the daily volatility as follows®:

h&® = 0.511(u — d)? — 0.019(c(u + d) — 2ud) — 0.383c?

Where u is the difference in the natural logarithms of the high and low prices of the
day, the d is the difference in the natural logarithms of the low and opening prices,
the c is the difference in the natural logarithms of the closing and opening prices.

The volatility values are multiplied by 100. Similarly, the Chow test shows that a very

® See GK for the details.
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strong structural change =*in 26 July, 2007 is evident in the GK range-based
measure of volatility.

We form a detrended log trading volume time series by incorporating the
procedure used by Campbell et al. (1993). The lead-lag relation should be controlled
before studying their dependence structure. The VAR methodology is conducted
firstly to examine the possibility of lead-lag interrelationships associated with the
SAIH. If a lead-lag relationship is significant, the unexpected residuals from VAR
model are used for further examination. Except for the data from S&P 500 Index
during the turbulent period, we do not found any lead-lag relationship. Therefore,
most of our data set does not support the SAIH.

In the following analysis, we therefore
3.3. Estimation results of the time-varying copula models

Table 1 reports the summary statistics for daily trading volume, conditional
volatility, GK volatility from the S&P 500 index and its futures contracts. The
statistics, especially for mean and standard deviation, are generally higher during the

turbulent period, indicating that the turbulent period exhibits not only higher volatility

11
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but also larger trading volume. However, whether their dependence substantially
increases during the turbulent period should be methodologically examined.
[Insert Table 1 here]

To avoid any misspecification for the marginal distributions, the copula method
allows us do not impose any prior assumption on the distributional form of the
marginals and relies on the concept of the “empirical marginal transformation”. The
sample data can be directly transformed into uniform variables, and then be used to
estimate copula parameters, which is a classical semi-parametric method and often
called a Canonical Maximum Likelihood Method (CML) (see Cherubini et al.,
2004)*,

Given that the empirical marginal distributions are obtained, the parameters of
time-varying correlations in the Gaussian copula are calibrated and reported in Table
2. In Eq. (7), the parameter (3 captures the degree of persistence in the dependence
and y captures the adjustment in the dependence process. For futures data,
irrespective of the measurement of volatility, the level of dependence substantially

increases and the dynamic of dependence clearly changes. We compute the implied

12 Kim et al. (2007) consider the semiparametric method proposed by Genest et al. (1995) and
find that it performs better than the parametric method, such as maximum likelihood and inference
function for margins method, when the marginal distributions are unknown which is almost always the
case in practice. Chen and Fan (2006) study the property and estimation of copula-based
semiparametric time series models, in which copulas are parameterized but the marginal distributions
are left unspecified.
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time path of conditional dependence between GARCH volatility and volume and
present the results in Panel (A) of Figure 2. This figure shows quite clearly the
structural break in dependence across different market conditions. Panel (B) of Figure
2 is similar with Panel (A), except for the volatility is measured by Garman and Klass
(1980) range-based volatility. For spot data, the dynamic of dependence clearly
changes but the level of dependence substantially drops, when volatility is measured
by GARCH model. This drop may be caused by the short sales restrictions, especially

for market crash. Figure 3 are their implied time path of conditional dependence.

[Insert Table 2 here]

[Insert Figure 2 here]

[Insert Figure 3 here]

The estimated results of the time-varying Gumbel copula model are presented in
Table 3. Figure 2 shows the dramatic changes in their dynamic dependence structure.
It is noteworthy that the time-varying Gumbel copula fails to describe either spot
market in whole period if the volatility is measured by a GARCH model (Figure 3) or
futures market during the normal period (Figure 2), but it particularly performs well

for futures market during the turbulent period*® (Figure 2). It also can be found that

3 The likelihood value for futures during the turbulent period is significantly higher than others in
17



conditional upper tail dependences in Figure 4 are prominent during the turbulent

period, indicating the dependence structures are asymmetric significantly during the

turbulent period. This finding illustrates that the joint probability of volatility and

volume will be higher during the turbulent market, which is consistent with the MDH

where the correlation between variables increases with the variance of the information

flow.

Finally, Table 4 reports the estimated results of the time-varying Clayton copula

model. It also can be evident that there exists a change in their dynamic structure in

futures market across different market conditions. However, its failure in spot market

is similar to that of the Gumbel copula, indicating that the Gaussian copula performs

better in spot market, if the volatility is measured by a GARCH model. Their

dependence structure in spot market is symmetric (Figure 3), whereas it is asymmetric

in futures market (Figure 2). Figure 4 also exhibits the changes in their conditional

lower tail dependences. In summary, our study provides the evidence that market

condition plays a role in the relationship between volatility and volume, especially for

futures market.

[Insert Table 3 here]

[Insert Table 4 here]

Table 3.
18



[Insert Figure 4 here]

Our time-varying copula model provides clear evidence that a distinction_exits

across different market conditions—exists. Statistics of the correlations between

GARCH volatility and volume are summarized in Table 5, while those between GK

volatility and volume are summarized in Table 6. In general, irrespective of futures or

spot data, the means of correlations during the turbulent period are higher than those

during the normal period. Moreover, the difference in means is significant,

indicating that the correlations are found to significantly change as the condition of

market changes. In particular, during the turbulent period, the means of correlation

from the Gumbel copula are the highest which implies that their correlations are

prominent and may be underestimated if they are specified by other copula functions.

In Table 7 and 8, we can consistently find that the difference in statistics of the tail

dependence is significant under different market conditions. The conditional upper tail

dependences are significant during the turbulent period, whereas they are insignificant

during the normal period. A significant asymmetric dependence structure during the

turbulent period such as the US subprime market crash indicates that the joint

probability of volatility and volume will be higher during the turbulent market than it is

during the normal period. In this case, the MDH can be supported if the market suffers

severely.

19



[Insert Table 5 here]

[Insert Table 6 here]

[Insert Table 7 here]

[Insert Table 8 here]
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4. The Impact of Market Uncertainty

4.1. VIX and future volume-volatility comovment

In this study, we analyze how the volume-volatility dependence varies with VIX.
Whether the comovements between volume and volatility are reliably related to
lagged VIX needs to be evaluated, which helps to realize how the volume-volatility
dependence varies. Implied volatility from the Chicago Board Options Exchange’s
\olatility Index is used to measure stock market uncertainty. We estimate the
specification with time-varying Gaussian, Gumbel, Clayton, upper tail and lower tail
dependences as dependent variables, respectively, and only VIX;_; as an explanatory
variable.

As can be seen in Table 9, the estimated a; coefficients are positive and
statistically significant, indicating that there is a positive relation between the
volume —volatility comovement and lagged VIX. Thus, the variation in the level of
stock market uncertainty is informative about the future volume —volatility relation.

[Insert Table 9 here]

4.2. Daily VIX changes and variations in contemporaneous volume-volatility
comovment

Furthermore, we ask whether the changes in stock market uncertainty™® are

associated with differences in the volume —volatility relation. So far, the issue of

¥ The change in VIX is measured by absolute value of (VIX, — VIX,_;)/VIX,_,
21



whether the volume —volatility relations are associated with the variations in stock

market uncertainty has not been examined. In Table 10, we present this issue by

sorting daily observations on the day’s change in VIX and then calculating subsample

dependences for the different variation in VIX groups. Our results suggest that the

dependence between the volume and volatility increases during the period with

substantial VIX changes.

[Insert Table 10 here]

4.3. Evaluating the conditional copula models

As the development of the multivariate conditional distribution has a dramatic

growth, research regarding evaluating multivariate density models becomes

prominent (Christoffersen,1998; Rivers and Vuong, 2002; Granger et al., 2006; Chen

and Fan, 2006; Patton, 2006a). In addition, the evaluation of copula model is a special

case of the more general problem of evaluating multivariate density models (Patton,

2006a). The “region models” of Patton (2006a) are employed to conduct our

goodness-of-fit tests and comparisons, which is discussed in the Appendix.

The joint hit test results for the competing copula models are reported in Table 11.

For futures data during the turbulent period, the conditional Gaussian and conditional

Clayton copula models are rejected at the 5% significance level, whereas the

conditional Gumbel copula model fails to the joint test for samples during the normal

22



period. The results of goodness-of-fit tests indicate that the conditional Gumbel
copula model perform well during the turbulent period for samples from futures but
not from spots, and imply that the turbulent period can produce an apparent
asymmetric dependence for futures markets. In this case, their dependence may be
underestimated if they are specified by other conditional copula functions. However,
the multivariate normal model is more desirable to describe the normal period than

any of the asymmetric copula models considered.

[Insert Table 11 here]
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5. Conclusion

This study aims to provide a more robust method to avoid misspecifying

volume-volatility relation and examine whether the market condition plays a role.

Compared with the MDH which relates volume and volatility on a “long-run”

contemporaneous basis, our time-varying copula model regards their relationship as

time variation. The specified time-varying structure is particularly important for

policy management, arbitrage, forecast, risk control and market -efficiency

examination. A pronounced distinction across market conditions is evident. A significant

asymmetric dependence structure during the turbulent period such as the US subprime

market crash implies that the joint probability of volatility and volume may be higher

during the turbulent market than it is during the normal period. We also find that the

increase in stock market uncertainty leads to the simultaneous increase in volatility

and trading volume.
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Appendix: Evaluation of Conditional Copula Models

Patton(2006a) decomposes the density model into a set of “region” models™, and
each of which should be correctly specified under the null hypothesis that the entire
density is correctly specified. The intuition is to compare the number of observations
in each region with what would be expected under the null hypothesis. Let W; be the
multivariate random variables and {Rj}]_K be regions, and define Hit) = 1{W, € R;}
as a Bernoulli distribution and M =¥K,j-1{W,€R;} as a Multinomial
distribution. Whether the proposed density model is correctly specified in all K+1
regions simultaneously is tested under the hypothesis

Hy: My ~inid Multinormial(P;) versus Hy: M;~inid Multinormial(Il;).

Under the null hypothesis, we have that P, = I, where II, be the vector of
true probabilities and P, be the vector of the probabilities suggested by the model.
His logit model for the hits can be specified as II, to be function of both P, and

variables in the time t — 1 information set.

Ty¢(Zy, B, Pp) = A (7\1 (Z1,B1) —In (1 _ plt))

Pit

15 Regions 1 and 2 correspond to the lower and upper joint 10% tail for each variable. Regions 3
and 4 indicate that bivariate variables belong to the 10th and 25th or 75th and 90th quantiles,
respectively. Region 5 is the median region. Regions 6 and 7 are extremely asymmetric if one variable
is in the 75th quantile, whereas the other is in the 25th quantile.
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Where A(x) =

is the logistic transformation, Z; = [Z,, ..., Zk]" IS a matrix
containing elements from the information set at time t—1and B = [B4, ..., Bk]’ is
a vector of parameters to be estimated. Due to the logit model with a restriction
n.(Z,0,P,) = P, for all Z;, the competing hypotheses can be expressed as g =0
versus 8 # 0. The likelihood function, therefore, to be maximized to obtain the
parameter B is L(II(Z, B, P)|Hit) = ¥{_; X, Inm, - 1{M; = j}, and the joint test
can be conducted as likelihood ratio test:

LRy = =2+ (L(P|Hit) — L(1I(Z, B, P)|Hit) ) ~xZ.
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Table 1 Summary statistics

This table shows summary statistics for daily trading volume, conditional volatility, GK volatility from
the S&P 500 index and its futures contracts. The full sample covers the period from Jan 2004 to Aug
2008 and is divided into two subperiods: normal period (Jan 2004-Feb 2007) and turbulent period (Mar
2007-Aug 2008).

Mean Standard Skewness Kurtosis

Deviation

Panel A: Futures during Turbulent Period

GARCH volatility 1.16556 0.56083 0.12201 -1.05081
GK volatility 0.34684 0.38755 2.42161 7.74233
Volume 10.82068 0.63370 0.64701 1.60149

Panel B: Futures during Normal Period

GARCH volatility 0.40004 0.18837 0.88072 0.00375
GK volatility 0.10067 0.11643 2.48549 7.50052
Volume 10.76542 0.61602 1.08606 1.07046

Panel C: Spots during Turbulent Period

GARCH volatility 1.26208 0.61289 0.24638 -0.85229
GK volatility 0.36217 0.44879 2.67583 9.90287
Volume 0.01180 0.16102 -0.15804 2.35204

Panel D: Spots during Normal Period

GARCH volatility 0.41266 0.17599 0.92736 0.25963
GK volatility 0.09554 0.11600 2.54414 7.85821
Volume 0.01030 0.12165 0.11536 5.69823
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Table 2 Estimated parameters of time-varying Gaussian copula functions

This table shows the estimated parameters of time-varying dependencies in the Gaussian copulas. The
time-varying dependence models in Eq. (4) is estimated and calibrated. The parameter 8 captures the
degree of persistence in the dependence and y captures the adjustment in the dependence process.

LLF(c) is the maximum copula component of the log-likelihood function.

GARCH Volatility v.s. Volume GK Volatility v.s. Volume

Panel A: Futures during Turbulent Period

B 0.57051 0.81508
W 0.12518 0.06646
Y 0.16081 0.06794
LLF(c) 46.87900 26.04429
Panel B: Futures during Normal Period
B 0.48835 0.91151
W 0.02944 0.02913
Y 0.17652 0.05315
LLF(c) 70.94995 61.99650
Panel C: Spots during Turbulent Period
B 0.84603 0.43289
® 0.00293 0.22979
% 0.03480 -0.06961
LLF(c) 1.62405 15.50691
Panel D: Spots during Normal Period
B 0.41293 0.51446
® 0.02634 0.11655
% 0.16429 0.01318
LLF(c) 32.70562 25.12459
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Table 3 Estimated parameters of time-varying Gumbel copula functions

This table shows the estimated parameters of time-varying dependencies in the Gumbel copulas. The
time-varying dependence models in Eq. (5) is estimated and calibrated. The parameter (8 captures the
degree of persistence in the dependence and y captures the adjustment in the dependence process.

LLF(c) is the maximum copula component of the log-likelihood function.

GARCH Volatility v.s. Volume GK Volatility v.s. Volume

Panel A: Futures during Turbulent Period

B 0.65994 0.50972
w 0.69435 0.83763
Y -1.00000 -0.71853
LLF(c) 43.91555 19.92044
Panel B: Futures during Normal Period
B 0.02320 0.00010
W 0.14729 -0.19520
Y -0.76209 -0.16093
LLF(c) 4.31540 2.20792
Panel C: Spots during Turbulent Period
B 0.00010 0.32684
® 0.06468 0.75052
% -0.08361 0.36844
LLF(c) 4.31728 8.90433
Panel D: Spots during Normal Period
B 0.04028 0.00010
® -0.33350 -0.34965
% -0.27176 -0.30292
LLF(c) 0.95828 6.10989
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Table 4 Estimated parameters of time-varying Clayton copula functions

This table shows the estimated parameters of time-varying dependencies in the Clayton copulas. The
time-varying dependence models in Eq. (6) is estimated and calibrated. The parameter (8 captures the
degree of persistence in the dependence and y captures the adjustment in the dependence process.

LLF(c) is the maximum copula component of the log-likelihood function.

GARCH Volatility v.s. Volume GK Volatility v.s. Volume

Panel A: Futures during Turbulent Period

B 0.78059 0.66337
w 0.36721 0.45572
Y -1.00000 -1.00000
LLF(c) 39.90310 30.17076
Panel B: Futures during Normal Period
B 0.37914 0.82614
W 0.51732 0.22316
Y -1.00000 -0.47656
LLF(c) 45.24892 68.53910
Panel C: Spots during Turbulent Period
B 0.10667 0.88533
W -0.54885 0.10515
Y -0.19525 -0.26462
LLF(c) 0.54188 8.46003
Panel D: Spots during Normal Period
B 0.10620 0.75889
w -0.50539 0.15717
Y -0.28708 -0.30124
LLF(c) 0.77408 24.59224
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Table 5 Summary statistics of the dependence between GARCH volatility and
volume

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of

conditional dependence between GARCH volatility and volume across sample period.

Standard
Min Max Mean o
Deviation
volume- volume- volume-
volume-

GARCH GK GARCH GK GARCH GK GARCH GK

Panel A: Futures during turbulent period

Gaussian  0.28775 0.30000 0.50870 0.44989 0.34723 0.35999  0.04015  0.02392
Gumbel - - 0.70710 0.70710 0.38062 0.37369  0.21494  0.15637
Clayton - 0.00331 0.58180 0.54979 0.34192 0.34872  0.17305  0.13764

Panel B: Futures during normal period

Gaussian 0.06261 0.19000 0.30665 0.42240 0.15708 0.33473  0.05185  0.02393
Gumbel - - - - - - - -
Clayton ~ 0.00145 0.00441 050000 051036 023314 032495 0.12788  0.11025

Panel C: Spots during turbulent period

Gaussian  0.04887 0.30000 0.15867 0.36857 0.09010 0.34522  0.02044  0.01341
Gumbel - 0.18357 - 0.70710 - 0.31963 - 0.07405
Clayton - 0.00399 - 0.50000 - 0.20737 - 0.08341

Panel D: Spots during normal period

Gaussian 0.04917 0.20000 0.27382 0.25043 0.13288 0.23822  0.05109  0.00348
Gumbel - - - - - - - -
Clayton - 0.00558 - 0.50000 - 0.19738 - 0.06445
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Table 6 Summary statistics of the tail dependences between GARCH volatility
and volume

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of
conditional upper and lower tail dependence between GARCH volatility and volume across sample

period.

Min Max Mean Standard

Deviation

Panel A: Futures during turbulent period

Upper Tail 0 0.58578 0.31506 0.17658
Lower Tail 0 0.58851 0.31152 0.19543

Panel B: Futures during normal period

Upper Tail 0 0 0 0
Lower Tail 0 0.50000 0.17373 0.13374

Table 7 Summary statistics of the tail dependences between GK volatility and
volume

This table summarizes the minimum, maximum, mean, standard deviation of the estimates of

conditional upper and lower tail dependence between GK volatility and volume across sample period.

Min Max Mean Standard

Deviation

Panel A: Futures during turbulent period

Upper Tail 0.01 0.59578 0.32005 0.12801
Lower Tail 0 0.55508 0.31371 0.15971

Panel B: Futures during normal period

Upper Tail 0 0 0 0
Lower Tail 0 0.51178 0.27796 0.13539

Panel C: Spots during turbulent period

Upper Tail 0.15647 0.58578 0.26728 0.05994
Lower Tail 0 0.50000 0.12039 0.09454

Panel D: Spots during normal period

Upper Tail 0 0 0 0
Lower Tail 0 0.50000 0.10418 0.06726

34



Table 8 Lagged VIX and the dependence between volume and volatility

Aregression model is applied to study how the volume-volatility dependence varies with lagged level
of VIX. The dependent variable can be conditional correlations or conditional tail dependences
measured by copula functions. The lagged level of VIX is an explanatory variable, and a, is its

coefficient a, is an intercept term. The symbol * denotes significance at the 5% levels.

Gaussian Gumbel Clayton Upper Tail Lower Tail

Correlation Correlation Correlation Dependence  Dependence

Panel A: Futures data & GARCH volatility

ag -0.4039* -1.0601* -0.0058 -0.1126* -0.8784*

a; 0.2285* 0.4343* 0.1005* 0.1213* 0.3598*

R? 0.3775 0.3000 0.0322 0.0383 0.3020
F-statistic 706.9588 499.6618 38.7355 46.3763 504.4157

Panel B: Futures data & GK volatility

a, -0.1392* -1.1942* 0.1202* -1.0233* 0.0089

a; 0.1482 0.4707* 0.0772* 0.4033* 0.1018*

R? 0.4820 0.5312 0.0319 0.5404 0.0380
F-statistic 1084.8410 1321.3450 38.4378 1370.9880 46.0509

Panel C: Spot data & GK volatility

a, -0.1087* -1.0219* 0.1470* -0.8548* 0.0306

a; 0.1366* 0.4028* 0.0193* 0.3369* 0.0283*

R? 0.6541 0.6096 0.0058 0.6124 0.0108
F-statistic 2207.2870 1822.2390 6.8027 1844.0880 12.7826
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Table 9 Summary Statistics for the volume-volatility dependence sorted by VIX
variation

This table reports the association between daily VIX changes and the volume —volatility relation. The
VIX change criteria refer to the percentile range for the daily change in VIX, from the smallest changes
(0 to 5™ percentile) to the largest changes (95" to 100™ percentile). Subsample dependences for the

different variation in VIX groups are therefore calculated.

VIX variation Gaussian Gumbel Clayton Upper Tail Lower Tail

Criteria Correlation Correlation Correlation Dependence  Dependence

Panel A: Futures data & GARCH volatility

0 to 5" ptl. 0.19847 0.11528 0.29709 0.25112 0.09537
5" to 25" petl. 0.20579 0.08755 0.25911 0.20283 0.07256
25" to 50" ptl. 0.21306 0.10799 0.25329 0.20226 0.08932
50" to 75" ptl. 0.21745 0.11511 0.26024 0.20996 0.09537
75™ to 95" petl. 0.23376 0.16242 0.28209 0.23518 0.13437
95" to 100™ pctl. 0.26032 0.22538 0.32999 0.29320 0.18645

Panel B: Futures data & GK volatility

0 to 5" ptl. 0.25652 0.06175 0.32906 0.05308 0.27714
5" to 25" petl. 0.25775 0.06234 0.32940 0.05356 0.28755
25" to 50" ptl. 0.26233 0.07504 0.32028 0.06426 0.27361
50™ to 75™ pctl. 0.26224 0.08436 0.33378 0.07231 0.28793
75™ to 95™ petl. 0.27604 0.12532 0.33171 0.10726 0.28991
95" to 100™ pctl. 0.27245 0.14997 0.36385 0.12763 0.32873

Panel C: Spot data & GK volatility

0 to 5" ptl. 0.25714 0.04900 0.20586 0.04113 0.10986
5" to 25™ petl. 0.25868 0.05548 0.19650 0.04648 0.10240
25" to 50™ petl. 0.25946 0.06751 0.19243 0.05637 0.09917
50" to 75" pctl. 0.26239 0.07453 0.19446 0.06229 0.10451
75" to 95" ptl. 0.27364 0.10181 0.20484 0.08520 0.11418
95™ to 100™ pctl. 0.27470 0.12104 0.24350 0.10105 0.15830
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Table 10 Joint hit test results for the copula models

The p-values of joint hit tests if the models are correctly specified in all regions are reported. A p-value
less than 0.05 indicates a rejection of the null hypothesis that the model is well specified. * denotes the

significance at 5% level.

Time-Varying Time-Varying Time-Varying

Gaussian copula Gumbel copula Clayton copula

Panel A: Time-varying dependence structure between GARCH volatility and volume

Futures during

tarbulent peried 0.04178 0.11322 0.03673
Futures during normal 0.33715 0.00010* 0.30784
period
Spots during turbulent 0.14409 0.00010* 0.00010*
period
Spots during normal 0.22398 0.00010* 0.00010*

period

Panel B: Time-varying dependence structure between GK volatility and volume

Futures during

: 0.04253* 0.12172 0.04167*
turbulent period

Futures during normal 0.77308 0.00010* 0.82799
period

Spots during turbulent 0.21870 0.23301 0.19799
period

Spots during normal 0.31795 0.00010* 0.12525

period
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Figure 1 The conditional volatility of S&P 500 Index and its futures contracts

As the conditional variance is characterized by a GIR-GARCH(1,1)-AR(1)-t model given by Eq. (1),
the conditional volatility of S&P 500 Index and its futures contracts are depicted in this Figure. A very
strong evidence of a structural break®® in their conditional volatilities can be found. The period from
2004 to Feb 2007 is relatively less volatile. After Mar 2007, the markets in both spot and futures

become very volatile and their conditional volatilities substantially increase.
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16 A Chow test is conducted to test for a structural change.
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Figure 2 Implied time path of conditional dependence between volatility and
volume for futures data

This figure depicts implied time path of conditional dependence between volatility and volume for
futures data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass
(1980) range-based volatility. This figure shows quite clearly the structural break in the dependence

across different market conditions.
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Figure 3 Implied time path of conditional dependence between volatility and
volume for spot data

This figure depicts implied time path of conditional dependence between volatility and volume for spot
data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass (1980)

range-based volatility.
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Figure 4 Implied time path of conditional tail dependence between volatility and
volume for futures data

This figure depicts implied time path of conditional tail dependence between volatility and volume for
futures data. Panel (A) employs the GARCH volatility, while Panel (B) applies Garman and Klass
(1980) range-based volatility. This figure shows quite clearly the structural break in the upper tail

dependence across different market conditions.
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