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1. Introduction 

     The put-call parity（hereafter, PCP）formalized by Stoll (1969) uses the 

no-arbitrage principle to price put（call）options relative to call（put）options. It has 

been the subject of numerous empirical studies, but these studies typically focuse on 

“direct” tests of whether arbitrage strategies earn ex post profits. They target on 

testing the implication of whether the absolute deviation from fair value is less than 

the cost of arbitrage. Earlier empirical studies testing the PCP include Gould and 

Galai (1974), Klemkosky and Resnick (1979,1980), Evnine and Rudd (1985), Chance 

(1987), and Ronn and Ronn (1989), among others. Their conclusions are best 

summarized by noting that while PCP holds, on average, there are frequent, 

substantial violations of PCP involving both overpricing and underpricing of calls or 

puts. However, all previous studies that test PCP use American options. As shown by 

Merton (1973), the PCP need not hold for American options, because the possibility 

of an early put exercise cannot be completely ruled out when the portfolio is 

established. Therefore, it is not possible to conclude from these studies whether, or to 

what extent, observed PCP violations are due to market inefficiency or due to the 

value of early exercise.  

Kamara and Miller (1995) avoid the early exercise problem by testing European 

options on the S＆P500 stock index traded on the Chicago Board of Options 

Exchange (CBOT). Using daily and intradaily prices, they find violations of PCP that 

are much less frequent and smaller than those reported in studies using American 

options. Furthermore, these violations reflect the premia for immediacy risk. 

Some problems regarding the “direct” test of PCP have been addressed by the 

recent disagreement regarding the efficiency of the market for exploiting arbitrage 

opportunities. While many studies support evidence of inefficiency, Harris (1989), 

 1



Kleidon (1992) and Miller, Muthuswamy and Whaley (1997) caution that 

non-synchronous trading may create the illusion of apparent arbitrage opportunities. 

Kamara and Miller (1995) find that these violations of PCP suggest that the trading 

strategies underlying PCP are subject to significant liquidity (immediacy) risk. 

Variations in the deviations from PCP bounds are systematically positively related to 

proxies for liquidity risk in the stock and option markets. Their empirical studies 

provide evidence that liquidity (immediacy) risk is a substantial impediment to the 

role of arbitrage in pricing assets and is likely to produce deviations from predictions 

of arbitrage-based asset pricing models. 

     Previous arbitrage models have ignored the impact of short-sale restrictions, 

early liquidation before maturity, the opportunity cost of funds for index arbitrage, 

and the magnitude of transaction costs. Neal (1996) provides a detailed analysis of 

actual S＆P500 index futures arbitrage trades and directly relates these trades to the 

predictions of index arbitrage models. He shows that (1) short-sales restrictions are 

unlikely to have a large effect on mispricing. About half the arbitrage trades are 

executed for institutions. Since institutions are typically net long in stocks, they can 

avoid short-sale restrictions by selling the stock directly; (2) an estimate of the 

implied opportunity cost of arbitrage funds is 88 basis points higher than the Treasury 

bill rate; (3) the average price discrepancy captured by arbitrage trades is small, which 

is consistent with an efficient market for exploiting arbitrage opportunities; (4) early 

liquidation is the rule, not the exception, which is consistent with the finding of 

Sofianos (1993). He concludes that “ the ability of these models to explain arbitrage 

trades, however, is surprisingly low.” 

     In contrast with previous studies, this paper presents a model of the option price 

adjusting (mean-reverting) to a functional form of put-call parity. The adoption of 
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mean reversion is appealing in several aspects. First, the threshold of mean reversion 

should be interpreted more broadly than as simply reflecting proportional transaction 

costs, but also as resulting from the tendency of traders to wait for sufficiently large 

arbitrage opportunities to open up before entering the market and trading （Neal 

(1996), Sofianos (1993)）. Second, the assumption of an instantaneous trade can be 

replaced with the presumption that it takes some time to observe an arbitrage 

opportunity and then execute transactions and that trading is infrequent (Neal (1996)). 

Third, in a market with heterogeneous agents who face different levels of transactions 

costs, margin requirements, or position limits, agents essentially face no-arbitrage 

bands of different sizes. Fourth, in a market with heterogeneous participants, asset 

prices may reflect irrational bubbles on “fads” resulting in the persistence of PCP 

deviations. 

The first contribution of this paper is to employ the variance ratio (VR) statistic 

to test for the mean reversion and make an appropriate allowance for 

heteroskedasticity when basing inference on the VR statistic by using the Gibbs 

sampling approach in the context of a three-state Markov-switching model. The 

framework provides a rationale for the behavior of option prices, since it allows us to 

understand the question of whether option prices do adjust to put-call parity, and if so, 

how fast do they adjust as market frictions are present. As suggested by Kim, Nelson, 

and Startz (1998), the sampling distribution of the VR is substantially affected by the 

particular pattern of heteroskedasticity during the sample period. Simulation methods 

that assume heteroskedasticity or allow for persistence in heteroskedasticity, but not 

conditioned on the particular pattern of the historical period, produce a biased test, 

leading us to reject the null hypothesis of no mean reversion too often. 

The second contribution of this paper is to adopt a resampling strategy, as 
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suggested by Kim, Nelson, and Startz (1998), that standardizes historical returns, 

using the Gibbs sampling approach to allow for uncertainty in parameters and states 

while conditioning on the information in the data. Gibbs sampling is a Markov chain 

Monte Carlo simulation method for approximating joint and marginal distributions by 

sampling from conditional distributions1. Since dividend payments and liquidity 

premiums exhibit seasonal patterns (Harvey and Whaley (1994) ; Eleswarapu and 

Reinganum (1993)), Gibbs sampling makes appropriate use of the information in the 

historical data. At the end of each iteration of the Gibbs sampling, we compare the 

estimate of the VR from the standardized historical data with the corresponding VR 

from “randomized” data. We then estimate a p-value by counting how often the 

former falls below the latter. 

It is finally found that dividend uncertainty and/or the trading system might play 

key roles in explaining equity index arbitrage behavior. The empirical result shows 

that PCP deviations from electronic screen-traded DAX index option, which is 

calculated as if the dividends are reinvested in the index, displays mean reversion at 

long horizons. On the other hand, those deviations from the floor-traded S&P 500 

index option, which is not corrected for dividend payments, vary randomly. 

     Section 2 of this paper first defines the deviation from put-call parity. Section 3 

describes the data and introduces two comparable index options. Section 4 presents a 

VR statistic for testing mean reversion in a framework of a three-state 

Markov-switching variance model. Section 5 introduces an extended version of the 

Bayesian Gibbs sampling approach and data augmentation. Section 6 describes the 

VR tests based on historical and standardized deviations of data. Section 7 presents 

empirical results. Finally, Section 8 concludes the paper.  

                                                 
1 Useful references include Casella and George (1993), Gelfand and Smith (1990), and Chib and 
Greenberg (1996). 
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2. Deviations from Put-call Parity 

     Put-call parity (PCP) is a well-known relation that exists, in a perfect capital 

market, between the prices of European call and put options with similar terms on the 

same underlying stock. In a frictionless market, the following relation must hold： 

     ( ) / 365r T t
t t t tC P I D Xe− −− = − −                                     （1a） 

                                                 （1b） ( ) /365
T

r t
tD d e τ

τ
− −=∑

tτ =

where    is the known annualized continuous risk-free interest rate tr

        is the market price of the European call at time t tC

        is the market price of the European put at time t tP

      T   is the expiration date of the option 

      X   is the exercise (or strike) price of the option 

        is the market value of the index at time t tI

        is the present value of the sum of the tD τ -time known non-stochastic  

dividends ( ) to be paid during the option period. τd

     If the parity condition described in equation（1）is valid and the financial 

markets are efficient, then the riskless interest rate for the options’ maturity can be 

inferred from equation（1）. As mentioned above, when market frictions are present, 

the deviations from PCP can fluctuate within a bounded interval without giving rise to 

any arbitrage profit. In other words, the implied interest rate derived from equation

（1）may not be riskless. 

     The implied interest rate as suggested by Brenner and Galai (1986) from 

equation（1）of the European PCP is 

     
( )

' 365 t t t t
t

I D C Pr Ln
T t X

− − +⎛= − × ⎜− ⎝ ⎠
⎞
⎟                                （2） 
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Thus, the deviations（ ）from PCP can be written as  te

                                                         （3） ttt err +='

where  denotes the riskless rate of return. tr

     As described in Neal (1996), the “implied” interest rate, , can be treated as 

the opportunity cost of arbitrage funds. Since arbitrageurs face uncertainty about 

execution prices, the future value of dividends, the problem of immediacy and early 

liqudation, and the magnitude of tracking error, the index arbitrage does not 

necessarily provide a risk-free return. It is reasonable to assume that the opportunity 

cost of arbitrage funds will exceed the risk-free rate and the deviation can be regarded 

as the “risk premium” or reflects the cost of transaction

'
tr

2. Neal (1996) further found 

that the implied opportunity cost of arbitrage funds exceeds the Treasury bill rate and 

the arbitrage decision is sensitive to the opportunity cost of funds. 

     Neal (1996) estimates the implied opportunity cost of arbitrage funds and shows 

that the cost is 88 basis points higher than the Treasury bill rate. An opportunity cost 

exceeding the risk-free rate is consistent with the risk of index arbitrage as noted in 

Kawaller (1987). 

     The presence of the term  allows for short-run deviations from PCP. If the 

sequence  exhibits mean reversion, then the deviations from equilibrium must be 

temporary. Thus, PCP is said to hold. On the other hand, if the sequence {  is 

serially random, then the deviations from equilibrium are permanent in nature. Thus, 

we can reject the theory of PCP. Our “indirect” test, as shown in the following 

sections, is to determine whether 

te

{ }te

}te

{ }te  exhibits mean reversion. 

 

 

                                                 
2 These transaction costs include bid-ask spread, commission fees, differential interest rates, and 
execution costs, etc. in both stock and option markets. 
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3. Data and Two Comparable Equity Index Option: S&P500 and   

DAX 

     Neal (1996) and previous studies ignore the effect of dividend uncertainty on 

equity index arbitrage3. To illustrate the importance of dividend uncertainty on 

arbitrage, we consider two European index options, S&P500 and DAX, for 

comparison purposes. The daily closing prices of two equity indices and options are 

used. These data, provided by DATASTREAM, cover the period of August 23, 1999 

through March 20, 2003. Because options on the S&P500 index are not corrected for 

dividend payments, the put-call parity may contain an additive term of dividend 

payments as shown in (1a) and (1b), but with  unknown. On the other hand, the 

DAX index is an example of a performance index (Grünbichler and Callahan (1994)). 

On ex-dividend days, the DAX is calculated as if the dividends are reinvested in the 

index so that the put-call parity for DAX index options can be expressed as 

tD

     ( ) / 365r T t
t t tC P I Xe− −− = −                                          

In the above equation, the dividend payments do not appear on the functional form of 

PCP. In other words, the PCP deviations ( ) from the implied interest rates in 

equation (3) are absent of dividend risk. 

te

Like Neal (1996), we implement the realized dividends, as reported in the 

S&P500 and DAX bulletins, as proxies for the future dividends on the PCP model. 

The uncertainty of dividend payments can produce large errors of option pricing as 

indicated by earlier studies (Harvey and Whaley (1992)). 

These are two other specific features which lead to a relatively low level of risk 

associated with ex ante arbitrage strategies in DAX as compared with S&P5004. First, 

                                                 
3 As suggested by Harvey and Whaley (1992), Neal (1996) uses the realized dividends, as reported in 
the S&P500 bulletin, as proxies for future dividends on the cost-of-carry model. 
4 For details, refer to Grünbichler, Longstaff, and Schwartz (1994) and Bühler and Kempf (1995). 
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the DAX index is narrow, consisting of only 30 blue chips of the German equity 

market which represent about 60% of the market capitalization and 85% of the trade 

volume. Arbitragers are able to trade a perfect matching basket at reasonable costs and 

in a reasonable span of time. Thus, tracking error risk can be avoided and the 

execution risk is relatively low. Second, there is little execution risk in the derivatives 

(futures and options) market as the German Futures and Options Exchange (DTB) is 

an electronic screen-trading market5. It is believed that price discovery is faster in a 

screen-based trading system, because it is less costly to operate and may therefore 

offer lower bid-ask spreads. The possibility of remote access may increase the number 

of traders and thereby also lead to an increase in liquidity. 

Based on these specific features of Germany’s markets, one would expect that 

arbitrage opportunities can be exploited very quickly and that ex ante arbitrage 

strategies are nearly risk free. Consequently, the PCP would not allow for large and 

long-lasting arbitrage opportunities. 

 The deviations  from equation (3) for S&P500 and DAX are drawn in Figures 

1 (a) and (b), respectively. A preliminary look shows that shocks to the deviations for 

both indices may be temporary in nature with a tendency to revert to some mean level. 

However, the mean for S&P500 is subject to more occasional level shifts over time. 

The actual patterns for S&P500 and DAX need more careful investigation. 

te

 

 

 

 

 

                                                 
5 After September 1998, the DTB merged with SOFFEX, the Swiss Options and Futures Exchanges, to 
create Eurex, a cross-border exchange. 
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4. Variance Ratio Statistics in a Markov-Switching Variance Model 

     The indirect test in our model employs variance ratio (VR) statistic, which is 

due to Cochrane (1998) and Lo and MacKinlay (1988). This test allow 

heteroscedasticity in the data and, more importantly, does not require the assumption 

of normality. Under the null of a heteroscedastic random walk process, Lo and 

MacKinlay（1989）show that the variance ratio test is more powerful than the 

Box-Pierce Q test and the Dickey-Fuller unit root test against several alternative 

hypotheses. In addition, it offers a very straight-forward interpretation of how rapidly 

a series reverts back to, or diverges from, its mean value.  

If one-period deviations are serially random, then we have 

     ( )2,~ σµdiiet                                                （4） 

and since the k-period deviation is the accumulation of k successive , te

     ( ) 2σkeVar k
t =                                                  （5） 

The VR statistic is defined in the deviation context as 

     ( ) ( )
( ) keVar
eVar

kVR
k
t 1

=
t

                                              （6） 

which is unity under the serially random hypothesis. On the other hand, if the series 

exhibits mean reversion, so that changes in either direction tend to be offset over time 

by moving back toward the starting point, then ( )k
tVar e  will be less than k times as 

large as , such that VR will be less than unity. We therefore take values for 

VR of one or above as evidence against the PCP model.

( )tVar e

6

                                                 
6 The sample variance ratio, ( )VR k , can be expressed as one plus a positively-weighted sum of the first 
k-1 sample autocorrelations. As shown by Cochrane (1988), the approximated value of the sample 
variance ratio is： 

( )
1

1

( ) 1 2
k

j

k jVR k j
k

ρ
−

=

−
= + ∑  

where ( )jρ  is the jth-order sample autocorrelation of one-period deviations  in this study. If the 
variance ratio is greater than one, less than one, or equal to one, then autocorrelations between 

te
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     One explanation for mean reversion is the presence of a transitory component in 

asset prices. To judge whether a sample VR is significantly below unity, one needs to 

know the sampling distribution of the VR under the null hypothesis. Poterba and 

Summers (1988) and Lo and MacKinlay (1989) use the VR to test for mean reversion 

in stock prices and conclude that a transitory component accounted for a substantial 

fraction of the variance in stock returns over horizons of several years. The inference 

was based on a Monte Carlo simulation of the sampling distribution of the VR under 

the null hypothesis of serially random returns. 

     Kim, Nelson, and Startz (1991) estimate the sampling distribution of the VR by 

randomizing actual returns and also suggest a “stratified randomization” that 

preserves the historical pattern of high and low volatility periods. The fact that the 

latter reveals substantially weaker evidence of mean reversion than the former 

suggests that the specific pattern of heteroskedasticity in the sample period may play 

an important role in inference. However, their approach assumes that the 

econometrician has certain knowledge of the pattern, yet does not exploit any 

information from the pattern of heteroskedasticity in the estimation of the VR. 

Furthermore, a resampling of returns is limited by segregation into subperiods 

according to volatility. 

     Kim, Nelson, and Startz (KNS, hereafter)(1998) find that the sampling 

distribution of the VR is affected by the particular pattern of heteroskedasticity, such 

as the Great Depression, during the sample period. They use a model with a 

three-state Markov-Switching process estimated by an extension of the Bayesian 

Gibbs sampling approach of Albert and Chib (1993) in which the parameters as well 

as the unobserved states are viewed as random variables for which we obtain a 

                                                                                                                                            
deviations are positive, negative, or zero and the series of deviation exhibit “mean aversion”, “mean 
reversion”, or “random walk”, respectively. 
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conditional distribution given the data. It suggests two changes in the way that that 

interpret the VR in the presence of heteroskedasticity. First, they fully utilize the 

information in the data about the pattern of heteroskedasticity in simulating the 

sampling distribution of the VR without pretending to have prior knowledge of the 

pattern. Second, they modify the VR statistic to make more efficient use of the 

information in the data about mean reversion by weighting observations appropriately 

based on information in the data about the timing and magnitude of volatility changes. 

     Following KNS, we consider the following three-state Markov-switching model 

of stock index returns： 

     ( ),,0~ 2
tt Ne σ                                                 （7） 

                                            （8） tttt SSS 3
2
32

2
21

2
1

2 σσσσ ++=

      if , and = 0,  otherwise；1=KtS kSt = KtS =k 1, 2, 3                （9） 

     , where Pr1321 =++ iii PPP [ ] ,1 ijtt piSjS === −   =1, 2, 3         （10） ,i j

                                                     （11） 2
3

2
2

2
1 σσσ <<

where  is demeaned deviation, and  is an unobserved state variable which 

evolves according to a first-order Markov process with transition probabilities in (10). 

te tS

     The adoption of a three-state Markov switching variance model is suggested by 

KNS for several reasons. Porterba and Summers (1988) use VR statistics to 

investigate whether stock prices are mean-reverting, taking data that consists of 

monthly total returns on all NYSE stocks for both value-weighted and equal-weighted 

portfolios from 1926 through 1985. In measuring the statistical significance of the VR 

statistic, they implement an estimate of the standard error based on Monte Carlo 

simulations assuming independently and normally-distributed returns. Although stock 

returns are actually unconditionally non-normal and heteroskedastic with high 

persistence, Poterba and Summers (1988) show that the empirical distribution of the 

 11



VR statistic with heteroskedasticity is no different from that with homoskedasticity. In 

other words, it suggests that the degree of persistence in heteroskedasticity does not 

affect the distribution of the VR statistic very much. 

     Instead of using Monte Carlo simulations, which require a distributional 

assumption, Kim, Nelson, and Startz (1991) employ “randomization” methods to 

estimate the unknown distribution of the VR for the same sample period7. To estimate 

the distribution of the VR statistic under the null, they first shuffle the date to destroy 

any time dependence, and then recalculate the test statistic for each reshuffling. They 

presente results for a “stratified randomization” that preserves the historical pattern of 

heteroskedasticity. Their results suggest that significance levels are much lower than 

previously reported. Even though their stratified randomization provides a way to 

retain information in historical heteroskedasticity in returns, their division of the 

sample into low- and high-variance states is arbitrary and limited. 

     KNS criticize the above two papers for (1) Poterba and Summers (1988) 

reported a Monte Carlo experiment that mimics the actual persistence of volatility, but 

does not preserve the historical pattern. This may be valid when the particular 

historical pattern of heteroskedasticity, such as the Great Depression, does not affect 

the sampling distribution of the VR statistic. (2) In the presence of persistence in 

heteroskedasticity, the randomization destroys any time dependence in variance. Thus, 

the usual randomization method may fail, because errors are not interchangeable. 

     Employing a three-state Markov-switching variance model, KNS find that the 

empirical distribution of the VR is much different from that in the homoskedastic case, 

                                                 
7 Randomization focuses on the null hypothesis that one variable is distributed independently of another. 
Randomization shuffles the data to destroy any time dependence and then recalculates the test statistic 
for each reshuffling to estimate its distribution under the null. Repeating the experiment, we count how 
many times the calculated variance ratio after randomization falls below the value of the actual 
historical statistic in order to estimate the significance level. The advantage of this approach is that the 
null hypothesis is very simple and no assumptions are made concerning the distribution of stock prices. 
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when the pattern of heteroskedasticity is the historical one. The distribution has wider 

variance and is more skewed than in the homoskedastic case. This suggests that the 

VR tests of Poterba and Summers (1988) based on Monte Carlo experiments and 

those of Kim, Nelson, and Startz (1991) based on the usual randomization method 

have the wrong size, rejecting the null of random returns in favor of mean reversion 

too often. 
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5. Bayesian Gibbs Sampling and Data Augmentation 

     The Markov-switching variance model from （7） to （11） could traditionally 

be estimated using the maximum likelihood estimation method of Hamilton (1989) 

and Hamilton and Susmel (1994). However, the MLE approach, which is based on 

asymptotic normality, may not be valid when the sample size is not large enough. In 

addition, it is difficult to determine how large the sample size should be in order for 

asymptotic normality to hold. In this paper we employ an extended version of Albert 

and Chib’s（1993）Bayesian Gibbs sampling approach to estimate the model8. 

     The Gibbs sampler is a path-breaking technique for generating random samples 

from a multivariate distribution by using conditional distributions without having to 

compute the full joint density. In regime-switching models, the full joint density is 

extremely difficult to calculate, but the conditional distributions are easy to evaluate. 

In addition, the Gibbs sampling approach can provide us with a way to deal with 

uncertainty associated with underlying parameters and unknown states of the model. 

It is an iterative Monte Carlo technique that generates a simulated sample from the 

joint distribution of a set of random variables by generating successive samples from 

their conditional distribution9. 

     In the Gibbs sampling approach, all the parameters of the model are treated as 

random variables with an appropriate but unknown prior distribution. Thus, random 

variables to be drawn in the above model from（7）to（11）are given by 

       and  { },,...2,1,
~

TtSS tt == 2
3

2
2

2
1 ,, σσσ { }323122211211

~
,,,,, PPPPPPP =

Starting from arbitrary initial values of the parameters, Gibbs sampling proceeds by 

taking： 

                                                 
8 Advantages of the Gibbs sampling approach over the maximum likelihood method are discussed in 
detail in Albert and Chib(1993). 
9 For more details of the Gibbs sampling approach to a three-state Markov-switching variance model 
given below, readers are referred to Kim and Nelson (1999). 
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Step 1：a drawing from the conditional distribution of  given the data, , , 

 and 

~
S 2

1σ
2
2σ

2
3σ

~
P；then 

Step 2：a drawing from the conditional distribution of  given the data, , , 

 and 

2
1σ

~
S 2

2σ

2
3σ

~
P；then 

Step 3：a drawing from the conditional distribution of  given the data, , , 

 and 

2
2σ

~
S 2

1σ

2
3σ

~
P；then 

Step 4：a drawing from the conditional distribution of  given the data, , , 

 and 

2
3σ

~
S 2

1σ

2
2σ

~
P；then 

Step 5：a drawing from the conditional distribution of 
~
P  given the data, , , 

 and . 

~
S 2

1σ
2
2σ 2

3σ

     By successive iteration from step 1 to step 5, the procedure simulates a drawing 

from the joint distribution of all the state variables and parameters in the model. It is 

straightforward then to summarize the marginal distribution of any of these, given the 

data10. 

     KNS find that the sampling distribution of the VR is affected by the particular 

pattern of heteroskedasticity, and that this effect is also substantially important in the 

case of daily deviations of PCP. Simulation methods that assume heteroskedasticity or 

allow for persistence in heteroskedasticity, but are not conditioned on the particular 

pattern of the historical period, produce a biased test, leading the investigator to reject 

the null hypothesis of no mean reversion too often. Since dividend payments and a 

liquidity premium exhibit seasonal patterns (Harvey and Whaley (1994), Eleswarapu 

and Reinganum (1993)) in the data, we follow KNS and consider two new tests of 

mean reversion that are conditioned on the information that the data contain the 

historical pattern of heteroskedasticity. We employ a resampling strategy for 

                                                 
10 For details of the Gibbs sampling approach to a three-state Markov-switching variance model given 
above, readers are referred to Kim and Nelson (1999) P219-224. 

 15



estimating the sampling distribution of the VR that standardizes historical returns 

using estimated variances. Instead of conditioning on the estimates of these variances 

and the dates of regime switches, the Gibbs sampling approach is used so as to allow 

for uncertainty in these parameters and states while being conditioned on the 

information in the data. 
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6. Tests Based on the Variance Ratios of Historical and Standardized 

Deviations 

     This section suggests a modification of the VR statistic to make more efficient 

use of the information in the data about mean reversion by weighting observations 

appropriately based on the information in the data about the timing and magnitude of 

volatility changes. 

     Assume that  

     ( )( )θσ 2,0~ tte  

     { }323122211211
2
3

2
2

2
1 ,,,,,,,, PPPPPPσσσθ =  

where  is the demeaned deviation which shows heteroskedasticity with variance 

 

te

2
tσ

      θ  is a vector of parameters that describes the dynamics of  2
tσ

     By standardizing historical returns before calculating the VR test statistic, 

appropriate weights can be assigned to observations depending on their volatility. An 

additional complication of this approach is that unlike the test based on original 

returns, the test statistic itself is subject to sampling variation due to uncertainty in the 

parameters that describe the dynamics of heteroskedasticity. Thus, we compare two 

distributions：the distribution (due to parameter uncertainty) of the VR test statistic for 

standardized historical returns and the distribution of the VR test statistic under the 

null hypothesis estimated from randomizing the standardized returns. 

     A natural way to randomize returns without losing time dependence in historical 

returns would be the following: 

Step 1：Standardize  to obtain te
⎭
⎬
⎫

⎩
⎨
⎧

== Tt
e

e
t

t
t ,...2,1,*

σ
 

Step 2：Randomize the standardized deviations  to obtain *
te { }Tter

t ,...2,1,
*

=  
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Step 3：Destandardize  to obtain 
*r

te { }Ttee t
r
t

r
t ,...2,1,

*

=×= σ  

     From the above procedure, we obtain the following four data series： 

1. original series  te

2. standardized series  *
te

3. randomized standardized series  
*r

te

4. randomized de-standardized series  r
te

Step 4：Calculate VRs for each series. They are respectively ( ) ( ) (kVRkVRkVR r*

,, * )  

and ( )kVR r , . Kk ,...2,1=

Step 5：Repeat the Gibbs sampling and steps 1 to 4. 

     These steps are repeated, say, M times to get the posterior distribution of the VR 

for standardized historical returns, ( )kVR* , and the empirical distribution of the VR 

under the null of no mean reversion, ( )kVRr*

. To estimate the significance level for 

the test of mean reversion, we count how many times the variance ratio for the 

standardized and randomized returns ( )( )kVR r*

 from Gibbs-sampling-augmented 

randomization falls below the variance ratio for standardized historical returns 

( )( )kVR*  from Gibbs sampling. For comparison purposes, we also conduct the same 

analysis for the original returns. Thus, the p-value, which is defined as 

     ( ) ( )[ ]
M

kVRkVRofNop
r>

=
.   for original returns 

and 

     ( ) ( )
M

kVRkVRofNop
r ][.

**
* >
=   for standardized returns. 

     It is important to calculate the above p-values exactly rather than using a 

standard deviation under an assumption of normality for VR, because its sampling 

distribution is skewed. 
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     If the variance of deviations for each time point  or the parameters 2
tσ θ  that 

govern the evolution of  are known, then the above procedure would be 

straightforward. In practice,  or the parameter 

2
tσ

2
tσ θ  associated with  has to be 

estimated using historical data. Because 

2
tσ

θ  is subject to parameter uncertainty, the 

standardized deviations are also subject to sampling variation.  

     To incorporate the effect of uncertainty in the parameters associated with the 

variance of deviations, we augment the Gibbs-sampling approach introduced in 

Section 5 with the standardizing step of the above procedure. As in Section 5, each 

run of Gibbs sampling based on historical returns provides us with particular 

realizations of the set,  and { }TtSt ,...2,1, = { }2
3

2
2

2
1 ,, σσσ , which are used to calculate 

 according to Equation（8）. Using , t =1,2,…T, simulated in this way, we can 

proceed with the above Steps 1 through 3. 

2
tσ 2

tσ

     If the above procedure is repeated, say, 10,000 times, with each iteration 

augmented by simulations of  from each run of Gibbs sampling, then we have 

10,000 sets of randomized returns. These artificial histories are conditioned on the 

information about the pattern of heteroskedasticity contained in the historical returns, 

incorporate parameter uncertainty, and are consistent with the null of mean reversion 

due to randomization. For each of these 10,000 sets of artificial histories, the variance 

ratio statistic is calculated, which can be used to estimate the empirical distribution of 

the variance ratio statistic. To estimate the significance level, we calculate the 

p-values to know how many times the variance ratios for the artificial histories fall 

below the variance ratios for original historical returns. 

2
tσ
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7. Empirical Results 

 The procedures for Gibbs-sampling described in the previous sections are 

applied here to the PCP deviations of S&P 500 and the DAX. Gibbs-sampling is run 

such that the first 2,000 draws are discarded and the next 10,000 are recorded. We 

employ almost non-informative priors for all the models’ parameters. Table 1 presents 

the marginal posterior distributions of the parameters that result from Gibbs-sampling 

for the PCP deviations of S&P 500 and the DAX, respectively. At the end of each run 

of Gibbs-sampling, we have a simulated set of { }TtSt ...2,1, =  and thus, of 

{ }3,2,1,,...2,1, == jTtS jt , and . Figures 2(a), 2(b), 2(c) and 

Figures 3(a), 3(b), and 3(c) depict probabilities of low-, medium-, and high-variance 

states for the PCP deviations of S&P 500 and the DAX, respectively, that result from 

the Gibbs-sampling simulation. 

3,2,1,2 =jjσ P%

 Using the particular realizations of the states and the parameters for each run of 

Gibbs-sampling, we can calculate  for 2
tσ Tt L,2,1= using equation (8). Thus, 

when all the iterations are over, we have 10,000 sets of realized variances 

{ }TttT L,2,1,~ 22 == σσ  of PCP deviations. Figures 2(d) and 3(d) plot the average of 

10,000 sets of 2~
Tσ , which are our estimates of the variance of the S&P 500’s and the 

DAX’s PCP deviations. Tables 2 (a) and (b) present variance ratios for original daily 

deviations from PCP for S&P 500 and DAX, respectively. Only the DAX displays 

mean reversions at long horizons. The smallest p-value is 0.028 at 45 days lag. 

 Table 3 (a) and (b), in which variance ratios for standardized daily deviations 

from PCP for S&P 500 and DAX are presented, respectively. The DAX also displays 

mean reversion at long horizons and its smallest p-value is 0.028 at a lag of 40 days. 

The evidence is weak that the standardized returns approach to estimating the VRs 

suggests that mean reversion, if it is present, occurs at shorter lags. 
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8. Summary 

Previous studies indicate that when market frictions are taken into account, the 

deviations from PCP can fluctuate within a bounded interval without giving rise to 

any arbitrage profit. This study presents a model of the option price mean reverting to 

a function form of PCP. The variance ratio test is employed to examine whether the 

deviations of PCP exhibit mean reversion. We make appropriate allowance for 

heteroskedasticity when basing inference on the VR statistic by using the 

Gibbs-sampling approach in the context of a three-state Markov switching model. 

     The empirical result shows that PCP deviations from the electronic 

screen-traded DAX index options, which are calculated as if the dividends are 

reinvested in the index, display mean reversion at long horizons. On the other hand, 

those deviations from floor-traded S&P 500 index options, which do not correct for 

dividend payments, vary randomly. 
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Table 1：The estimated parameters from the Bayesian Gibbs-sampling approach to a 
three-state Markov-switching model of heteroskedasticity for S&P 500’s and DAX’s 
daily PCP deviations 
 
                                     Posterior distribution 
                              S&P 500                  DAX 
Parameter Mean         Std.         Mean        Std. 
 
                     0.8912       0.0344       0.9244      0.0168 11P
 
                     0.0561       0.0402       0.0713      0.0165 12P
 
                     0.0197       0.0230       0.0677      0.0511 21P
 
                     0.8926       0.0489       0.6355      0.0975 22P
 
                     0.2575       0.0689       0.6257      0.1234 31P

 
                     0.0882       0.0519       0.0390      0.0379 32P
 
                     0.0216       0.0064       0.0280      0.0026 2

1σ
 
                     0.0559       0.0174       0.0843      0.0274 2

2σ
 
                     1.1807       0.2525       2.6624      0.7211 2

3σ
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Table 2(a)：Variance ratios for original daily deviations from PCP in S&P500 
        

Lag(days)   VR sampling distribution ( )( )kVR r    
K VR(k)  Mean Std Median  p-value
2 1.4616  1.0343 0.0621   1.0340  1.0000
        

 
5 2.1525  1.0796 0.1266 1.0738  1.0000
        

 
10 1.1489  0.9957 0.0578 0.9950  0.9950
        

 
15 1.1816  0.9699 0.0922 0.9671  0.9854
        

 
20 1.2202  0.9536 0.1177 0.9491  0.9824
        

 
25 1.2907  0.9561 0.1385 0.9490  0.9864
        

 
30 1.3059  0.9564 0.1602 0.9467  0.9790
        

 
35 1.2527  0.9491 0.1812 0.9376  0.9440
        

 
40 1.1663  0.9425 0.2004 0.9288  0.8667
        

 
45 1.1181  0.9464 0.2172 0.9284  0.7957
        

 
50 1.0792  0.9496 0.2341 0.9290  0.7294

        

Note：1. The sampling distribution is based on Gibbs-sampling-augmented randomization. 

      2. The p-value is the frequency with which the simulated VR is smaller than the historical 

sample value, which is observed in the Gibbs-sampling-augmented randomization under the 

null hypothesis. 
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Table 2(b)：Variance ratios for original daily deviations from PCP in DAX 
        

Lag(days)   VR sampling distribution ( )( )kVR r    
K VR(k)  Mean Std Median  p-value
2 1.2283  1.0245 0.0648 1.0245  0.9991
        

 
5 1.5501  1.0438 0.1184 1.0401  0.9999
        

 
10 1.0528  0.9789 0.0471 0.9794  0.9456
        

 
15 1.0141  0.9520 0.0808 0.9529  0.7782
        

 
20 0.9131  0.9313 0.1043 0.9315  0.4293
        

 
25 0.8369  0.9294 0.1237 0.9257  0.2279
        

 
30 0.7666  0.9291 0.1450 0.9230  0.1305
        

 
35 0.6626  0.9216 0.1671 0.9131  0.0513
        

 
40 0.5893  0.9153 0.1859 0.9049  0.0282
        

 
45 0.5635  0.9174 0.2007 0.9050  0.0237
        

 
50 0.5484  0.9189 0.2158 0.9029  0.0254
        

Note：1. The sampling distribution is based on Gibbs-sampling-augmented randomization. 

      2. The p-value is the frequency with which the simulated VR is smaller than the historical 

sample value, which is observed in the Gibbs-sampling-augmented randomization under the 

null hypothesis.
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Table 3(a)：Variance ratios for standardized daily deviations from PCP in S&P500 
          

Lag(days) VR posterior distribution ( )( )kVR*  VR sampling distribution ( )( )kVR r*    

k Mean Std Median  Mean Std Median  p-value
2 1.5519 0.0209   1.5503  1.0001 0.0346 0.9998  1.0000
          

 
5 2.6193 0.0887 2.6043  0.9998 0.0758 0.9981  1.0000
          

 
10 1.3209 0.0387 1.3120  0.9982 0.0645 0.9984  1.0000
          

 
15 1.4444 0.0788 1.4244  0.9971 0.1047 0.9938  0.9996
          

 
20 1.5463 0.0975 1.5243  0.9963 0.1358 0.9911  0.9997
          

 
25 1.6176 0.0995 1.6000  0.9959 0.1619 0.9890  0.9995
          

 
30 1.6019 0.0992 1.5897  0.9958 0.1850 0.9862  0.9959
          

 
35 1.5043 0.0997 1.4955  0.9961 0.2063 0.9827  0.9811
          

 
40 1.3640 0.1008 1.3590  0.9966 0.2263 0.9803  0.9228
          

 
45 1.2431 0.1001 1.2410  0.9971 0.2449 0.9760  0.8256
          

 
50 1.1392 0.1031 1.1396  0.9975 0.2622 0.9726  0.7141
          

Note：1. The sampling distribution is based on Gibbs-sampling-augmented randomization 

      2. The p-value is the frequency with which the realizations of the Gibbs sampling of the 

posterior distribution are smaller than the corresponding realization under the null hypothesis.
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Table 3(b)：Variance ratios for standardized daily deviations from PCP in DAX 
          

Lag(days) VR posterior distribution ( )( )kVR*  
VR sampling distribution ( )( )kVR r*  

  

k Mean Std Median  Mean Std Median  p-value
2 1.3804 0.0299 1.3852  1.0001 0.0343 1.0002  1.0000
          

 
5 2.0731 0.0830 2.0853  1.0001 0.0752 0.9979  1.0000
          

 
10 1.1008 0.0201 1.1017  0.9970 0.0642 0.9966  0.9388
          

 
15 0.9341 0.0389 0.9332  0.9963 0.1050 0.9931  0.2978
          

 
20 0.8265 0.0461 0.8252  0.9960 0.1367 0.9906  0.1166
          

 
25 0.8670 0.0449 0.8664  0.9963 0.1632 0.9876  0.2313
          

 
30 0.8349 0.0455 0.8347  0.9970 0.1868 0.9845  0.2062
          

 
35 0.7005 0.0483 0.7003  0.9976 0.2081 0.9801  0.0641
          

 
40 0.6078 0.0504 0.6068  0.9983 0.2281 0.9769  0.0277
          

 
45 0.6136 0.0526 0.6121  0.9991 0.2467 0.9728  0.0411
          

 
50 0.6213 0.0542 0.6196  1.0000 0.2645 0.9683  0.0580
          

Note：1. The sampling distribution is based on Gibbs-sampling-augmented randomization. 

      2. The p-value is the frequency with which the realizations of the Gibbs sampling of the 

posterior distribution are smaller than the corresponding realization under the null hypothesis. 

 27



 

Figure 1(a)：Daily PCP Deviations from S&P500 

 
Figure 1(b)：Daily PCP Deviations from DAX 
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Figure 2(a)：Probability of a Low-variance State for S&P500’s PCP Deviations (Gibbs Sampling) 

 
Figure 2(b)：Probability of a Medium-variance State for S&P500’s PCP Deviations (Gibbs Sampling) 
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Figure 2(c)：Probability of High-variance State for S&P500’s PCP Deviations (Gibbs Sampling) 

 

Figure 2(d)：Estimated Variance of S&P500’s PCP Deviations (Gibbs Sampling) 
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Figure 3(a)：Probability of a Low-variance State for DAX’s PCP Deviations (Gibbs Sampling) 

 
Figure 3(b)：Probability of a Medium-variance State for DAX’s PCP Deviations (Gibbs Sampling) 
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Figure 3(c)：Probability of a High-variance State for DAX’s PCP Deviations (Gibbs Sampling) 

 
Figure 3(d)：Estimated Variance of DAX’s PCP Deviations (Gibbs Sampling) 
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