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報告內容 

ARTIFICIAL NEURAL NETWORKS AS A FEATURE DISCOVERY TOOL 

This study proposes the preimage analysis and its associated belief justification process 

regarding the application of continuous-valued single-hidden layer feed-forward neural 

network (SLFN) to discovering features – certain relationships between explanatory (input) and 

observed (output) variables – embedded in the (training) data. The preimage analysis explicitly 

specifies the preimage of network and discloses its preimage-related properties. The preimage 

of a given output of an SLFN is the collection of all inputs each of that generates the output. 

The seminal publication of (Rumelhart & McClelland, 1986) states that Artificial Neural 

Networks (ANN) can be trained primarily through examples; ANN can do the general 

pattern-recognition; and ANN can learn general rules of optimal behavior. Since then, these 

claims stimulate studies in many fields to develop various ANNs as modeling tools to check the 

validity of the claims. Lots of experimental results are positive. For instance, Sgroi & Zizzo 

(2007) state that ANNs “are consistent with observed laboratory play in two very important 

senses. Firstly, they select a rule for behavior which appears very similar to that used by 

laboratory subjects. Secondly, using this rule they perform optimally only approximately 60% 

of the time.” (page 717) 
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Results of these researches infer that well-trained ANNs possess features embedded in 

(training) data. Thus, some practitioners may go one step further to conduct researches that 

address the issue of extracting features embedded in data from well-trained ANNs. For instance, 

based upon the empirical data, one wants to identify the relative influence of factors for pricing 

newly issued securities. The practitioner first gets several well-trained networks and then from 

these networks extracts certain features. The rule (1) is one of such feature examples. Hopefully, 

the extracted rules could depict features embedded in data and could help identify the 

significant factor. 

Rule: If the input sample is in some sub-region of the input space, then the predicted price 

value is given by a corresponding linear regression equation.             (1) 

 

Note that the feature-discovery practitioner (and researcher) may be merely interested in any 

(ANN or statistical) tool that can help analyze the data to discover something interesting or 

significant, instead of in the interaction of human cerebral activities and its explanation that 

results in the fundamentals of ANN. Regardless, the task faced by a feature-discovery 

practitioner is not easier because ANN simply behaves as a black box, i.e., a system that 

produces “certain outputs from certain inputs without explaining why or how” (Rabuñal, 

Dorado, Pazos, Pereira, & Rivero, 2004). Nevertheless, ANN researchers have spent substantial 

efforts leading to a huge amount of works that explore various “mechanisms, procedures, and 

algorithms designed to insert knowledge into ANNs (knowledge initialization), extract rules 
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from trained ANNs (rule extraction), and utilize ANNs to refine existing rule bases (rule 

refinement).” (Andrews, Diederich, & Tickle, 1995, page 373) Some, but not exhaustive, 

studies for these purposes are presented in (Andrews, Diederich, & Tickle, 1995; Setiono & Liu, 

1997; Tickle, Andrews, Golea & Diederich, 1998; Tsaih, Hsu, & Lai, 1998; Taha & Ghosh, 

1999; Zhou, Chen, & Chen, 2000; Saito & Nakano, 2002; Setiono, Leow, & Zurada, 2002; 

Baesens, Setiono, Mues, & Vanthienen, 2003) 

Despite these studies, the black box nature of ANN persists and any feature-discovery 

intention is better to cope with following issues. First, the approach should disclose true 

properties from ANN. Most of above studies do not seem to generalize to the situation since 

they are contrived to explore restrictedly with limited data such that the extracted rules are 

dubious and unlikely to be considered as patterns of knowledge embedded in data. Consider the 

rule stated in (1). To spot its premise, most works use either training data or generated data, 

which the trained network itself yields. Such an approach is data sensitive and requires 

extensive amount of data to be accurate. The limited number of (training or generated) data 

instances leads to a suspicion of the generalization of rule (1) in interpolating and extrapolating 

any unexplored data values. 

Second, since features learned by an ANN distribute over the entire network as weight values, 

the approach should effectively disclose the entire black box in order to observe interesting but 

unknown features embedded in data. With such an entire disclosure, the practitioner can 
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simultaneously investigate several kinds of features to get a better understanding about the 

(training) data. The above studies do not seem to generalize to the situation, since they base 

upon predefined schemes like rule (1) for extracting rules. 

Third, it is possible to have a sub-perfect learning result since, in most studies (e.g., financial 

market tests), it is characteristically more difficult to determine the best architecture of SLFN. 

Besides, noises in the training samples prevent networks from perfect fittings. The possibility 

of a sub-perfect learning result leads to a conservative attitude on embracing the obtained 

preimage-related properties. The practitioner with such understanding has conservatism in the 

straightforward feature acquisition. The above studies do not seem to cope with such 

conservatism. 

Fourth, the practitioner normally has some personal beliefs when he conducts the 

feature-discovery experiment. Any such belief, if available, is in the form of tacit knowledge 

about the relationship between the explanatory and observed variables. However, to draw 

parallels between the beliefs and the observed features needs professional interpretations due to 

the tacit nature of the former and the complex nature of the latter. That is, the practitioner has to 

contrast the similarities and differences between beliefs and observed features and then to infer 

properly. Even if the beliefs and observed features suggest different views, the practitioner may 

find a way to arrive at a justified belief embodying the observed features. Such a belief 
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justification is a kind of knowledge internalization stated by Nonaka & Takeuchi (1995). The 

above studies do not seem to provide such discussions. 

This study addresses these issues. Specifically, for feature discovery via well-trained SLFNs, 

this study proposes the preimage analysis that explicitly specifies the preimage of network to 

disclose its preimage-related properties. For complex preimage-related properties, this study 

then proposes the following belief justification process, in which the practitioner’s (prior) 

beliefs are refined based upon the examination results of preimage-related properties. The 

beliefs lead to propositions of the experiment. Based upon the propositions, the practitioner 

first picks up relevant explanatory and observed variables and collects the sample accordingly. 

Then he trains SLFNs and, after the training, applies the preimage analysis to the selected 

SLFNs. For each belief, the practitioner inspects relevant preimage-related properties. Such 

inspection leads to a belief justification process. If there is no such prior belief, the rule (2) and 

the observed preimage-related properties exclusively make statements about features embedded 

in data. 

Research findings of this study are summarized as follows: 

(I) the preimage analysis is not data intensive and the inspected preimage-related properties 

hold globally for any data point; 

(II) the inspected preimage-related properties help explore the understanding of SLFN itself; 
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(III) the inspected preimage-related properties provide further insights about rule (2) and thus 

about features embedded in data. In rule (2), x is the vector of explanatory variables; y is 

the network’s response; f: X → Y is the function of the SLFN and y ≡ f(x); y’ is a 

constant; and the preimage f -1 is the inverse function of f. 

                  Rule: If (x ∈ the f -1(y’) region), then (y = y’).                   (2)  

(IV) several kinds of features can be simultaneously investigated through inspecting 

preimage-related properties. 

The remainder of this paper is organized as follows. Section II starts with the list of notations 

used in the study and then gives the proposed preimage analysis. From the preimage analysis, 

we find that rank(WH) determines characteristics of the preimage-related properties, in which 

WH is the matrix of weights between the input variables and the hidden nodes and rank(D) is 

the rank of matrix D. Hereafter, SLFN-p denotes an SLFN whose rank(WH) equals p. Section 

III shows the application of preimage analysis to the two SLFN-1 network solutions of the 3-bit 

parity problem. Some implications regarding the feature-discovery application via SLFN-1 

networks are offered in Section VI. It is readily seen that the preimage-related properties of 

SLFN-1 are easy to understand. However, learning algorithms adopted in most studies likely 

result in SLFN-p networks with p ≥ 2 and these SLFN networks own complex preimages and 

preimage-related properties. In Section V, the details of the belief justification process is 
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illustrated through the feature-discovery application to the bond pricing experiment, which 

releases an SLFN-3 network. Some further discussions and future work are presented at the end. 

THE PROPOSED PREIMAGE ANALYSIS 

List of notations used in mathematical representations: Characters in bold represent column 

vectors, matrices or sets; (⋅)T denotes the transpose of (⋅). 

 

I  ≡   the amount of input nodes; 

J  ≡   the amount of hidden nodes; 

x ≡  (x1, x2, …, xI)T: the input vector, in which xi is the ith input component, with i from 1 

to I;  

a ≡  (a1, a2, …, aJ)T: the hidden activation vector, in which aj is the activation value of 

the jth hidden node, with j from 1 to J;  

y  ≡ the activation value of the output node and y = f(x) with f being the function 

mapping x to y; 

H
jiw   ≡ the weight between the ith input variable and the jth hidden node, in which the 

superscript H throughout the paper refers to quantities related to the hidden layer;  

H
jw  ≡  ( H

jw 1 , H
jw 2 , …, H

jIw )T; 

WH  ≡  ( H
1w , H

2w , …, H
Jw )T, the J×I matrix of weights between the input variables and the 

hidden nodes; 

H
jw 0  ≡  the bias value of the jth hidden node; 
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O
jw  ≡  the weight between the jth hidden node and the output node, in which the 

superscript O throughout the paper refers to quantities related to the output layer;  

wO ≡  ( Ow1 , Ow2 , …, O
Jw )T; and 

Ow0  ≡  the bias value of the output node. 

Without any loss of generality, assume the tanh activation function is adopted in all hidden 

nodes. Denote the collection of H
jw 0 , H

jw , wO, and Ow0  by θ. Given θ, the resulting f of SLFN is 

the composite of the following mappings: the activation mapping ΦA : ℜI → (-1, 1)J that maps 

an input x to an activation value a (i.e., a = ΦA(x)); and the output mapping ΦO : (-1, 1)J → ( Ow0

-∑
=

J

j

O
jw

1

, Ow0 +∑
=

J

j

O
jw

1

) that maps an activation value a to an output y (i.e., y = ΦO(a)). Note that, 

since the range of ΦA and the domain of ΦO are set as (-1, 1)J, the range in the output space ℑ ≡ 

( Ow0 -∑
=

J

j

O
jw

1

, Ow0 +∑
=

J

j

O
jw

1

) contains all achievable output values. For ease of reference in later 

discussion, we also call RI the input space and (-1, 1)J the activation space. 

Thus, f -1(y) ≡ ΦA
-1(ΦO

-1(y)) with 

                   ΦO
-1(y) ≡ {a ∈ (-1, 1)J| ∑

=

J

j
j

O
j aw

1

= y - Ow0 },                    (3) 

                 ΦA
-1(a) ≡ 



J

j 1=

{x ∈ ℜI| ∑
=

I

i
j

H
ji xw

1

 = tanh-1(aj) - H
jw 0 },                (4) 

where tanh-1(x) ≡ ( )-x
x

1
1ln5.0 + . Formally, the followings are defined for every given θ: 

(a) A value y ∈ ℜ is void if y ∉ f({ℜI}), i.e., for all x ∈ ℜI, f(x) ≠ y. Otherwise, y is non-void. 

(b) A point a ∈ (-1, 1)J is void if a ∉ ΦA({ℜI}), i.e., for all x ∈ ℜI, ΦA(x) ≠ a. Otherwise, a is non-void. The 

set of all non-void a’s in the activation space is named as the non-void set. 
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(c) The image of an input x ∈ ℜI is y ≡ f(x) for y ∈ ℑ. 

(d) The preimage of a non-void output value y is f -1(y) ≡ {x ∈ ℜI| f(x) = y}. The preimage of a 

void value y is the empty set. 

(e) The internal-preimage of a non-void output value y is the intersection of ΦO
-1(y) and the 

non-void set on the activation space. 

Given θ, the preimage analysis is conducted in the following four steps to specify the 

preimage: 

Step 1: Derive the expression of ΦO
-1(y); 

Step 2: Derive the expression of the non-void set; 

Step 3: Derive the expression of internal-preimage of a non-void output value y; and 

Step 4: Derive the expression of preimage f -1(y). 

From eqt. (3), with the given θ, ΦO
-1(y) is a hyperplane in the activation space. As y changes, 

ΦO
-1(y) forms parallel hyperplanes in the activation space; for any change of the same 

magnitude in y, the corresponding hyperplanes are spaced by the same distance. The activation 

space is entirely covered by these parallel ΦO
-1(y) hyperplanes, orderly in terms of the values of 

y. These parallel hyperplanes form a (linear) scalar field (Tsaih, 1998). That is, for each point a 

of the activation space, there is only one output value y whose ΦO
-1(y) hyperplane passes point 

a; all points on the same (internal preimage) hyperplane yield the same y value. 
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From eqt. (4), ΦA
-1(a) is a separable function such that each of its components lies along a 

dimension of the activation space. Moreover, ΦAj
-1(aj) ≡{x ∈ ℜI| ∑

=

I

i
j

H
ji xw

1

= tanh-1(aj) - H
jw 0 } is a 

monotone bijection that defines a one-to-one mapping between the activation value aj and the 

input x. For each aj value, ΦAj
-1(aj) defines an activation hyperplane in the input space. 

Activation hyperplanes associated with all possible aj values are parallel and form a (linear) 

scalar activation field in the input space. That is, for each point x of the input space, there is 

only one activation value aj whose ΦAj
-1(aj) hyperplane passes point x; all points on the ΦAj

-1(aj) 

hyperplane are associated with the activation value aj. Each hidden node gives rise to an 

activation field, and J hidden nodes set up J independent activation fields in the input space. 

Thus, with the given θ, the preimage of an activation value a by ΦA
-1 is the intersection of J 

specific hyperplanes. 

The intersection 


J

j 1=

{x ∈ ℜI| ∑
=

I

i
j

H
ji xw

1

= tanh-1(aj) - H
jw 0 } can be represented as {x| WHx = 

ω(a)}, where ωj(aj) ≡ tanh-1(aj) - H
jw 0  for all 1 ≤ j ≤ J, and ω(a) ≡ (ω1(a1), ω2(a2),…, ωJ(aJ))T. 

Given θ and an arbitrary point a, ω(a) is simply a J-dimensional vector of known component 

values and the conditions that relates a with x can be represented as 

WHx = ω(a),                            (5) 

which is a system of J simultaneous linear equations with I unknowns. 

Let rank(D) be the rank of matrix D and (D1 D2) be the augmented matrix of two matrices 

D1 and D2 (with the same number of rows). WHx = ω(a) is a set of inconsistent simultaneous 
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equations if rank(WH
 ω(a)) = rank(WH) + 1 (c.f. (Murty, 1983)). In this case, the 

corresponding point a is void. Otherwise, a is non-void. Note that, for a non-void a, the 

solution of eqt. (5) defines an affine space of dimension I - rank(WH) in the input space. The 

discussion establishes Lemma 1 below. 

Lemma 1: (a) An activation point a in the activation space is non-void if its corresponding 

rank(WH
ω(a)) equals rank(WH). (b) The set of input values x mapped onto a non-void a 

forms an affine space of dimension I - rank(WH) in the input space. 

By definition, the non-void set equals {a ∈ (-1, 1)J| aj = tanh(∑
=

I

i
j

H
ji xw

1

+ H
jw 0 ) for 1 ≤ j ≤ J, x ∈ ℜI}. 

Check that WH is a J×I matrix. If rank(WH) = J, Lemma 1 says that no activation point a can be 

void and leads to Lemma 2 below. For rank(WH) < J, Lemma 3 characterizes the non-void set, 

which requires the concept of manifold. A p-manifold is a Hausdorff space X with a countable 

basis such that each point x of X has a neighborhood that is homomorphic with an open subset 

of ℜp (Munkres, 1975). A 1-manifold is often called a curve, and a 2-manifold is called a 

surface. For our purpose, it suffices to consider Euclidean spaces, the most common members 

of the family of Hausdorff spaces. 

Lemma 2: If rank(WH) equals J, then the non-void set covers the entire activation space. 

Lemma 3: If rank(WH) is less than J, then the non-void set in the activation space is a 

rank(WH)-manifold. 
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A(y), the intersection of ΦO
-1(y) and the non-void set in the activation space, is the 

internal-preimage of y. Mathematically, for each non-void y, A(y) ≡ {a| rank(WH ω(a)) = 

rank(WH), a ∈ ΦO
-1(y)}. Consider first rank(WH) = J. In this case, Lemma 2 says that the 

non-void set is the entire activation space. Thus, A(y) equals ΦO
-1(y). If rank(WH) < J, then A(y) 

is a subset of ΦO
-1(y). Thus, we have the following Lemma 4. Furthermore, A(y)’s are aligned 

orderly according to ΦO
-1(y) and all non-empty A(y)’s form an internal-preimage field in the 

activation space. That is, there is one and only one y such that a non-void a ∈ A(y); and for any 

a on A(y), its output value is equal to y. 

Lemma 4. For each non-void output value y, all points in the set A(y) are at the same 

hyperplane. 

Now the preimage of any non-void output value y, f -1(y), equals {x ∈ ℜI| WHx = ω(a) with 

all a ∈ A(y)}. If rank(WH) = J, then, from Lemma 2 and Lemma 1(b), the preimage f -1(y) is a 

(I-1)-manifold in the input space. For rank(WH) < J, from Lemma 3 and Lemma 1(b), 

1. if rank(WH) = 1 and A(y) is a single point, then f -1(y) is a single hyperplane; 

2. if rank(WH) = 1 and A(y) consists of several points, then f -1(y) may consist of several 

disjoint hyperplanes; 

3. if 1 < rank(WH) < J and A(y) is a single (rank(WH)-1)-manifold, then f -1(y) is a single 

(I-1)-manifold; and 

4. if 1 < rank(WH) < J and A(y) consists of several disjoint (rank(WH)-1)-manifolds, then 
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f -1(y) consists of several disjoint (I-1)-manifolds. 

Table 1 summarizes the relationship between the internal-preimage A(y) and the preimage f -1(y) 

of a non-void output value y. 

Table 1. The relationship between the internal-preimage A(y) and the preimage f -1(y) of a 

non-void output value y. 

The nature of A(y) 
A single 

intersection-segment 
Multiple disjoint 

intersection-segments 

The nature of f -1(y) A single (I-1)-manifold Multiple disjoint (I-1)-manifolds 

The input space is entirely covered by a grouping of preimage manifolds that forms a 

preimage field. That is, there is one and only one preimage manifold passing through each x; 

and the corresponding output value is the y value associated with this preimage manifold. Note 

that the preimage manifolds are aligned orderly because A(y)’s are aligned orderly according to 

ΦO
-1(y)’s and the mapping of ΦA

-1 is a monotone bijection that defines a one-to-one mapping 

between an activation vector and an affine space. 

Notice that rank(WH) determines the characteristic of the non-void set and thus the 

characteristic of internal-preimage. For a SLFN-1 network, we can assume H
jw ≡ αjw for all j, 

in which w is a non-zero vector and αjs are constants; as for a SLFN-p network with p > 1, we 

can assume that vectors in the set of { H
1w , H

2w , …, H
pw } are linearly independent and H

jw ≡

∑
=

P

k

H
kjk

1
wγ  for all j > p. 
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APPLICATION TO SOME EXAMPLES OF SLFN-1 NETWORK 

In this section, we show the application of the preimage analysis to the following two kinds of 

SLFN-1 network solutions of the 3-bit parity problem, in which the target output is 1 if the 

input vector contains an odd number of -1s and -1 otherwise: (1) the SLFN network solution 

with seven effective hidden nodes shown in Table 2, constructed by Huang & Babri (1998), and 

(2) the SLFN network solution with two hidden nodes shown in Table 3. 

Table 2. An SLFN network solution of the 3-bit parity problem constructed by Huang & Babri 
(1998), in which Ow0  = 0.0 and w = (0.4, 0.5, 0.7)T. 

j O
jw  H

jw 0  H
jw  

1 -239.9515868 0.651132681 0.0 w 

2 65.96703854 0.283261412 -0.459839086 w 

3 15.8645681 -0.452481126 -1.839356344 w 

4 -369.5491494 0.467197046 -0.919678172 w 

5 465.7997072 0.835068315 -0.919678172 w 

6 -45.18900519 1.202939584 -0.919678172 w 

7 -110.3929208 2.122617756 -1.839356344 w 

8 128.6377379 1.386875218 -0.459839086 w 

 

Table 3. An SLFN network solution of the 3-bit parity problem, in which Ow0  = 0.0 and w = (1, 
1, 1)T. 
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j O
jw  H

jw 0  H
jw  

1 18.58899737 0.0 0.4 w 

2 -30.7174688 0.0 0.2 w 

 

For the SLFN-1 network with µ ≡ 0.4x1+0.5x2+0.7x3 shown in Table 2, the preimage analysis 

states that its non-void set equals {a ∈ (-1, 1)8| a1 = tanh(0.651132681), a2 = 

tanh(0.283261412-0.459839086µ),  a3 =  tanh(-0.452481126-1.839356344µ), a4 =  

tanh(0.467197046-0.919678172µ), a5 = tanh(0.835068315-0.919678172µ), a6 = 

tanh(1.202939584-0.919678172µ), a7 =  tanh(2.122617756-1.839356344µ), a8 =  

tanh(1.386875218-0.459839086µ), µ ∈ ℜ}, which is an 1-manifold in (-1, 1)8; A(y) equals {a ∈ 

(-1, 1)8| a1 = tanh(0.651132681), a2 = tanh(0.283261412-0.459839086µ),  a3 =  

tanh(-0.452481126-1.839356344µ), a4 =  tanh(0.467197046-0.919678172µ), a5 = 

tanh(0.835068315-0.919678172µ), a6 = tanh(1.202939584-0.919678172µ), a7 =  

tanh(2.122617756-1.839356344µ), a8 =  tanh(1.386875218-0.459839086µ), 65.96703854 a2 + 

15.8645681 a3 - 369.5491494 a4 + 465.7997072 a5 - 45.18900519 a6 - 110.3929208 a7 + 

128.6377379 a8 = y +239.9515868 tanh(0.651132681), µ ∈ ℜ}, which may consist of one or 

several 1-manifold segments in (-1, 1)8; and f -1(y) equals {x ∈ ℜ3| 0.4x1+0.5x2+0.7x3 = µ, 

65.96703854 tanh(0.283261412-0.459839086µ) + 15.8645681 tanh(-0.452481126- 

1.839356344µ) - 369.5491494tanh(0.467197046-0.919678172µ) + 465.7997072 

tanh(0.835068315-0.919678172µ) - 45.18900519tanh(1.202939584-0.919678172µ) - 



16 
 

110.3929208tanh(2.122617756-1.839356344µ) + 128.6377379 tanh(1.386875218- 

0.459839086µ) = y +239.9515868 tanh(0.651132681), µ ∈ ℜ}, which may consist of one or 

several 2-manifold segments in ℜ3. 

For the SLFN-1 network with µ ≡ x1+x2+x3 shown in Table 3, the preimage analysis states 

that its non-void set equals {a ∈ (-1, 1)2| a1 = tanh(0.4µ), a2 = tanh(0.2µ), µ ∈ ℜ}, which is an 

1-manifold in (-1, 1)2; A(y) equals {a ∈ (-1, 1)2| a1 = tanh(0.4µ), a2 = tanh(0.2µ), 18.58899737 a1 - 

30.7174688a2 = y, µ ∈ ℜ}, which may consist of one or several 1-manifold segments in (-1, 1)2; 

and f -1(y) equals {x ∈ ℜ3| x1+x2+x3 = µ, 18.58899737tanh(0.4µ) - 30.7174688tanh(0.2µ) = y, µ ∈ 

ℜ}, which may consist of one or several 2-manifold segments in ℜ3. 

Fig. 1 shows the relationship between the value of µ and the output value y, regarding the 

SLFN-1 networks shown in Table 2 and Table 3. The relationship between the preimage f -1(y) 

and the output value y of these two SLFN-1 networks can be observed from Fig. 1. The y-µ 

graph also indicates the generalization of these two SLFN-1 networks. 

Figure 1: The relationship between the value of µ and the output value y, regarding the 

SLFN-1 networks shown in Table 2 and Table 3. 
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IMPLICATIONS OF THE FEATURE-DISCOVERY APPLICATION OF THE SLFN-1 

NETWORKS 

In general, for any SLFN-1 network with µ ≡ wTx and H
jw ≡ αjw for all j, the preimage analysis 

states that its non-void set equals {a ∈ (-1, 1)J| aj = tanh(αj µ + H
jw 0 ) ∀ j, µ ∈ ℜ}, which is an 

1-manifold in (-1, 1)J; A(y) equals {a ∈ (-1, 1)J|∑
=

J

j

O
jw

1

tanh(αj µ + H
jw 0 ) = y - Ow0 , aj = tanh(αj µ + H

jw 0 ) 

∀ j, µ ∈ ℜ}, which may consist of one or several 1-manifold segments in (-1, 1)J; and f -1(y) 

equals {x ∈ ℜI| wTx = µ, ∑
=

J

j

O
jw

1

tanh(αj µ + H
jw 0 ) = y - Ow0 , aj = tanh(αj µ + H

jw 0 ) ∀ j, µ ∈ ℜ}, which 

may consist of one or several (I-1)-manifold segments in ℜI. These establish the following 

Lemma 5. Furthermore, w is the normal vector of the preimage hyperplane and H
jw  determines the 

-4
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4
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SLFN-1 network shown in 
Table 2 
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Table 3
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orientation of the activation hyperplane in the input space corresponding to the jth hidden node. 

Thus, we have Lemma 6. 

Lemma 5: For SLFN-1, the preimage field is formed from a collection of preimage hyperplanes. 

Lemma 6: For SLFN-1, the activation hyperplanes in the input space corresponding to all 

hidden nodes are parallel, and the preimage hyperplane is parallel with the activation 

hyperplane. 

Outcomes of the preimage analysis lead to an understanding of the SLFN-1 itself and further 

provides the following four insights about the usage of network and about the patterns 

embedded in (training) data. First, SLFN-1 networks possess the hyperplane-preimage property, 

which is their generalization. Therefore, the SLFN-1 should be used in the experiments desiring 

a hyperplane-preimage relationship. 

Second, the act to adopt the SLFN-1 architecture at the learning stage does already set the 

hyperplane-preimage assumption and insert such feature into network. Third, when one gets a 

SLFN-1 from training, he/she can infer that the empirical data bear the hyperplane-preimage 

relationship. Fourth, the hyperplane-preimage relationship states that the observed variable of 

interest is a function of a certain factor obtained from some linear combination of explanatory 

variables. With such an insight, the practitioner may adopt a common regression method or 

other suitable tool for data analysis after he/she has properly transformed the explanatory 

variables into that factor variable. Then, the practitioner may get better understanding about the 
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application problem. 

THE BOND PRICING EXPERIMENT 

In this section, we illustrate the feature-discovery process of a practitioner, who knows 

bond-pricing mechanism well (but less than perfectly). Because bond pricing has been 

well-studied in the literature, the purpose of this experiment is to illustrate the belief 

justification process, not to discover extra features of bond pricing. 

Before conducting the experiment, the practitioner has some personal beliefs and 

propositions of the experiment. Based upon the propositions, he first picks up relevant 

explanatory and observed variables and collects the sample accordingly. Below are the details 

of his experimental design. 

Let the theoretical bond price pc at time c is derived from (11), which serves as an example of 

knowledge regarding the data. 

                   
∑

+
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=
−−
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01
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r
F

r
FRp

                         
(11) 

where rc is the market rate of interest at time c; F = 100 is the face value of the bond; T0 is the 

term to maturity at time c = 0; R is the coupon rate; and FR is the periodic coupon payment. 

Then garbled bond prices yc are generated and used to simulate the set of data that may be 

observed by any practitioner. Namely, yc ≡ pc + εc is the observed data, where εc is a white error 

term distributing as independent and identically distributed normal random variables of mean 0 
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and variance (0.2)2, for all time c and bonds. 

As depicted in Table 4, there are 18 hypothetical combinations of term to maturity and 

contractual interest rate and generate a set of price data with c = 1/80, 2/80, …, 80/80 through 

(11). The rate rc is derived from a normal random number generator of N(2%, (0.1%)2). 

Accordingly, there are 1,440 training samples with input variables Tc, R and rc, and the desired 

output variable yc, where Tc ≡ (T0 - c) is the term to maturity at time c. 

To examine the generalization of trained networks, the practitioner also generates 1,440 test 

samples by similar means, except that T0, c, R and rc are randomly and independently generated 

from {1, 2, …, 20} with a probability of 1/20 for each, {1/80, 2/80, …, 80/80} with a 

probability of 1/80 for each, [0.0%, 3.0%] with a probability density function f(R) = 1/0.03, and 

N(2%, (0.1%)2), respectively. This setting results in varying instances among the test samples. 

The Back Propagation learning algorithm of Rumelhart et al. (1986) is used to train 1,000 

SLFNs, each of which has 4 hidden nodes and random initial weights and biases. Among these 

1,000 SLFNs, the practitioner picks the three with the smallest mean square error (hereafter, 

MSE) for the test samples. Table 5 shows the (final) weights and biases of these three networks, 

hereafter named network I, II and III, respectively. The corresponding MSEs for the training 

samples are 0.414, 0.404 and 0.451, respectively, and the corresponding MSEs for the test 

samples are 0.429, 0.432 and 0.445, respectively. The average absolute deviation is 

approximately 0.6, which deviates from the specified error term standard deviation of 0.2. 
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rank(WH) of all networks I, II and III are 3. 

Take network I to illustrate the result of applying the preimage analysis to these three 

networks. ΦO
-1(y) = {a| 15.1206a1 - 34.366a2 + 5.6589a3 - 21.9999a4 = y - 100.4744}, which is 

in the form of a linear equation. Thus, for each non-void value y, ΦO
-1(y) is a hyperplane in (-1, 

1)4. Now 

                  WH = 



















−−

−
−−

6646.534188.360643.0
8267.163354.430988.0
9511.288286.360544.0
8396.187223.320347.0

                         

 (12) 

and ω(a) = (tanh-1(a1) + 0.1689, tanh-1(a2) + 1.3535, tanh-1(a3) + 2.1615, tanh-1(a4) - 1.1698)T. 

Thus the a vector satisfying the requirement of (13) corresponds to a non-void point; otherwise, 

a void point. Moreover, for each non-void a, the system of simultaneous linear equations WHx 

= ω(a) defines a point in the input space. 

tanh-1(a4) = 2.646686748 + 3.248238694 tanh-1(a1) - 0.801390022 tanh-1(a2) + 0.931270242 tanh-1(a3).  (13)  

Thus, the non-void set equals {a| tanh-1(a4) = 2.646686748 + 3.248238694 tanh-1(a1) - 

0.801390022 tanh-1(a2) + 0.931270242 tanh-1(a3)}, which is a 3-manifold in (-1, 1)4. A(y) 

equals {a| 15.1206a1 - 34.366a2 + 5.6589a3 - 21.9999a4 = y - 100.4744, tanh-1(a4) = 

2.646686748 + 3.248238694 tanh-1(a1) - 0.801390022 tanh-1(a2) + 0.931270242 tanh-1(a3)}, 

which may consist of one or several 2-manifold segments in (-1, 1)4. The corresponding 

preimage f -1(y) equals {(Tc, R, rc)T| Tc = 8.619766318 - 16.38982949 tanh-1(a1) + 11.9539307 
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tanh-1(a2) - 2.216810863 tanh-1(a3), R = 0.012291155 + 0.01700793 tanh-1(a1) - 0.02138228 

tanh-1(a2) + 0.017746672 tanh-1(a3), rc = 0.046189981 + 0.052432722 tanh-1(a1) - 0.015121128 

tanh-1(a2) + 0.026740939 tanh-1(a3), 5.6589a3 - 21.9999 tanh(2.646686748 + 3.248238694 

tanh-1(a1) - 0.801390022 tanh-1(a2) + 0.931270242 tanh-1(a3)) = y - 100.4744 - 15.1206a1 + 

34.366a2, -1 < a1 < 1, -1 < a2 < 1, -1 < a3 < 1}, which may consist of one or several 2-manifold 

segments in ℜ3. 

As shown in Fig. 2, the preimage f -1 is a complex 2-manifold. According to his beliefs, the 

practitioner inspects relevant preimage-related properties. Take the following three beliefs as 

the illustration. First, the practitioner knows that the type of a bond, premium or discount, can 

be determined by comparing the market interest rate with the contract coupon rate. Specifically, 

if the coupon rate is greater than the market interest rate, then the bond is priced as premium, 

else as discount. This belief leads to an insight that the preimage of each reliable network 

should be parallel to the plane with this property that rc = R. As shown in Fig. 3, the preimages 

of all three networks show the tendency predicted by the insight. Thus, he gives this belief a 

high credibility. 

Second, the practitioner understands that one bond with a greater coupon rate than another 

should be priced higher at a given interest rate. From preimage of each network in Fig. 3, he 

observes that there is a positive relationship between coupon rate and interest rate. Namely, the 

high coupon rate implies a high price for a bond. Thus, the practitioner gives this understanding 
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a high credibility and conjectures further that the high interest rate results in the low bond price. 

Third, from Fig. 4, the practitioner observes different curvatures for the premium bonds and 

discount bonds in networks I and II, but not in Network III. Namely, in the rc and Tc 

coordinates, the preimages for premium bonds appear to be concave and those for discount 

bonds appear to convex for networks I and II. Thus, the practitioner gives low credibility to the 

insight that, when the bond price is held constant, the rate of increase (respectively decrease) in 

interest rate of a premium (respectively discount) bond increases as the maturity of the bound is 

getting shorter. 

IMPLICATIONS AND FUTURE WORK 

The bond pricing experiment shows that the practitioner should have domain knowledge to set 

up challenging propositions and collect the sample for network’s training as well as SLFN 

knowledge to acquire reliable networks for feature discovery. And complex preimage-related 

properties make the practitioner conduct belief justification process. For SLFN-p with p ≤ 3, 

the inspection of preimage-related properties could be conducted through the y-µ graph like Fig. 

1 or the preimage graph in the input space like Fig. 2. For SLFN-p with p > 4, however, the 

inspection of preimage-related properties relies on certain skills and experiences of nonlinear 

mathematical (or numerical) analysis applied to the obtained f -1 representation. Such skills and 

experiences of nonlinear mathematical (or numerical) analysis for inspecting the complex 

preimage-related properties is one for future researches. 
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Other possible future avenues of further enquiry may be the application of the proposed 

preimage analysis to real world data and the externalization of belief into explicit knowledge 

through SLFNs. 
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Table 4: the 18 hypothetical bonds with different combinations of term to maturity and 

contractual interest rate. 

 

Bond 
No. 

Term to 
maturity 

(T0) 

Contractual 
interest ratea 

(R) 

Bond 
No. 

Term to 
maturity 

(T0) 

Contractual 
interest rate 

(R) 

Bond 
No. 

Term to 
maturity 

(T0) 

Contractual 
interest rate 

(R) 

1 2 0.0% 7 2 1.5% 13 2 3.0% 

2 4 0.0% 8 4 1.5% 14 4 3.0% 

3 7 0.0% 9 7 1.5% 15 7 3.0% 

4 10 0.0% 10 10 1.5% 16 10 3.0% 

5 15 0.0% 11 15 1.5% 17 15 3.0% 

6 20 0.0% 12 20 1.5% 18 20 3.0% 

a Assume that coupon payments are made annually. 
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Table 5: final weights and biases of networks I, II and III, respectively. 

Weights and 

Biases 

Network 

Ow0  j H
jw 0  O

jw  H
jw 1  H

jw 2  H
jw 3  

I 100.4744 

1 
-0.1689 15.1206 -0.0347 

-32.722

3 
18.8396 

2 
-1.3535 

-34.366

0 
0.0544 

-36.828

6 
28.9551 

3 -2.1615 5.6589 0.0988 43.3354 16.8267 

4 
1.1698 

-21.999

9 
-0.0643 

-36.418

8 
53.6646 

II 93.6583 

1 
0.4510 

-23.387

4 
-0.0571 

-33.464

8 
71.8090 

2 
0.8413 36.9871 -0.0467 32.9078 

-10.592

6 

3 
-1.1572 

-10.462

1 
0.0699 45.5792 43.2855 

4 1.2874 -9.2684 -0.0458 17.5685 -87.314
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7 

III 104.8248 

1 
0.7832 

-14.035

2 
-0.0519 

-27.129

9 
49.3836 

2 
1.3108 

-16.729

7 
-0.0571 

-27.374

8 
14.5874 

3 
-1.5287 

-30.181

9 
0.0631 -37.1108 33.3026 

4 
-0.6010 13.1504 -0.0524 

-34.904

2 
36.9149 
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Figure 2: The preimage graphs of Network I. The numbers within the parentheses are values of 

y. 
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Figure 3: Preimage graphs along the rc and R plane for networks I, II, III (from top to bottom), 

respectively. The numbers within the parentheses are values of y. 
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Figure 4: Preimages graphs along the plane of rc vs. Tc for networks I, II, III (from top to 

bottom), respectively. The numbers within the parentheses are values of y. 
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Abstract—This study explores the knowledge-internalization 
process within which a neural-network practitioner embody the 
explicit knowledge obtained from extracting network’s 
preimage, the set of input values for a given output value, into 
his/her tacit knowledge. With a number of well-trained single-
hidden layer feed-forward neural networks, the practitioner 
first extracts the (nonlinear) preimage of each trained network. 
The practitioner then internalizes the explicit outcomes and the 
insights obtained from the preimage extracting process into 
his/her tacit knowledge bases. We use the experiment of bond-
pricing analysis to illustrate the knowledge-internalization 
process. This study adds to the literature by introducing the 
knowledge-internalization process. Moreover, in contrast to the 
data analyses in previous studies, this study uses mathematical 
analyses to identify networks’ preimages. 

 

I. BLACK-BOX DILLEMA AND KNOWLEDGE ACQUISITION 

HEN practitioners apply Artificial Neural Networks 
(ANN) to resolving social science issues, there is a 

dynamic human process of justifying personal belief toward 
the “truth”. Reference [9] stated that ANNs can be trained 
(just as human children are taught), ANNs can learn 
primarily through example (as is often the case with 
humans), and ANNs can create general pattern-recognizing 
algorithms, learning general rules of optimal behavior. Since 
then, varieties of ANN have been developed and applied in 
many fields as modeling tools to see if the ANN does 
provide a model of human behavior and does approximate 
likely patterns of human behavior. At the beginning stage, a 
huge amount of experiments are conducted to see if the 
corresponding performances of the trained ANN are 
acceptable. Most experimental results are positive. For 
instance, [13] stated that ANNs “are consistent with 
observed laboratory play in two very important senses. 
Firstly, they select a rule for behavior which appears very 
similar to that used by laboratory subjects. Secondly, using 
this rule they perform optimally only approximately 60% of 
the time.” (p. 717) Later, the excitement shifts to applying 
ANN to resolving the challenging issue of domain. For 
instance, through extracting rules or features from a well-
trained ANN, one tries to identify risk factors for newly 
issued securities, which have a prohibitively small number 
of observations. There are several concerns, however, when 
one has such application. 

On the one hand, the practitioner has to cope with the 
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black box1

Rule: If the input sample is in some sub-region of the input 
space, Then the predicted value is given by a 
corresponding linear regression equation.    (1) 

 image of ANN to obtain a better understanding of 
relations between the input to ANN and its output. Reading 
or understanding the knowledge in ANN is difficult because 
the knowledge is distributed over the entire network and the 
relation between the input to ANN and its output is 
multivariate and nonlinear. Nevertheless, there is a huge 
amount of work that explore various “mechanisms, 
procedures, and algorithms designed to insert knowledge 
into ANNs (knowledge initialization), extract rules from 
trained ANNs (rule extraction), and utilize ANNs to refine 
existing rule bases (rule refinement).” [1, p. 373] Some, but 
not exhaustive, recent studies can refer to [1]-[2], [10]-[12], 
[14]-[15], [17]-[18]. These studies are contrived by the 
engineering design with data analysis and approximation. 
For instance, to identify the premise of a single rule stated in 
(1), most work use either training data or generated data, 
which the trained network itself yields. Due to the finite 
number of (training or generated) data instances, however, 
such a data analysis covers only some finite countable points 
in the (presumed) region of the rule premise, instead of the 
entire region. Reference [11] implemented a piecewise linear 
approximation on each hidden node to divide the input space 
into sub-regions in each of which, a corresponding linear 
equation that approximates the network’s output is defined 
as the consequent of the extracted rule to ensure the 
predicted value can be calculated from a comprehensible 
multivariate polynomial representation. Reference [3] solved 
the inversion problem through the back-propagation a union 
of polyhedra, which approximate (arbitrarily well) any 
reasonable set. 

On the other hand, instead of a knowledge acquisition 
process, practitioners conduct a knowledge internalization 
process within which they embody the explicit outcomes and 
the insights obtained from the experiment into their tacit 
knowledge. Knowledge is normally tacit -- highly personal 
and hard to formalize. Subjective insights, intuitions and 
hunches are common heard from the discussions and 
sometimes difficult to replicate as the validation process 
depends on certain skills and experience. It is not trivial to 
conduct such knowledge internalization even when some 
explicit outcome is extracted from ANN. Furthermore, in 
most social science applications (e.g., financial market tests), 
the knowledge internalization process needs to cope with the 
 

1 A black box refers to a system that produces “certain outputs from 
certain inputs without explaining why or how.” [7, pg. 1483] The black box 
image for many years has gradually discouraged the study or application of 
the ANN. 
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unlikely perfect learning due to the defect design of the 
architecture of ANN 2

II. THE KNOWLEDGE INTERNALIZATION 

 and the garbled data. In literature, 
however, there are no discussions connecting to such 
knowledge internalization process. 

This study explores such a knowledge internalization 
process. Specifically, the ANN used here is the real-valued 
single-hidden layer feed-forward neural networks (hereafter 
also referred to as SLFN) with one output node. Furthermore, 
the following assumption is set to help average out noises in 
estimates from individual SLFNs and serve as a stabilization 
measure to the knowledge internalization process: The 
practitioner should have a number of SLFNs, each of which 
is perceived well-trained by the practitioner, although does 
not necessarily provide a globally optimal learning result. 

In order to not trap in the criticisms due to adopting the 
data analysis and approximation, mathematical analysis is 
adopted here to explicitly specify the (nonlinear) preimage 
of each SLFN’s mapping and thus the rule (2): 

Rule: If (x ∈ the f -1(y’) region), then (y = y’),    (2) 

where x is the vector of explanatory variables; y is the 
network’s response; f : X → Y is the function of the trained 
SLFN and y ≡ f(x); y’ is a constant; and the preimage f -1 is 
the inverse function of f. The preimage f -1(y’) also represents 
the collection of inputs of the given output value y’. 

The function representation f and preimage f -1 of the 
obtained SLFN are instances of explicit outcomes that can 
be “easily communicated and shared in the form of hard data, 
scientific formula, codified procedures, or universal 
principles” [6, p. 8]. When the practitioner conducts the 
experiment without domain expertise, the explicit outcomes 
and the insights obtained within the extracting process make 
some statement exclusively. But when there is certain prior 
belief, the practitioner focuses on the credibility of belief, 
the extent to which the belief can be generalized within the 
preimage-extracting process and the subsequent examination 
process. At the end of knowledge internalization process, the 
practitioner can have a posterior belief that has “high 
credibility” if the explicit outcomes and the insights obtained 
within the extracting process corroborate the belief; and 
“low credibility” if some corresponding result contradicts 
and weakens the belief. That is, when the explicit outcomes 
and the insights obtained within the extracting process are 
totally consistent with the practitioner’s prior belief, he/she 
may accord his/her belief a high credibility. Conversely, an 
inconsistent result triggers the following examinations of 
SLFNs and belief instead of an immediate rating: 

(i) Investigating whether there exist factors or noises 
leading to a defect design of the SLFN such that all 
well-trained SLFNs are not suitable for the purpose of 
rating the credibility of belief. 

(ii)  Examining whether some of the obtained SLFNs are 
optimal to the extent that they are suitable for the 

 
2 In most social science studies, it is characteristically more difficult to 

determine the best architecture of ANN. 

purpose of rating the credibility of belief. 
(iii)  Consolidating the explicit outcomes the obtained 

insights amongst all reliable SLFNs. 
(iv)  Contrasting the belief with the consolidated outcome 

of reliable SLFNs. 
Only when the practitioner feels certain that he/she can 
eliminate the first possibility, should he/she rate the 
credibility of belief. Furthermore, the practitioner would 
conservatively follow the explicit outcomes and the obtained 
insights. 

Section III uses the experiment of bond-pricing analysis, 
which in literature is a nonlinear regression problem with 
continuous variables, to illustrate the knowledge 
internalization process. At the end, conclusion and future 
work are offered.  

III. THE BOND PRICING EXPERIMENT 

In order to simulate the set of data that may be observed by a 
representative practitioner, who know about the bond-pricing 
mechanism well (but less than perfectly), garbled training 
samples of bond price yt = pt + εt are generated and used. pt 
is the theoretic value of the bond at time t and is derived 
from (3), which serves as an example of complete domain 
knowledge with respect to the bond pricing model, and εt is 
a white error term provided by a normal random number 
generator of N(0, (0.2)2). Namely, yt is perturbed by a white 
noise. 

pt ≡ ∑
=

−+

0

1 )1(

T

k
tk

tr
C +

tT
tr

F
−+ 0)1(

 (3) 

According to (3), pt is determined by (i) rt, the market 
rate of interest at time t; (ii) F, the face value of the bond, 
which generally equals 100; (iii) T0, the term to maturity at 
time t = 0; and (iv) C, the periodic coupon payment, which 
equals F×rc. As depicted in Table 1, we use 18 hypothetical 
combinations of term to maturity and contractual interest 
rate and generate a set of price data with t = 1/80, 2/80, …, 
80/80 through (3). The rate rt is derived from a normal 
random number generator of N(2%, (0.1%)2). Accordingly, 
we have 1,440 training samples with input variables Tt, rc 
and rt, and the desired output variable yt, where Tt ≡ (T0 - t) 
is the term to maturity at time t. 

To examine the generalization of trained networks, we 
also generate 1,440 test samples by the similar means, 
except that T0, t, rc and rt are randomly and independently 
generated from {1, 2, …, 20} with a probability of 1/20 for 
each, {1/80, 2/80, …, 80/80} with a probability of 1/80 for 
each, [0.0%, 3.0%] with a probability density function f(rc) = 
1/0.03 and N(2%, (0.1%)2), respectively. This setting results 
in varying instances among the test samples. 

We, as the representative practitioner, adopt the Back 
Propagation learning algorithm [8] to train 1,000 SLFNs, 
each of which has 4 hidden nodes and random initial weights 
and biases. Among the 1,000 SLFNs, we pick the three with 
the smallest mean square error (hereafter, MSE) for the test 
samples. Table 2 shows the (final) weights and biases of 
these three SLFNs, hereafter named network I, II and III, 



 
 

 

respectively. The corresponding MSEs for the training 
samples are 0.414, 0.404 and 0.451, respectively; and the 
corresponding MSEs for the test samples are 0.429, 0.432 
and 0.445, respectively. The average absolute deviation is 
approximately 0.6, which deviates from the specified error 
term standard deviation of 0.2. The pricing error is unrelated 
to theoretic prices pt. but related to observed prices yt. 

By definition, for each SLFN, the hth activation value ah 

equals tanh( H
hb +

3

1=
∑
i

H
hiw xi), h = 1, ..., 4; the output y equals 

bo +
4

1=
∑
h

o
hw ah; and the function f equals bo +

4

1=
∑
h

o
hw tanh( H

hb +
3

1=
∑
i

H
hiw xi). Hereafter, let (⋅)T be the transpose of (⋅) for (⋅) to 

be a vector or a matrix. Furthermore,  
o
hw  ≡ the weight of the hth activation value for the output, 

where the superscript o throughout the paper indicates 
quantities related to the output layer; 

bo ≡ the bias of the output node; 
H
hiw  ≡ the weight of the ith input for the hth hidden node, 

where the superscript H throughout the paper indicates 
quantities related to the hidden layer; 

H
h⋅w  ≡ ( H

hw 1 , H
hw 2 , H

hw 3 )T, the 3x1vector of weights between 
the hth hidden node and the input layer;  

WH ≡ ( H
⋅1w , H

⋅2w , H
⋅3w , H

⋅4w )T, the 4x3 matrix of weights between 
the hidden nodes and the input layer; and 

H
hb  ≡ the bias of the hth hidden node.  

 
For ease of reference in later discussions, we also call R3 the 
input space and (-1, 1)4 the activation space. 

For each SLFN, f -1(y) = Φtanh
-1。Φo

-1(y), with 

Φo
-1(y) ≡ {a ∈ (-1, 1)4| 

4

1=
∑
h

o
hw ah = y - bo},      (4)  

Φtanh
-1(a) ≡ 



4

1

1-T }- )(  =  |{
=

⋅ℜ∈
h

H
hh

H
h batanhwxx 3 ,      (5)                                       

where Ω is a subset of ℜ and tanh-1(x) ≡ ( )-x
x

1
1ln5.0 + . 

Formally, the followings are defined for every SLFN: 
(i) A value y ∈ ℜ is void if y ∉ f({ℜ3}), i.e., for all x ∈ ℜ3, 

f(x) ≠ y. Otherwise, y is non-void. 
(ii)  A point a ∈ (-1, 1)4 is void if a ∉ Φtanh({ℜ3}), i.e., for 

all x ∈ ℜ3, Φtanh(x) ≠ a. Otherwise, a is non-void. The 
set of all non-void a’s in the activation space is named 
as the non-void set. 

(iii)  The image of an input x ∈ ℜ3 is y ≡ f(x) for y ∈ Ω. 
(iv)  The preimage of a non-void output value y is the set f -1 

(y) ≡ {x ∈ ℜ3| f(x) = y}. The preimage of a void value y 
is the empty set. 

(v) The internal-preimage of a non-void output value y is 
the set {a ∈ (-1, 1)4| Φo(a) = y} on the activation space. 
Given the weights and biases of each SLFN, the 

preimage-extracting phase conducts the following steps, 
where rank(D) is the rank of the matrix D and [D1   D2] be 
the augmented matrix of two matrices D1 and D2 (with the 

same number of rows): 
Step 1: Derive the expression of Φo

-1(y); 
Step 2: Derive the expression of the non-void set that is 

defined as {a| rank(WH
ω(a)) = rank(WH)}; 

Step 3: Derive the expression of A(y) that is defined as {a| 
a ∈ Φo

-1(y) AND rank(WH
ω(a)) = rank(WH)}; and 

Step 4: Derive the expression of f -1(y) that is defined as {x| 
WHx = ω(a) with all a ∈ A(y)}.  

Take Network I to illustrate the explicit outcomes and 
the insights obtained within the extracting process. Φo

-1(y) = 
{a| 15.1206a1 - 34.366a2 + 5.6589a3 - 21.9999a4 = y - 
100.4744}. Φo

-1(y) is in the form of linear equation. Thus, 
for each non-void value y, Φo

-1(y) is a hyperplane in (-1, 1)4. 
As y changes, Φo

-1(y) forms parallel hyperplanes in (-1, 1)4; 
for any y changes of the same magnitude, the corresponding 
hyperplanes are spaced by the same distance. The activation 
space is entirely covered by these parallel Φo

-1(y) 
hyperplanes, orderly in terms of the values of non-void y. 
Furthermore, the center of these parallel hyperplanes is the 
Φo

-1(100.4744) hyperplane. These parallel hyperplanes form 
a (linear) scalar field: For each point a of the activation 
space, there is only one output value y whose Φo

-1(y) 
hyperplane passes point a; all points on the same Φo

-1(y) 
hyperplane are associated with the same y value. 

Note that the function xT H
h⋅w  = tanh-1(ah) - H

hb within the 
hth component in the right-hand side of (5) is a separable 
function from the one within the other components. Given 
an activation value ah, {x ∈ ℜ3| xT H

h⋅w  = tanh-1(ah) - H
hb } 

defines a hyperplane in the input space, since all H
h⋅w  and 

H
hb  are given constants. For the hth hidden node, the 

hyperplanes associated with various ah values are parallel 
and form a (linear) scalar activation field in the input space 
[16]: For each point x of the input space, there is only one 
activation value ah whose corresponding hyperplane passes 
point x; all points on this hyperplane are associated with the 
same ah value. Furthermore, each hidden node gives rise to 
an activation field in the input space, and four hidden nodes 
set up four independent activation fields in the input space. 



4

1

1-T }- )(  =  |{
=

⋅
h

H
hh

H
h batanhwxx  in (5) can be denoted by 

{x|WHx = ω(a)}, where ω(a) ≡ (ω1(a1), ω2(a2), ω3(a3), 
ω4(a4))T and ωh(ah) ≡ tanh-1(ah) - H

hb  for all 1 ≤ h ≤ 4. Given 
the activation values of a, ω(a) is simply a vector of known 
component values and the representation 

WHx = ω(a)                                                           (6)  
is a system of four simultaneous linear equations with three 
unknowns. Furthermore, WHx = ω(a) is a set of inconsistent 
simultaneous equations if rank(WH

ω(a)) = rank(WH) + 1 
[5, p. 108], and thus the corresponding point a is void. The 
discussion establishes Lemma 1 below. 
 
Lemma 1. An activation value a is void if rank(WH

ω(a)) = 
rank(WH) + 1; otherwise, a is non-void. 
 



 
 

 

Now WH equals 
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

−−

−
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6646.534188.360643.0
8267.163354.430988.0
9511.288286.360544.0
8396.187223.320347.0

 and ω(a) 

equals (tanh-1(a1) + 0.1689, tanh-1(a2) + 1.3535, tanh-1(a3) + 
2.1615, tanh-1(a4) - 1.1698)T. Thus the a vector satisfying the 
requirement of (7) corresponds to a non-void point; 
otherwise, a void point. Moreover, for each non-void a, (6) 
defines a point in the input space. 

tanh-1(a4) = 2.646686748 + 3.248238694tanh-1(a1) - 
0.801390022tanh-1(a2) + 0.931270242tanh-1(a3)     (7) 

Thus, the non-void set, which consists of all non-void 
a’s, equals {a| tanh-1(a4) = 2.646686748 + 3.248238694 
tanh-1(a1) - 0.801390022tanh-1(a2) + 0.931270242tanh-1(a3)}, 
which is a (non-linear) 3-manifold in (-1, 1)4. A p-manifold 
is a Hausdorff space X with a countable basis such that each 
point x of X has a neighborhood that is homomorphic with 
an open subset of ℜp. A 1-manifold is often called a curve, 
and a 2-manifold is called a surface [4]. For our purpose, it 
suffices to consider Euclidean spaces, the most common 
members of the family of Hausdorff spaces. 

The internal-preimage of a non-void value y, A(y) ≡ {a 
| 15.1206a1 - 34.366a2 + 5.6589a3 - 21.9999a4 = y - 100.4744, 
tanh-1(a4) = 2.646686748 + 3.248238694tanh-1(a1) - 
0.801390022tanh-1(a2) + 0.931270242tanh-1(a3)}, is a 2-
manifold in (-1, 1)4. The group of the (non-empty) A(y)s 
forms an internal-preimage field in the activation space – 
there is one and only one A(y) passing through each non-
void a; for any a on A(y’), its output value is equal to y’; and 
A(y)s are geometrically aligned orderly according to the 
positions of Φo

-1(y)s, since the A(y) is the intersection of Φo
-

1(y) and the non-void set. Thus, the non-void value y can be 
represented as 15.1206a1 - 34.366a2 + 5.6589a3 - 
21.9999tanh(2.646686748 + 3.248238694tanh-1(a1) - 
0.801390022tanh-1(a2) + 0.931270242tanh-1(a3)) + 100.4744. 

Any point that is in A(y) links to the preimage f -1(y). 
Thus, for any non-void y, the corresponding preimage f -1(y) 
of Network I equals {(Tt, rc, rt)T| Tt = 8.619766318 - 
16.38982949tanh-1(a1) + 11.9539307tanh-1(a2) - 
2.216810863tanh-1(a3), rc = 0.012291155 + 0.01700793tanh-

1(a1) - 0.02138228tanh-1(a2) + 0.017746672tanh-1(a3), rt = 
0.046189981 + 0.052432722tanh-1(a1) - 0.015121128tanh-

1(a2) + 0.026740939tanh-1(a3), 5.6589a3 - 
21.9999tanh(2.646686748 + 3.248238694tanh-1(a1) - 
0.801390022tanh-1(a2) + 0.931270242tanh-1(a3)) = y - 
100.4744 - 15.1206a1 + 34.366a2, -1 < a1 < 1, -1 < a2 < 1, -1 
< a3 < 1}, which is a 2-manifold in the input space. 

The input space is entirely covered by an orderly 
grouping of f -1(y)’s that forms a preimage field in the input 
space. That is, there is one and only one f -1(y) passing 
through each x; the corresponding output value of the 
network to this x is the y value associated with this f -1(y); 
and f -1(y)’s are aligned orderly, though not necessarily with 
equal space. 

Similar extracting processes can be applied to Network 
II and III to have their corresponding preimages shown in (8) 
and (9), respectively. 

f -1(y) = {(Tt, rc, rt)T| Tt = 15.23359752 - 4.059672115tanh-

1(a1) - 10.05010689tanh-1(a2) + 4.275432481tanh-1(a3), rc 
= -0.002434911 - 0.002726715tanh-1(a1) + 0.015945201 
tanh-1(a2) + 0.008425543tanh-1(a3), rt = 0.004697943 + 
0.009427004tanh-1(a1) - 0.000560628tanh-1(a2) + 
0.007326189 tanh-1(a3), - 10.4621a3 - 9.2684 
tanh(0.13672399 - 0.685087351tanh-1(a1) + 0.78937922 
tanh-1(a2) - 0.687474652tanh-1(a3)) = y - 93.6583 + 
23.3874a1 - 36.9871a2, -1 < a1 < 1, -1 < a2 < 1, -1 < a3 < 1} 
                                                                                  (8) 

f -1(y) = {(Tt, rc, rt)T| Tt = 22.39422393 - 2.792522056tanh-

1(a1) - 7.007049818tanh-1(a2) + 7.210230755tanh-1(a3), rc 
= 0.007440778 + 0.021281602tanh-1(a1) - 0.036533434 
tanh-1(a2) - 0.015555372tanh-1(a3), rt = 0.011763577 + 
0.029006307tanh-1(a1) - 0.027434499tanh-1(a2) - 
0.000968028tanh-1(a3), - 30.1819a3 + 13.1504 tanh(-
1.599920472 + 0.474275763tanh-1(a1) + 0.629597938tanh-

1(a2) + 0.129397058tanh-1(a3)) = y - 104.8248 + 14.0352a1 
+ 16.7297a2, -1 < a1 < 1, -1 < a2 < 1, -1 < a3 < 1}                                                              
(9) 

Since the dimension of the input space in all networks 
in Table 2 is three, we can also draw the three-dimensional  
preimage of each obtained SFLN based upon its 
corresponding mathematical expression. 

With the explicit outcomes and insights obtained from 
the above preimage-extracting process, we, as the 
representative practitioner, conduct the examination of 
several beliefs. 

We know that premium bonds and discount bonds 
could be determined by comparing the market interest rate 
with the contract coupon rate. Specifically, if the coupon rate 
is greater than the market interest rate, then the bond is 
priced with a premium. Else the bond is traded at a discount. 
This belief leads to an insight that the preimage of a reliable 
SLFN should be parallel to the plane with this property that 
rt = rc. As shown in Fig. 1, these obtained preimages reveal 
the tendency of such insight. Thus, this belief has “high” 
credibility. 

Another common sense is that one bond with a greater 
coupon rate than another should be priced higher at a given 
interest rate. Namely, the high coupon rate implies a high 
price for one bond. Preimage of each SLFN in Fig. 1 does 
demonstrate a positive relationship between coupon rate and 
interest rate in the same. Thus, we could conjecture that the 
high interest rate results in the low bond price and this 
common known sense has “high” credibility. 

Furthermore, observing Fig. 2, we find that the 
curvatures for the premium bonds and discount bonds are 
different in Networks I and II. In the rt and Tt coordinate, the 
preimages for premium bonds appear to be concave and 
those for discount bonds appear to convex. This may imply 
another insight that is consistent with the viewpoint in the 
bond pricing but has “low” credibility. Namely, for keeping 
constant price, the increased (or decreased) magnitude of 
interest rate is getting great when the maturity for a premium 



 
 

 

(or discount) bond is getting short. In other words, the 
interest rate is more significantly influence on short-term 
bonds than long-term bonds for keeping the same price. 

IV. CONCLUSIONS AND FUTURE WORK 
This study adds to the literature by introducing the 
knowledge internalization process for the SLFN practitioner. 
A possible future avenue of further enquiry may be 
exploring newly issued financial instruments with limited 
instances using the process set out here. In addition, the 
knowledge internalization process applied to real world data 
and the externalization of belief into explicit knowledge are 
all issues meriting further study. 

This study also demonstrates the appropriateness of 
adopting mathematical analysis in place of the more usual 
data analysis to extract the accurate preimage from SLFNs. 
With the extraction of preimages for each SLFN, the 
practitioner may obtain certain insights for any unexplored 
data which none knows the suited tools to analyze, because 
SLFN is known for its ability of being an universal 
approximator. Further, with these obtained insights, the 
practitioner may adopt the most suited tools for the empirical 
data, the tools that may help him/her more easily and 
properly to establish the model for the variables. Then, he 
may get more useful insights and understanding. For 
example, when the dependent variable of interest is 
monotone along with a certain factor linearly or nonlinearly 
combined by these explanatory (or independent) variables, 
the extraction of preimages may be a great benefit. In such a 
case, these extracted preimages appear to be parallel with 
this linear combined factor. With such an insight, the 
practitioner may adopt the common regression method or 
other suited tools for the data after he properly transform the 
variables. Of course, this argument is one of future 
researches. 
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TABLE I 

THE 18 HYPOTHETICAL BONDS WITH DIFFERENT COMBINATIONS OF TERM TO MATURITY AND CONTRACTUAL INTEREST RATE. 

 

Bond 
No. 

Term to 
maturity (T0) 

Contractual interest 
ratea (rc) 

Bond 
No. 

Term to 
maturity (T0) 

Contractual interest 
rate (rc) 

Bond 
No. 

Term to 
maturity (T0) 

Contractual interest 
rate (rc) 

1 2 0.0% 7 2 1.5% 13 2 3.0% 
2 4 0.0% 8 4 1.5% 14 4 3.0% 
3 7 0.0% 9 7 1.5% 15 7 3.0% 
4 10 0.0% 10 10 1.5% 16 10 3.0% 
5 15 0.0% 11 15 1.5% 17 15 3.0% 
6 20 0.0% 12 20 1.5% 18 20 3.0% 

a Assume that coupon payments are made annually. 

 

TABLE II 

FINAL WEIGHTS AND BIASES OF NETWORKS I, II AND III, RESPECTIVELY. 

Weights and Biases 

Network bo h H
hb  o

hw  H
1hw  H

2hw  H
3hw  

I 100.4744 

1 -0.1689 15.1206 -0.0347 -32.7223 18.8396 
2 -1.3535 -34.3660 0.0544 -36.8286 28.9551 
3 -2.1615 5.6589 0.0988 43.3354 16.8267 
4 1.1698 -21.9999 -0.0643 -36.4188 53.6646 

II 93.6583 

1 0.4510 -23.3874 -0.0571 -33.4648 71.8090 
2 0.8413 36.9871 -0.0467 32.9078 -10.5926 
3 -1.1572 -10.4621 0.0699 45.5792 43.2855 
4 1.2874 -9.2684 -0.0458 17.5685 -87.3147 

III 104.8248 

1 0.7832 -14.0352 -0.0519 -27.1299 49.3836 
2 1.3108 -16.7297 -0.0571 -27.3748 14.5874 
3 -1.5287 -30.1819 0.0631 -37.1108 33.3026 
4 -0.6010 13.1504 -0.0524 -34.9042 36.9149 

Note: bo denotes the bias of the output node; H
hb  denotes the bias of hth hidden node; o

hw  denotes the weight between the output node and the hth hidden 

node; and H
hiw  denotes the weight between the hth hidden node and the ith input node. 

  



 
 

 

 

Fig. 1. Preimage graphs along the rt and rc plane for network I, II, III (from top to bottom), respectively. 



 
 

 

 

Fig. 2. Preimages graphs along the plane of rt vs. Tt for network I, II, III (from top to bottom), respectively. 
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