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1. The Construction Procedure

Huang and Babri (1998) propose an elegant construction method to set up a real-valued
single-hidden layer feed-forward neural network (SLFN) with N hidden nodes that
successfully learns N distinct samples with zero error. In a correlated real-valued single-
hidden layer feed-forward neural network (SLFN), the weight vectors in the input layer of all
its hidden nodes are linearly dependent. Tsaih and Wan (2007) realize that the SLFN
constructed by Huang and Babri (1998) is correlated. They further show that the correlated
SLFN has the property of hyperplane preimages. The correlated SLFN provides a
hyperplane-preimage approach for the nonlinear regression problem with the assumption of
linear preimage. Such usages motivate a study of the construction procedure for creating a
correlated SLFN with less than N hidden nodes that perfectly fits N distinct samples.

The proposed construction procedure will initially set up one hidden node and then
recruit (add) more (linearly dependent) hidden nodes during the learning process. In the
literature, there are some similar procedures; for instance, the tiling algorithm for binary-
valued layered feed-forward neural networks (cf. Me’zard and Nadal, 1989), the cascade-
correlation algorithm (cf. Fahlman and C. Lebiere, 1990), and the upstart algorithm for
binary-valued layered feed-forward neural networks (cf. Frean, 1990). In contrast to these
researches, this study copes with the correlated real-valued SLFN.

In the context of estimation, the response y equates f(x, w) + 6 where w is the parameter
vector and ¢ is the error term.  Usually, the function form of f is predetermined and fixed
during the process of deriving its associated w from a given data set of observations {(1x,
), .., (8% nY)}, with oy being the observed response corresponding to the ¢ observation cx.

The least squares estimator (LSE) is one of the most popular methods for estimating. If

N
W denotes any estimate of w, then LSE is defined to minimize Y. e, where
c=1

€ =y - f(ex, W). 1)
The generalized delta rule proposed in (Rumelhart, Hilton, and Williams, 1986) for the
learning process of SLFN is a kind of (nonlinear) LSE. The LSE, however, is known to be
very sensitive to outliers.

In the literature of linear regression analysis, there are two approaches of dealing with
outlier problems: deletion diagnostics and robust estimators (cf. Rousseeuw and Leroy (1987,
page 8)). The diagnostic approach assesses the influence of an individual observation or a
subset of observations to the LSE. The diagnostic approach is useful to assess the adequacy
of the underlying assumption and to identify unexpected characteristics of the data. One
way for the diagnostics is to identify the observations that leave the largest change in the
diagnostic quantity (cf. (Cook and Weisberg, 1982)(Atkinson, 1985)) when they are excluded
from the fitted data set.

As for the robust statistics approach, the robustness analysis (cf. (Hampel, 1986)) limits
the attention to a “trimmed” sum of squared residuals instead of adding all the squared
residuals as in the LSE. If only the first q of those ordered squared residuals are included in
the summation, then the least trimmed squares (LTS) estimator is defined as

q
Minimize Y. g€ )
c=1



where [qe? denotes the ordered squared residuals; that is, pe® < e® < ...< e, Zaman,
Rousseeuw, and Orthan (2001) suggest that [ 0.75NJ* is a reasonable value for g in most
empirical studies.

Atkinson and Cheng (1999) adapt the forward search algorithm proposed in (Atkinson,
1994) to develop the LTS estimates. The forward search algorithm consists of randomly
adopting an (initial) subset of m+1 observations to fit the linear regression model, ordering
the residuals of all N observations, and then augmenting the subset gradually by including
extra observations based upon the smallest squared residuals principle.

The C-step? of Rousseeuw and Van Driessen (2002) can release quite fast a series of
subsets of observations whose corresponding total squared residuals are refined gradually.
The last subset results in a good linear fitting function which is an approximation of the LTS
estimator.

2. The Mapping Requirement and Notations

An SLFN provides a nonlinear mapping between x and y, whose form is y = f(x). f is a
nonlinear function whose parameters (i.e., weights and biases) are derived from a given data
set of mapping samples {(x}, tV), ..., (x", tY)} with x% = X%, ¢, # C,, and with t° the target
value of y corresponding to X°. X = (X, Xa,..., Xm)' € R™ where X; is the j™ input component,
with j from 1 to m.

Hereafter, m and p denote the numbers of adopted input and hidden nodes, respectively;
w?, stands for the bias of the j™ hidden node; wi= (wh, Wi, ...,wh )" for the weights
between the j™ hidden node and input layer; we for the bias of the output node; and w®=
(wy,wy, W) )" for the weights between the output node and all hidden nodes. Characters in

bold represent column vectors; the superscript T indicates transposition.

Let the tanh(t) activation function be used by all hidden nodes and a linear activation
function be used by the output node. Thus, given the ¢ sample x°, the activation value of the
j™ hidden node a°(w?,,w?) and the output value y° are as follows:

ww@woamm%+§mﬁ; (3)

p
yo=wl+ z wia‘(wh , w?). (4)

Given the N mapping samples, let v(w?,w?) = (@'(w3,w?), a*(w,w?), ..,
a“(w?,w2))" e (-1,1)" be the responding vector of the j" hidden node with the c"
component being a°(w?,,w?). Furthermore, let 1 be a N x 1 vector with all components 1 and

T=( ¢ ..., " e RY. Thus, the set of simultaneous equations w¢+ }El witanh(w?, +3 we
i= i=1
x*) =tV c=1, ..., Nis equivalent to system (5), which states that T is in the space spanned

by 1 and p responding vectors, {v(w? ,w?),j=1, ..., p}.

m1+éme@W9=T. (5)

! Hereafter, | x| is the largest integer not larger than x.
2 C stands for “concentration”. The idea of C-step has been implemented in the built-in function Its.reg of Splus which is a commercial
statistical computing package published by MathSoft Co..



;
Hereafter, let ;Rp = a - Illob_elll ﬁ denote the residual of vector a regarding b after the

T
part parallel with the vector b has been taken away. |t|)bfli| ﬁ is the projection of a in the

;
direction of b; and 4Ry, is orthogonal to b since b’ ,R, = b" (a—ﬁ ﬁ) =0
.. aR 1 kel T R o Ry o
Similarly, let aRgpl, . pky = aRppl, . pk-l} LRewy) vRewy wRevs genote the
”bk R{b1 ..... b -1} ” ”bk R{bl ..... b 1} ”

residual of vector a regarding the ordered sequence of linearly independent vectors {b,..., b}
after the part in the (sub-)space spanned by {b',..., b} has been taken away.

(R 1 kfl)TkR 1 k-1 kR 1 k-1 . . . . - .
Lo 376 b} b Beb 3 s the projection of sRgpl . pk13 in the direction of
”bk R{bl ..... b1} ” ”b" R{bl ..... b 1} ”
ka{bl, ... oK1} and aR{bl, ....bk} is orthogonal to ka{bl, ....ok-1} since (aR{bI’ m,bk})T ka{bl’ Lobkly =
(aR{bl bH})Tbk R{bl bkfl} bk R{bl bkfl} T ey
(aRgpt, . pk1y - — L 37D B0} b B )" bkRypt, . pk-1y = 0. By definition we have
{b%, ...bK"1} R R {bs, ....bK"1}
”bk {bl _____ bkfl} ” ”bk {bl YYYYY bkfl}”
Tph? ! k (Rl ifl)TiRl j1 iR =
Lemma 1. Furthermore, a= 22 2 45 Safwooy) v Bewy o lweny 4o pos o
||b || ”b ” =2 ”bJ R{bl YYYYY blfl} ” ”biR{bl YYYYY bifi} ”

and Lemma 2 lists some properties associated with the above proposed residual vector.

Lemma 1: If a is linearly dependent with b, then ;R, = 0. Similarly, if a can be linearly
represented by the set of vectors {bl,..., bk},3 then aRgpt, . bk = 0.

Lemma 2: (i) aRyp is orthogonal to b.  (ii) aRg1, ... pky IS orthogonal to the subspace spanned
by the set of linearly independent vectors {b*..., b*}. (iii) If aRgp1, oy = 0, then
aR{bI’ bk+1}:O.

3. The Proposed Construction Procedure

Table 1 presents the proposed procedure for constructing a correlated SLFN appropriate for
fitting the mapping embedded in {(x, t}), ..., (x", tY)}.

Table 1. The proposed deterministic procedure for constructing an appropriate correlated
SLFN for the mapping requirement of {(*, t1), ..., X", t)}. T=( ¢ ..., )" and v(wo,w)
= (a*(wo,w), a%(Wo,w), ..., a“(wo,w))" is a N x 1 vector with the ¢ component being a(wo,w)

= tanh(w' X° + W), in which w = (w1, Wy, ..., Wn)".

Step 1: Calculate tR;. If TRy = 0, then (i) claim that the fitting job requests no hidden

;
node; (ii) set the bias of output node as T

T and the weight vector between the output

® Namely, a is in the (sub-)space spanned by {b’,..., b“}.



node and the input layer as 0; and (iii) stop.

Step 2: Apply the C-step to all N observations to obtain the m+1 input samples that are
linearly independent. Let I(m+1) be the set of indices of these samples and I(N) be
the set of indices of all samples.

t°—min t® +1

Step 3: Calculate t° which equates tanh™( =0 ) from {t% V ¢ e I(m+1)}.
crl]l?lzl()t _creT?(Ilr\-l])t +2

Next, apply the linear regression method to the data set {(x°, t°): V ¢ € I(m+1)} to
get a set of m+1 weights.

Step 4: Set one hidden node in the network whose values of w? and w? are assigned
as the values of the weights obtained in Step 3, and initial values of w: and w? are

assigned as n}(in)ﬁ -1 and ml%tC -~ rq(in)ﬁ +2, respectively. Then set 1 =1 and p =
Ce ce Ce
1.

Step 5: If wjl+ J§1 wiv(wi,,w?) =T, then (i) claim that the fitting job requests p hidden

nodes with the bias and weights being the above w;, wi,, w?,and w’ forall 1 <]
< p; and (ii) stop.

Step 6: If w;l+ _§1 wiv(wi,,wi) = T, then solve min||;R I> and let
1= Wo., 7

LV W2 ), (W2 W2 )V (Wo 02 )}

. _ . 2
(Wo 17*) = arg( r;Q'D ” TR{l,V(WIZO,le),.H,V(Wég,sz)vV(WorV‘le)} ” )
Step 7:set ype1 = 7, Wo 0= W, W2, = peawi,and p +1 > p.

Step 8: Apply the linear regression method to the data set {((a°(w? ,w?), a°(wZ,,w?), ...,
a’(w?,,w2))T, £9: v ¢ e I(N)} to get values of w@ and w?,V j=1,...,p. Thengoto
Step 5.

Step 2 releases m+1 linearly independent input samples through applying the C-step to
all N input samples.* Let I(m+1) be the set of indices of these (linearly independent) input
tC—mint®+1

samples. Step 3 calculates T° via tanh™( =0 )V ce l(m+l). Then Step 3
maxtomnt+2

applies the linear regression method to the data set {(x°, t°): V ¢ € I(m+1)} to get the
unique solution of (w2 ,w?) of system (6), which is a system of m+1 linear equations in m+1
unknowns.

4 The choices of the subset at Step 2 can be adapted by other considerations (cf. Stromberg (1993)).
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Step 4 sets up the network with one hidden node whose values of (w2 ,w?) are assigned

as obtained in Step 3. The initial values of w; and w; are assigned as crgm)ﬁ—l and
max tc—crerll(in)t°+2, respectively. According to Rousseeuw and Van Driessen (2002), this
setup network renders > = 0 V ¢ e I(m+1) and is a good approximation of the LTS
estimator.

Step 5 denotes the stopping criterion of the proposed procedure.

The minimization in Step 6 and the assignment in Step 7 determine the bias and weights
for the connections of the input nodes to the most newly recruited hidden node. All biases
and weights for the connections of the input nodes to the previously recruited hidden nodes
are unchanged. Furthermore, the assignment of Step 7 renders the constructed SLFN
correlated since wi=yw:,j=1,...,p.

4. The Correctness of the Proposed Procedure

We now prove that the correlated SLFN constructed by the procedure stated in Table 1 meets
the mapping requirement of {(x*, tY), ..., (x", t")} without error.

Tsaih and Wan (2007) state that, for any given {(x%, t°): V ¢ =1, ..., N}, there exists a set
of {(w%,%w?), j =1, ..., N-1} such that the associated square matrix (1, v(wj,,w;), ...,
v(w o, oa-aw;)) is invertible and the mapping requirement is achieved perfectly. Therefore,
we have Lemma 3 and the proposed procedure will stop at any p with 0 < p < N-1.

Lemma 3: If p < N-1, then there always exist wp and y such that R # 0.

V(Wo, w5 {1V (Wi W ). (Who W5}
Proof of Lemma 3: Suppose there is a p < N-1 such that there are no wy and y to render
#0. Inother words, p < N-1 and there are no wp and ysuch that v(wo,

2 R 2 2 2 2
v(Wo,w1) {1V (Wo, W), V(Who, W)}
yw;) is linearly independent with {1, v(w;,w;), v(w;,,w3), ..., v(w,,w?)}. This
contradicts with the statement of Tsaih and Wan (2007). Q.E.D.

When the procedure stops at Step 1, the SLFN constructed at Step 1 meets the mapping
requirement of {(x*, tV), ..., (x", t")} without error since tR; = 0. On the other hand, it is
obvious to have Lemma 4, which states the necessary condition of a SLFN with p hidden
nodes appropriate for the mapping requirement of {(x}, t!), ..., (X", tY)}.  Thus the stopping
criterion stated in Step 5 is suitable.

Lemma 4: Regarding the mapping samples of {(x, tY), ..., (x", t¥)}, the SLFN with p hidden
nodes is appropriate for the mapping requirement if w1 + szl wiv(wi,wi)=T.

. p-1 p
Consider the case of w1 + = wv(w? ,w?) = T and w’l +3 wv(w? ,w?) = T.
0 j jo j 0 : i jo ]
j=1 i=t

Namely, Ry .z vy #0foreachl<j<p-land Ry, .. .. =0 Foreachl

< J < p-1, from calculation, we have Ry ... e.temin = TREvehw). vty T
T

A U R R v 8) 00, )t 9 and

Iy 2y Rt vco )., iy | Iy 2y Rt o w2y..vgu, iy |
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”2 — ” R ”2 (1_( (TR{1VV(W120va)v---,V(WfOVWZ;)})

T v (Wi W), v (who Wi}

I <R

T IRV W2, (W0, W),V (Wo W20} IR - s o |l
{lvV(meW1)x---vV(Wjoij)}

2 R 2 2 2 2
Yo) Gviiow)- v} )2) - Hence we have Lemma 5.  Furthermore, suppose

Iy 2y R ety o |

2 - . (TR{lV(WZ WZ)...V(WZ WZ)})T
|| =0 if and only if ( V(s W), V(W W2

”T R{l,v(wlzo,wf),...,v(wgc,wi)} ”

R =0, ||{R

T LV (Wi W), v (Who W5 )}

LV (W W] ). V(W0 W )V (W7 Wi )}

w2 R 2 2 2 2 - - - - -
v D _Gvhed. vuhewik 32 = 1 which implies the following Lemma 6 is true.

”v(w;,fwf) {Lv (Wi W3),...,v (Wl W)}

# 0, then min || ;R > >

Wo.y T LV (i, WP )V (W WH) V(W 7)}

Lemma 5: |If

T R{l,v(wf0 WE),. V(W w3 )}
2
[N |

Proof of Lemma 5: From Lemma 3, there always exists wy, and y such that
IS a non-zero vector. Now R . =

V(Wo, W2) R{l,v(wf0 WD)V (W, W)} TN LV (Wi W)V (W W3,V (o w7 )}

R

)
(R G vty v, wiy) v R wovowiy  vonmd) R v ), vy min and

R -
T Gtelond)..v o) O My s Rttty |

V(W w1) {1V (Wi Wi ),V (Wio W)} V(o wi) {1V (Wi, Wi ),V (Wio, W)}
vty Rttty vorwty AN TRG o wiu ey @T€ OTthogonal to each other.  Thus,

2 2
| |

In other words, the optimization of
in which (w;,7*)

> 1 +R et vt o

I leads to a non-zero

I¥) and || ;R

” T R{l,v(wfo,wf),m,v(wfo,wf)}

T)ID ” T R{LV(WfOVWf),.WV(W,%,W§),V(wo,7vvf)} V(w7 w?) R{l,v(wﬁ,,wf),.“,v(wfo,wf)} )
2 2
. <
LV W2, (W W)Y (W W2 )} =<1l R{l,v(wfo,wf),m,v(wfo,wﬁ)) |

=arg(min|[;R
Q.E.D.

{LV (Wi, WP ).V (W W5V (W 7)}

Lemma 6: Suppose || R, . II? = 0. I* = 0 if and only if

W2, V(W2 W2 )} I+ R vty ), vt w92

R and are parallel.

T LV (i W] )V (Woo W5 )3 V(WS,/Wf)R{lvV(Wfo,Wf)wV(WﬁovWﬁ)}

Lemma7: The (sub-)space spanned by the set of linearly independent vectors {b*,..., b} is
equivalent with the one spanned by the set of orthonormal vectors
{ bl 1 bZRbl 1ty ka
6% "Ml Ry | ll R
Proof of Lemma 7: Let us prove by induction. It is trivial for the case of any set of two
linearly independent vectors {b*, b} since ,2Rp1 is orthogonal to b* and ,1Ry2 is orthogonal
to b”.
Now consider the case of any set of k+1 linearly independent vectors {b’,..., b*"*} with k
> 2. Assume the subspace spanned by the subset of vectors {b'...., b} is equivalent with

{b*,...b<} }

L ZR 5 K R 1 k-1
the one spanned by the set of orthonormal vectors {uEl i ”b Rb TR ”b R{b """ “3 1. The
b? " bt b*



k
(b +1)Tb1 b +§ (bMR{bl bH}) b’R{bl ..... bi} bJR{bl ..... bi}

B BT 2 R sl IR

..... bl Vbt by ”
k+1

vector b*"! can be represented as

bk+1Rgb1, . bk}, IN Which pk+1Rgp1 . pky IS @ non-zero vector since b™ is linearly independent
with the set of vectors {b’,..., bk}. Thus the (sub-)space spanned by the set of vectors
bl b2 Rbl

{b*,..., b'} is equivalent with the one spanned by the set of vectors {||bl|| TR
b? bt

bk+1R{b1,

k R 1 k-1 -
b w03 YTt = 0; and, for any 2 < j < k-1, (bk+1Rgpt, . bky) " bR . bi-ly = (k1R | pkly

“bk R{bl ..... bkfl} ”

”bk R{bl ..... bkfl} ” ”bk R{bl ..... bkfl} “
( +1 R 1 -1 )T R 1 -1 R -
(bk+lR{bl, bkl - [ (N o A AR { P s SN LG { PO < )T ka{bl, k) = 0. Q ED
”bk R{bi ..... bkfi} ” ”bk R{bl .... bkfl} ”

1 2 2 R H 2 2 R 2 W) 2 2 .
Let u0 Em, ul EM1 and UJ = V(Wio.Wj) " {LV(Wo, Wi ). V(Wi 0, W5 1)} for all 2 Sj < p

||V(W120vW12) ol ”v(wfo,w?) L1V (o W),V (W o W5 1)} |
Thus TTu¥ = (W21 + 3 wiv(w?, w?)) U= w(v(w?,w?))T u*forall 1 <k <p, since, from
o4 WiVIW,, Wj Z Wi VAW, Wi SK=P, ’

Lemma 7, v(w?,w?) is in the subspace spanned by {u’, u*,..., W} and (U) U 20 vV k<j <p.
Tu?

Thus w=—————, W=
P (v(wge, W) Tu” :

P .
(7 Suivied, wh)' v

for all p-1 > j > 1, and w=

(v(wjo,wi) u’

(T = Swiv(ud, wl)) u’
1=1

1"u°
Let Al=1and A= AT - U*U  forall 0 <k <N-1. Thus, A*=1 - ﬁo u(W)" for all 0 <
j=
k <N-1. Since all vectors in the set {u’, u,..., u*} are orthonormal, (A*)" = A" and A¥ A* =

TT T - (V(WO!W)TT)Z
v(wy,w) " v(w,,w)

TTAPTV(w,, w) " APv(W,, W) — (V(W,, w)T APT)?
v(wy, w)" APv(W,, W) '

TApT)Z
and [[{Ruout 2= 77 A0 T - W) =
”T {uPu,..., uP,v(wo,w)}” V(WO,W)TAPV(WO,W)

Lemma 8: If R # 0 and there exists a vector v(w,,rw?) such that

TV (Wl W2).... v (W2 W2)}
I

R = 0, then min || ;R
Wo .7 '

T LW, W))W W ),V (W ] )}

leads to a non-zero

Wi W),V (Who, W5 ),V (Wo W7 )}
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such that _verwdRevbmvoimty  oog v Reavod . vodu

V0 RV W), v )

”v(ws,y*wf) LV (0o WD),V (who W)} I ”v(wo,mf) R{l,v(wfo,wf),m,v(wéo,wi)} I
2 _
are parallel and [ Ry, e oy v wtywos iy I = O-
— il v(Wp, W) R{ul u’}
Proof: Let ©f* = —— Wetd Thus, facts of R, ., ., . . # 0 and
e o R I T LV (o Wi) v (W3 W5 )3
V(Wo, W) MUt uP}
-0 0,1 P —piY j — < T
TR vy, vy wiyvm iy = 0 1MPlY that {u”, u, ..., u”,u""} is an orthonormal set, T =z (u)

Tu + (u) Tu, and (a™)" T =0.

Suppose V(o) = £ (W) v(wow?) U+ (") v, wE)ur +
j=

v(wp,5) R{u(’,ul,...,u",a‘“l} '

Thus, || +R Pz AT )T ATY(Wo, ) — (v, )T APTY’
LT ) (v, )" APV (. )

T2 T /f—punT or
[(T ™) (v(wo,yws))" ((TP)" v(Wo,pwi ) TP+ R o o goy)

(TTU p+l)2
(v(wo, ;)T APV (wy, vy )

|| V(W W?) R{uﬂ ul,..uP, Pty ||2) - ((Hp+1 )T V(WOI}/Wf ))2 ] = (;I—TTU p”l;)z 2 || V(W ,w?) R{u” ut,..uPoPy
o) (VW P2)) T AP (i 7Y D

1
(V(Wy, 7)) T APV (W, W)

- (@) T (@) v(wo,yw?))’] =

[((@*)" v(wo,yw?))* +

2
|

2
|

2
2> 0, then ||;R R because of a non-

T5 U0t uP (W, W)}

If ” V(W W2) R{u°,u1,.,.,u”,ﬁ‘”1} ” {uut o uP v (w5 )}

zero (u*)" T. Therefore, the optimization of min||,R
Wo,7

such that ||

I> leads to a

LV (W W),V (WEg W2 )V (Wo W)}

non-zero R 2 = 0. From Lemma 6,

V(W WE) LV (W WP, v (Who W)} (WG, *w7) {u”,ul....,u“,v"“}”

* 2 R 0,1 P W W R 0,1 P
vih ) WLuu} g YW vy gre parallel and thus, ||.R
”v(wa,y*wf) R{u“,ul,.“,u“} ” ||V(W0vw) {uou,..u} ”

= 0. Q.E.D.

2
LLV (W W),V (Who W5 )V (W5, W3 )} ”

References

1. M. Me’zard and J. Nadal, Learning in feedforward layered networks: The tiling algorithm.

Journal of Physics. A 22, 2191— 2204 (1989).

2. S. Fahlman and C. Lebiere, The Cascade-Correlation Learning Architecture. In
Touretzky, D. (Eds.), Advances in Neural Information Processing Systems Il (Denver,
1989) Morgan Kaufmann, San Mateo (1990).

3. M. Frean, The Upstart Algorithm: A Method for Constructing and Training Feedforward
Neural Networks. Neural Computation. 2, 198— 209(1990).

4. G. Huang and H. Babri, Upper bounds on the number of hidden neurons in feedforward
networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on
Neural Networks. 9, 224— 229(1998).

5. D. Rumelhart, G. Hinton, and R. Williams, “Modeling Internal Representations By Error
Propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of



10.

11.

12.

13.

14,

Cognition, vol. 1, D. Rumelhart and J. McClelland, Eds. Cambridge, MA: MIT Press,
1986, pp. 318-362.

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. New York:
Wiley, 1987.

R. D. Cook and S. Weisberg, Residuals and Influence in Regression, London: Chapman
and Hall, 1982.
A. C. Atkinson, Plots, Transformations and Regression, Oxford: Oxford University Press,
1985.

F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel, Robust Statistics: The
Approach Based on Influence Functions. New York: John Wiley, 1986.

A. Zaman, P. J. Rousseeuw and M. Orhan, “Econometric Applications of High-
Breakdown Robust Regression Techniques,” Econometrics Letters, vol. 71, pp. 1-8, Apr.
2001.

A. C. Atkinson and T. C. Cheng, “Computing Least Trimmed Squares Regression with
the Forward Search,” Statistics and Computing, vol. 9, pp. 251-263, Nov. 1999.

A. C. Atkinson, “Fast Very Robust Methods for the Detection of Multiple Outliers,”
Journal of the American Statistical Association, vol. 89, pp. 1329-1339, 1994.

P. J. Rousseeuw and K. Van Driessen, “Computing LTS Regression for Large Data
Sets,” Estadistica, vol. 54, 163-190, 2002.

A. J. Stromberg, “Computation of High Breakdown Nonlinear Regression Parameters,”
Journal of the American Statistical Association, vol. 88, pp. 237-244, Mar. 1993.

S LIS
PRI ESREA cRETMAHEE L BN 2 F Y A EY



IR RRE G o B2

4 e 95-2416-H-004-049

FEAHE (PHERRSREEYRE R

NRA RS |sEg
PRATHS R A B (P2 s E Y L g

€ R PF [ B July 18-24, 2007, Salt Lake City, U.S.A.

€k i Joint Conference on Information Sciences

% %~ 42 P |AConstructive Learning Procedure

- R RS
A 7/19 96+ $)iE Salt Lake City o #4*% 7/20 2 # section CIEF-III -t H @z 4
oo M- E AP M RAT o
A3 T7/20~T/21 B Ft = € 3R AZ 0 Keynote Speeches foim < 2% £ o

= \_ﬁ?gld?—g"
2 N

Keynote Speeches #5717 > A P F a2 v L FF kg A ER 0 o



A Constructive Learning Procedure”

RAY TSAIH

Department of Management Information Systems, National Chengchi University, No.64, Sec. 2, Jhihnan Rd., Wunshan District, Taipei

City 116, Taiwan

This study explores a deterministic learning procedure for the realization of a real-valued single-hidden layer feed-forward neural network

(SLFN) with tanh activation functions of the hidden-layer nodes for arbitrary mapping problems.

1. The Constructive Learning Procedure

The proposed learning procedure will use none hidden node initially and recruit (add) more hidden nodes during the
learning process. The goal of the proposed constructive learning procedure is to create a SLFN for fitting perfectly all
given mapping samples. In the literature, there are some similar procedures; for instance, the tiling algorithm for
binary-valued layered feed-forward neural networks (cf. [1]), the cascade-correlation algorithm (cf. [2]), and the upstart
algorithm for binary-valued layered feed-forward neural networks (cf. [3]). In contrast to these researches, this study
copes with the real-valued SLFN.

2. The Mapping Requirement and Notations

An SLFN provides a nonlinear mapping between x and y, whose form is y = f(x). f is a nonlinear function whose
parameters (i.e., weights and biases) are derived from a given data set of mapping samples {(x*, t!),..., (x", t")} with x°
# X2, ¢; # Cy, and with t° the target value of y corresponding to x°. x = (X;, Xz,..., Xm)' € R™ where ; is the j" input
component, with j from 1 to m.

Hereafter, m and p denote the numbers of adopted input and hidden nodes, repsectively; WJ?O stands for the bias of
the j" hidden node; w?=(w?,, wi,,..., w3, )T for the weights between the j"" hidden node and input layer; w; for the
bias of the output node; and w®= (w;,w;,...,w>)" for the weights between the output node and all hidden nodes.
Characters in bold represent column vectors; the superscript T indicates transposition.

Let the tanh(t) activation function be used by all hidden nodes and a linear activation function be used by the output
node. Thus, given the ¢ sample x°, the activation value of the j"" hidden node a(w?,, w3) and the output value y° are as
follows:

m
ac(WJ?O ,W? )= tanh(WJ?O + Ei Wj?i X7 ), ()
p
y°;w§+j2:1 w?a(wi, , wl). 2)

Given the N mapping samples, let v(w?, w?) = (@' (w3, w?), a*(w?,w?),..., 8 (wy,w?)) e

(-1,1)" be the responding vector of the j™ hidden node with the ¢ component being a“(w?, w?).
Furthermore, let 1 be a N x 1 vector with all components 1 and T = (t', &%, ..., )" e R™. Thus, the

. . p m . .
set of simultaneous equations wg+ ) witanh(wi +X w? x7) =t°V ¢ =1, ..., Nis equivalent to
j= i=1

system (3), which states that T is in the (sub-)space spanned by 1 and p responding vectors,

* This study is supported by National Science Council of R.O.C. under Grants No. NSC 92-2416-H-004-004, NSC 93-2416-H-004-015, and NSC
43028F.



v(wig, w3 J=1, ..., p}

w§1+§1 W v(w? W)= T. @A)
=
;
Hereafter, ,R, = a_llloTzl‘l ”%” denotes the residual of vector a regarding b after the part parallel

T LR S - "3 denotes the residual of vector a regarding the ordered sequence of

||bk R{bl ..... bkfl} || ”bk R{bl vvvvv bkfl} ||
vectors {b*,..., b"} after the parts parallel with vectors b's have been taken away.
T 1 kaT,R1,-,1 R0 s Thi
Note that ;Rqp1, . bk} = a- all’ bl -y b ntd b0 gnd thusa = 2 ll’
DD 322 Iy R iy I 1y Rgoe iy |l 1o~ |l
:
b k- a bJR{b1 ..... b} biR{bO,b1 ,,,,, bi} H
—+ 3 + aRp1, .. pky. Furthermore, we have Lemma 1 below, which
DI 522 Iy R iy I 1y Rgoe iy |l

lists some properties associated with the above proposed residual vector.

Lemma 1: (i) If a is linearly dependent with b, then ,R, = 0. Similarly, if a can be linearly represented by the set of
vectors {b’,..., b"},1 then ,Rg1, _pky = 0. (ii) 4Ry is orthogonal to b. Similarly, ,Rg1, . ks is orthogonal to all vectors in
the set {b",..., b*}. (iii) If RgpL, _pky = 0, then ;Rept, . pkety = 0.

3. The Proposed Constructive Procedure

Table 1 presents the proposed procedure for constructing a SLFN appropriate for fitting the mapping embedded in {(x*,
t, ..., ", tH].

Table 1. The proposed deterministic procedure for constructing an appropriate SLFN for the mapping requirement of {(x, t%), ..., ™, t)}. T = (¢},
2, ..., YT and v(wo,w) = (@ (wo,w), a%(Wo,w), ..., a(wo,w))" is a N x 1 vector with the ¢ component being a®(wo,w) = tanh(w" x° + wp), in which w =

(W1, W, ..., Wm)T-

1
Step 1: Calculate u® = m and tRyo=T - ()" T u’.

Step 2: If tR,0 = 0, then (i) claim that the fitting job requests no hidden node; (ii) set the bias of output

T .0

node as lT_O and the weight vector between the output node and the input layer as 0; and (iii)
u

stop.

Step 3: If 1R,0 = 0, then solve  MIN [[yR¢ywywyl” and let wy™ and w” be the obtained optimal solution.
Wy, W

! Namely, a is in the (sub-)space spanned by {b*,..., b*}.



2 2
. . V(Wy, W
Then set leozwo, wf:w,ulz%,andpzl.
[l v(wio, wi) |l

weights of the j"" hidden node being the above WJ?O and W? L Yii=1, ., ps (i) set Wg =0,

p .
(T- Ywv(wi,w?)) u!
\ TTu? l;ﬂ I VW0, W,

W=————"F——"
Py, w2) TuP

, and W?s forall 1<j<p-1;and

v(WfO,wﬁ)Tuj

(iii) stop.

0

weights of the j™ hidden node being the above WJ?O and W? , V=1, ..., p; (ii) set

p ;
(T—ng-lzwfV(Wfo,W.z))Tu’
=j+

s T’ 5 (T-wil)'u’
2 2\T __j
0 v(wi,, w?) u’

Wy = =
1Tu P v(Wf)O,

, and W?s

2N\T _p
w,)u

forall 1 <j<p-1; and (iii) stop.

Step 8: If Rt wvwewpll” and let wo” and w” be the obtained optimal

. - 2 e 2 VW10 Wh) Ut u"}
solution. Then (i) set Wi q=Wo, Wi,

=w ul= ,setp+1->p;and

e 2 . |
V(Whi10Wpu)  {u,..u"}

(ii) go to Step 4.

4. The Correctness of the Proposed Procedure

We now prove that the procedure stated in Table 1 creates an appropriate SLFN that meets the mapping requirement of
{4 1), ..., (", )} without error.

Lemma 2 below is obvious from system (3) and the definition of the residual vector. Lemma 2 states the necessary
condition of a SLFN with p hidden nodes appropriate for the mapping requirement of {(x}, tY), ..., (x", tY)}. Note that,

. ,.=0resultsin R

{v(wio W) V(Wi W3} T v (W) v (Who WH ). 13

from Lemma 1 (iii), R = 0. Thus the condition stated in Steps 2,

5, and 7 are suitable stopping criteria.



Lemma 2: Regarding the mapping samples of {(x!, t!), ..., (x", t¥)}, the SLFN with p hidden nodes is appropriate for

the mapping requirement if the associated R equals 0.

(W, wi),.en V(W;zuo :sz 21}

T..0
Namely, if Ry = 0 at Step 2 of Table 1, in which u® = ﬁ ,then T = % and the mapping
2 2 : 2 2 R 1 j-1
requirement asks for no hidden node. Furthermore, because u® =—YMWiosWs) - yi _veon)) Tt w7y

lv(w wH Il I R I

v(wlzu,wﬁ) {ul,.. u ™}

. R,..
forallj=2, ...,p,and u®=-'_®=u = g ., = TR@l,..wyand ,R =

T LR TR C AR S v (o W) (o WEI} T
1 {ul,...,up}

.....

p . . .
+ ) w? v(w?, w?) and the mapping requirement asks for p hidden nodes.
The following Lemmas 3 and 4 show that the proposed procedure will generate a sequence of orthonormal vectors.

Lemma 3: If p < N-1, then there always exist wo and w such that v, wRgul, ...upu0y # 0.

Proof of Lemma 3: Suppose p < N-1 and there are no wy and w such that yw,, wRul, ...up.u03 # 0. In other words, p < N-1
and there are no wy and w such that v(wo, w) is linearly independent with {u’, ..., u®, u’}. This contradicts with the
statement of [4] that, for any given {x° V ¢ = 1, ..., N}, there exists a set of {(Wf0 ,w? ), j =1, ..., N-1} such that the
associated square matrix (1, v(W, , w?), ..., v(W3_ o, Wi )) is invertible. Q.E.D.

Lemma 4: When the proposed procedure stops at some p, 1 < p < N-1, all vectors in the set of {u’, ..., u"} or {u?, ..., u”,
u’} are orthonormal.

Proof of Lemma 4: It is trivial for the case of p = 1 and {u'}. As for the case of p = 1 and {u®, u’},

from steps 6 and 7 of Table 1, tRy1# 0, u’ = ”‘FF:‘“” , and tRg,1,40y = 0. Thus u’ is non-zero and, from

Lemma 1 (ii), orthogonal to u*. Namely, {u', u°} is an orthonormal set.

Now consider the case of any p with 2 < p < N-1. Then, for each 1 <j <p-1, from Lemma 3,
there exists wo and w such that ywyw)Rgul.....ui, u03 IS NOt zero and thus, from Lemma 1 (iii),

.....

...............

TT
+

v(Wo,w) R{ul,.”,ui}

..........

2
“v(WO,W) R{ul,m,ui} ||

j b - R ' ! i 1 -
vogwpll’)- Thus w!™ E% is a unit vector and, from Lemma 1 (ii), orthogonal to the set
V(WE:W*) {ul,...,uj}

of vectors {u?, ..., w'}. So, all vectors in the generated set {u’, ..., u} at Step 8 are orthonormal.



0 _ lR{u1 ..... uf

from Lemma 1 (ii), orthogonal to all vectors in the set {u’, ..., u’}. Namely, {u, ..., u”, u°} is an orthonormal set.

Q.E.D.

p p p
If T = Ei w? (W%, wi), then T u* = (,2:1 wiv(wh, wi))T u = Ek w v(wh,, wi)T u, since v(w?y, w?) is in the
subspace spanned by {u', ..., w'} forall j=1, ..., pand (u)" v # 0 V i # j. Thus, as stated in Step 5 of Table 1,

(T- Zplwsv(w2 w2) u!
, T u’ , I:j+1| 100 '] ) , o ) ,
Wy=— s, W= T for all 1 < j < p-1, and wy= 0. Similarly, if T =w;1
v(Wp, W) u v(Wip,w?) u

p P p
3 2 2 T _k — 3 3 2 2WT _k _ 3 3 2 2\WT .k
+J§1 Wi v(wip, wi), then T u® = (w1 +,Z:1 W v(wip,wi)) u = (wyl +j§k w; v(Wj,,w?)) u’. Therefore, as

p .
(T - w1 — Y wiv(wig, i) u’

,and w)= L forall 1<
v(wi,w?) u’
jo» ]

: T’ T-w;1) u®
stated in Step 7 of Table 1, w; ET—u, w) z%
1'u v(Wo,w?) uP

0

j<p-l.
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