(1/2)

NSC94-2416-H-004-018-
94 08 01 95 07

95

31

24

FRERTPELR faB e D, o T
mif ¥ ERAFL
kR T -\g,FLEu” WE L
R TSt ~mmﬁr(um
Cal m Bow A P F o & & 3 P+ &
L4 g C NSC 94— 2416— H— 004— 018—
HEFHHF T 2005 &# 87 1 pi 2006 & 7 % 31 p

SEFLFUARSF P UFERTHEL) "o YL ax FHRL
Ea oS é#ﬁ;‘xT}@éﬁ&f S

D‘i';@]"’} NERFAY EFL - >

DAL S M B LAY o @RE - B

ﬁwmgﬁgéwﬁffﬂﬁiiﬁ°é‘@
u@%@wpx%§@+Pzﬁ%%~9

RS TR i é#ﬁﬁaAﬂﬁ?Pi&%‘
g -

HiFE I {aps+ 8 g?"?ﬁi o

4 = B 2006 & 05 * 22 P

Abstract

The research issues of heterogeneous information integration have become
ubiquitous and critically important in e-business (EB) with the increasing dependence
on Internet/Intranet and information technology (IT). Accessing the heterogeneous
information sources separately without integration may lead to the chaos of
information requested. It is also not cost-effective in EB settings. A common general
way to deal with heterogeneity problems in traditional heterogeneous information
integration (HII) is to create a common data model. The eXtensible Markup Language
(XML) has been the standard data document format for exchanging information on
the Web. XML only deals with the structural heterogeneity; it can barely handle the
semantic heterogeneity. Ontologies are regarded as an important and natural means to
represent the implicit semantics and relationships in the real world. And they are used
to assist to reach semantic interoperability in HII in this research.

In this research, we provide a generic construct orientation no ad hoc method to
generate the global schema to enable the web-based alternative to traditional HII. We
provide a wiser query method over multiple heterogeneous information sources by
applying global-as-view (GAV) approach with the use of ontology to enhance both
structural and semantic interoperability of the underlying heterogeneous information
sources. We construct a prototype implementing the method to provide a proof on the
validity and feasibility.

Keywords: Heterogeneous Information Integration, XML, Ontology, Syntactic
and Semantic Interoperability

&
d AT F AL R R R /o £ E N R DRI R ;1;%
EaTF i g¥r e gd - BEbG LY i E LR IR TS A
BT BuE 3R FARRT R R FTRPRP A2 AT I
BB EAWMS AP ERANE c ABRBETF ARSI LY
- BRI FACS RASLE IR A A T A R (XML) S g S
Ba b AEFT AR EE e 24N o @18 XML & 5 B A1 Y E R RN RS
m—%R%W%ﬁ,ﬁm’XMLE%ﬁ&£$ﬁa@ﬁ»gg@gggﬂgﬁ,
AAHHBARLE- BEEA T P ARPIESY RAREFE R WP FiE
RACH G T AR P L b r T ARG ET R TR LY LT
B o
ATV NP RD - BREERERSFE S - P E s KA

o W
T 3oe

?l”
G

%:—
(¥
v By W o

S
P FBHE 2 (Global Schema) » 1 iE * 444>t 5L » 1 5 A#H N T F
AEL AP B - BREFESLDIBFFARRNEDG 2 240

Js* 9 global-as-view (GAV) 2 ®EF B BEw > Z4ct AMHmBLET » 7 1
it H AR R TR RRORHET B rF R T B A B AR L b
FIERBEATLTREPDRTFREE 2 257 (7L

M4ES B FRES w0 BiRRET AlH BRIBRFELIBR

I

Table of Contents
List of Figures v
List of Tables \%
1. Introduction 1
1.1. Research Motivation 1
1.2. Research Issue 1
1.3. Research Objective 2
2. Research Methodology 2

2.1. Research Method 2
2.2. Research Structure 2
2.3. Information Integration Method in Research Structure 5

2.4. The Creation of Global Schema 6

2.5. Generic Construct Oriented Schema Rewriting 6
2.6. Schema Integration 9

2.7. Special Process for the Unstructured Information Sources 11
2.8. The Creation of Ontology 12

2.9. Mapping Global Schema to Local Data Sources 14
2.10. Query Resolution in Research Structure 15
3. Research Prototype 18

3.1. Prototype System Architecture 18

3.2. Prototype System Platform 19

3.3. Prototype System Design 19

3.4. Prototype System Presentation 21

4. Conclusions and Future Research Directions 26
4.1. Summary 26

4.2. Future Research Directions 26

References 28

III

List of Figures

Figure 2-1 Research Structure 3

Figure 2-2 Components in Research Structure 4

Figure 2-3 The Global Integration Process 6

Figure 2-4 Transform Relational Data Model into XML Data Model 8

Figure 2-5 An Example of Transforming Object Data Model to XML Data Model 9

Figure 2-6 Query Processing in Research Structure 15

Figure 3-1 The Prototype System Architecture 18

Figure 3-2 Demonstration of the creation of the ontology by means of
Protégé¢ 2.0 20

Figure 3-3 Prototype System Functions 20

Figure 3-4 Query Interface of the Prototype System 22

Figure 3-5 Users formulate the XQuery expression of their own queries according to
the global schema 23

Figure 3-6 The reformulated query 23

Figure 3-7 The query plan generated by the prototype system 24

Figure 3-8 The decomposed sub-queries and the translated query generated by
wrappers 24

Figure 3-9 The decomposed sub-queries and the translated query generated by
wrappers (continue) 25

Figure 3-10 Query-processing complete 25

Figure 3-11 The query result in XML document 25

v

List of Tables

Table 2-1 Correspondences between Relational Schema Constructs and W3C XML
Schema Constructs 7

Table 2-2 Correspondences between Object Database Schema Constructs and W3C
XML Schema Constructs 8

Table 2-3 Causes for Structural Heterogeneity 10

Table 2-4 Causes for Semantic Heterogeneity 12

Table 2-5 Comparison between GAV and LAV 14

Table 2-6 The Correspondences between XQuery Expression and SQL
Expression 17

Table 2-7 The Correspondences between XQuery Expression and OQL

Expression 17

1. Introduction

1.1. Research Motivation

The research issues for heterogeneous information integration (HII) have become ubiquitous
and critically important with the increasing dependence on Internet/Intranet and information
technology (IT). In a contemporary firm, information is distributed company-wide due to
competition, evolving technology, mergers, acquisitions, and geographic distribution. The
popularity and dynamics of the Internet/Intranet is another source of this widespread distribution,
with information represented and stored in different forms including structured data,
semi-structured data, and unstructured data. Heterogeneity is here to stay for these very reasons
and it is up to users and managers in terms of how and why to tackle the integration and
distribution research issues.

Although Information technology marks a new era in business management and enables any
firm to achieve complicated e-business, it may face difficulty in dealing with the distributed and
heterogeneous information sources. One of the main concerns is that the information obtained
may be inconsistent and contradictory. The other is how to access the different information
sources effectively and efficiently. Therefore, heterogeneous information integration has been at
the top of list for IT investment and strategy (Jhingran, Mattos, & Pirahesh, 2002). Companies
must make a concerted effort to tackle information integration. In light of this, the objective of
this research is to address the research problems of interoperability, scalability and portability
between multiple heterogeneous information sources. However, so far the results are neither

adequate nor complete.

1.2. Research Issue

There are some roadblocks in the way of achieving effective information integration. For
example, information sources are distributed and the amounts of data are large. So the first target
is to efficiently access multiple information sources and to decrease large amount of information
transformation. Moreover, information sources are heterogeneous in system, syntax, structure and
semantics (Sheth, 1998). A general way to deal with heterogeneity problems is to create a
common data model. It plays the role of giving a common representation for the different
information sources handled by it, and it offers users a global view of the information sources
that can be accessed.

In the previous works, they adopted expert-dependent method to create the common data
model for the interoperability between the underlying heterogeneous information sources. It does
not seem to fit in with syntactic as well as semantic web-based heterogeneous information
integration in e-business (EB). So in this research, we try to find out a solution to solve this
shortcoming in the previous works.

The eXtensible Markup Language (XML) has been the W3C standard document format for
exchanging information on the Web. It is a good candidate to be the lowest common denominator
for integration tasking. Some of its numerous advantages are that it is simple and self-describing.

Furthermore, some related technologies such as the query language utilized by it (for example,
XQuery) have also been standardized recently. Due to the above advantages of XML, there are
more and more research adopted XML as the common data model. However, while XML can
indeed establish interoperability between different information sources on the Web, its main
limitation is that it copes only with structural heterogeneity; it can barely handle semantic
heterogeneity. Hence, we deem that it can hardly reach the better interoperability of structure and
semantics between heterogeneous information sources over EB settings.

The clarification of implicit and hidden knowledge depends on ontologies, which can be
regarded as an important and natural means to represent real world knowledge XML can hardly
catch. For example, XML cannot catch the relationships like intersection, union, complement and
so on. In contrast, ontologies are fit to represent such relationships. Hence, we try to combine this
two different data models in order to reach better interoperability not only about structures but
also semantics of the heterogeneous information sources. As such, ontology is added in this
research to assist to reach not only structure but also semantic interoperability in HII.

1.3. Research Objective
This research dealing with HII alternative relies on XML with ontology assisted. The main

objectives of this research are:

A. To enable the web-based alternative to traditional HII in EB settings.

B. To enhance both structural and semantic interoperability of the underlying heterogeneous
information sources by extending global schema with ontology.

C. To enhance the query processing capability by taking the advantage of global schema’s easy
and efficient query reformulation characteristics and working with ontology.

2. Research Methodology

In this section we further describe the integration problems and present our research method
and research structure. We propose the approach to tackle the research problems addressed in
prior section. We focus on the resolution of the heterogeneity problems among information
integration over the Internet. This research approach hopes to provide systematic and
methodological information integration.

2.1. Research Method

Liang (1997) summarized the MIS research methods. He stated that MIS scholars held a
series of conferences on research methods in 1989, and identified the five primary research
methods including (1) case study, (2) survey, (3) experiment, (4) model driven, and (5)
prototyping. Taking the five methods into consideration, prototyping is suitable and fit to be
applied in this research.

2.2. Research Structure
There have been many works focusing on heterogeneous information integration. Typical

information integration systems have adopted mediator/wrapper architecture (Wiederhold, 1993).
Under such architecture, the mediator provides an integrated and global view of different
heterogeneous information sources. With this view, queries can be formulated by the clients.
Besides, wrappers provide local views of information sources in a uniform data model. The local
views can be queried in a limited way according to wrapper capabilities.

TSIMMIS, DISCO, Garlic, Information Manifold and so on were the methods which have
adopted mediator/wrapper architecture. They focused on providing an integrated data model that
is an object model. However, beginning in the 21st century, XML has taken the place of object
model as the pivot model. XML has become an emerging standard of data exchange and has
many advantages to become the best candidate to be the common data model when performing
heterogeneous information integration.

However, the information integration studies which adopt mediator/wrapper architecture and
use XML as the common data model to capture heterogeneous sources have met with semantic
problems, but only syntactical and structure ones. Ontology from the field of artificial
intelligence describes the knowledge representation that provides definitions of vocabulary in
certain domain. The use of ontology to explicate and explore the implicit and hidden knowledge
seems to be a promising approach to tackle the problems of semantic heterogeneity. Therefore,
we add ontology and develop an information integration model and method that is based on
mediator/wrapper architecture to solve the heterogeneity problems over the heterogeneous
information sources. Users can thus access heterogeneous information sources via one uniform
and seamless platform.

The research structure is illustrated in Figure 2-1.

Client
Integrated fen Integrated

Schema — 4 Ontology

< »| Mediator | +—>

</xs:schema>

T

= &

Wrapper Wrapper Wrapper

A A A
Info. Info. Info.
Source Source Source

Figure 2-1: Research Structure

At the bottom of Figure 2-1 there are a number of information sources which contain diverse
information that needs integration. Different information sources present their own data in a
different data model so the client has to use different access interfaces to get the data, and at the
same time, take the following details into consideration, such as the location of data,

effectiveness and efficiency of accessing different information sources, data quality, and
consistency if an update is performed. To overcome the above difficulties, we construct
corresponding wrappers for different types of information sources. The wrapper is used to
translate data access and manipulation requests between mediator and information sources.
Above each wrapper in the figure is a mediator, in charge of query processing in the research
structure. In addition, the mediator provides the client with the integrated view of the underlying
heterogeneous information sources and processes clients’ queries against the information sources.

In the following, we describe the research structure in detail. The components in the research
structure are depicted in Figure 2-2.

Client
A
XQuery XML Document
v
i Query - Inference I
ot~ Reformulation > Engine ;
R Result
</xs:schema> Composition
Query
Integrated . Decomposition
Schema
Mediator 4
v Integrated
Ontology
Query Result
Translation Packaging
Wrapper A

Information Source

Figure 2-2: Components in Research Structure
As the Figure 2-2 shows, there are two major parts in our research structure: (1) Mediator (2)

Wrapper. We describe the functions of the individual component of each part as follows.

First, the components in the mediator:

A. Query reformulation is used to receive the query from system query interface and then send
out a reasoning request according to the query from the interface to the inference engine in
order to find out the implicit knowledge and relationships in that query. The inference engine
then gets the reasoning result and passes it back to the mediator, in which query
reformulation component receives this result. The component, according to the result,
reformulates the query to represent the facts in an explicit form. Afterwards, it passes the
reformulated queries to the query decomposition component for further process.

B. Query decomposition receives the reformulated query from query reformulation component.

4

After receiving the query, it decomposes the query into several sub-queries according to the
integrated schema and the specified mapping between global schema and local schemas.
Then it passes those sub-queries to the corresponding wrappers.

C. Result composition receives the packaged results from wrappers and recombines the results
into an XML document according to the user request. It may also require the assistance of
the integrated schema while composing the results.

Second, the components in the wrapper:

A. Query translation is used to receive the sub-query of the target source and then translate it
into native query of that information source. After that, it sends the native query into the
underlying information source for finding out the data demanded.

B. Result packaging gathers the native results and packages them in a form that is known by the

mediator. Then, it sends the packaged result to the mediator for further process.

2.3. Information Integration Method in Research Structure

In this section, we detail our methods of information integration in our research structure.
Our goal is to provide a convenient and effective way for users to access a number of
heterogeneous information sources simultaneously and get an integrated result just like accessing
only one information source. Users who interact with the information integration structure do not
have to consider the details of the information sources they face. To achieve this goal, we must
integrate the underlying sources and provide users with a unified view of the structure and
content of these sources. Providing the unified view depends on the integration of different data
models of the underlying information sources. Hence, integrating different data models of the
underlying sources is significant and helpful.

But before performing the data model integration, we must identify problems that we will
meet in the information integration. Problems coming from heterogeneity of the data are already
well known within the distributed database systems community: (Cui, Jones, & O’Brien, 2001;
Wache, Vogele, Visser, Stuckenschmidt, Schuster, Neumann, & Hiibner, 2001).

A. The system level of heterogeneity includes incompatible hardware and software systems,
which results in a variety of different access mechanisms and protocols.

B. The syntactic level of heterogeneity refers to different languages and data representations;

C. The structural level includes different data models;

D. The semantic level considers the contents of an information item and its intended meaning.

XML is widely predicted to improve the degree of interoperation on the Internet. Yet XML
does not address ontology and provides only a syntactic and structure representation of
knowledge. For this reason, we use XML as the uniform data model for performing HII with
ontology assisted for the dimension of the semantics. We would like to present the details of our
methods of HII as follows. And we use an example which is about the domain of university to
explain our method of information integration.

2.4. The Creation of Global Schema

When performing heterogeneous information integration, we first encounter the
representation problem for the structure of different data models. Parent et al. 1998 formalized
the database integration process in order to develop an integrated schema (see Figure 2-3). To
establish the integrated schema as a unified view of existing information sources, the
heterogeneous schemas of the corresponding underlying information sources are usually
transformed to make them as homogeneous as possible. Researchers in database integration
generally assume that input schemas are all expressed using the same data model, the so-called
“common” data model.

local
heterogeneous

schemas

schema =
transformation -t

local
homogeneized
schemas

il — correspondence
investization -
interschema
correspondence
assertions
schemas :

integrated schema
and mappings

DBA

Figure 2-3: The Global Integration Process
(Data Source: Parent, & Spaccapietra, 1998)

In this subsection, we extend the published database integration process to our information
integration method to create the global view of the underlying information sources. In contrast to
the traditional HII, they use an expert-dependent method to create their global schema. However,
in this research, we try to provide a more general method to handle this issue. We use XML as the
common data model to enable HII and propose two steps for the creation of global schema in our
method, which are: (1) Generic Construct Oriented Schema Rewriting, and (2) Schema
Integration. Performing the schema transformation by using the method of generic construct
oriented schema rewriting is a more general and convenient way to apply to most kinds of
information sources in contrast to the traditional method. That is our emphatic point.

2.5. Generic Construct Oriented Schema Rewriting
In order to homogenize the representations of the data models using in heterogeneous
information sources, we have to create rules for rewriting between XML and the native data

models. Since our information integration model is regarded as a generic model, it is expected to
tackle any kinds of information sources. The heterogeneous information sources that we most
often encounter can be roughly classified into three categories, which are: structured information
sources, semi-structured information sources, and unstructured information sources. Structured
information sources include Relational Database Management System (RDBMS) and Enterprise
Information System (EIS, such as ERP, SCM, and CRM) files, among others. One example of
semi-structured information sources may be Object Database Management System (ODBMS) or
XML data files. Unstructured information sources may include HTML pages, multimedia files,
office flies, and legacy files, and so on.

We deign to apply the generic construct oriented schema rewriting process to the structured
and semi-structured information sources. The unstructured information source here is hard
pressed to receive this type of HII pre-processes because it is lack of the structure definition,
schema. As such, in our research structure we treat the unstructured information sources as
special cases and they need an additional process described in the later sections.

To transform the data models of the structured and semi-structured information sources into
XML, we have to specify one-to-one rewriting rules for every native data model. Before
specifying the rewriting rules, we have to identify the correspondences between the constructs of
XML and other native data models. Here we provide the correspondences between XML and two
representative data models of structured and semi-structured information sources, which are a
relational model and an object model as explained. Table 2-1 shows the correspondences of
relational schema constructs and XML Schema constructs. According to the specified
correspondences, the relational schema can be rewritten into a W3C XML Schema just as the
example shown in Figure 2-4 describes.

Table 2-1: Correspondences between Relational Schema Constructs and W3C XML Schema

Constructs

Relational Schema Constructs W3C XML Schema Constructs

Relation element (with xs:complexType)

Attribute element

Date type date type (primitive type / xs:simpleType)
Cardinality multiplicity (minOccurs / maxOccurs)
primary key (PK) key (xs:key)

foreign key (FK) keyref (xs:keyref)

B Relational Data Model:

Course | Name | course_id | department id | credit | t id
FK

v
PK

Teacher | name | teacher id | dept id | rank | office | phone | email

gt

B XML Data Model:

Teacher
Course
nam
course_id t id teacher_id email
department id VL credit o= dept_id phone
— name rank office

Figure 2-4: Transform Relational Data Model into XML Data Model
Table 2-2 shows the correspondences between object database schema constructs and XML
Schema constructs. Similar to rewriting relational schema into W3C XML Schema, we provide a
simple example in Figure 2-5 to illustrate the transformation between object database schema and
XML Schema according to the specified correspondences in Table 2-2.
Table 2-2: Correspondences between Object Database Schema Constructs and W3C XML

Schema Constructs

Object Database Schema Constructs W3C XML Schema Constructs

Class element (with xs:complexType)

attribute (simple) element

primitive type data type (primitive type)

struct (user-defined type) data type (xs:simpleType / xs:complexType)

Key key (xs:key)

extend (inheritance) only single inheritance supported
(xs:extension / xs:restriction)

relationship/inverse

Extent Not Supported

Method

We use an object data model that is illustrated in (Elmasri, & Navathe, 2000) to be an
example. We use just two classes, “Person” and “Faculty”, of the entire data model in order to
show how to rewrite an ODL schema for object database into W3C XML Schema.

B Object Data Model: (Data Source: Elmasri, & Navathe, 2004)

| has_facuity
Bt MGoIs
| - - oblers
I.-JI'p.J'Ilrll'I'nl 1
alfferacd by
W maers_in Y
Y completed_sechons Course
Student - J 1% _SOChons
adhvis cli [
o 58
e GradStudent -
o _connimetios of COMmImItttea
k) registecog_studoms
B XML Data Model: ﬂ
Faculty

ssSn

birthday phone

fname
mname

Iname Sex office

address
rank salary

no state
street)
city

aptno

Figure 2-5: An Example of Transforming Object Data Model to XML Data Model
We just show the generic construct correspondences between XML and two structured
information sources, RDBMS and ODBMS, as explained. According to the correspondences, we
can rewrite the native data model using in local information source into XML. Different
information sources use different data model to describe their own data. To enable heterogeneous
information integration, the one-to-one generic construct correspondences to rewrite the local

data model into the common data model, XML, by using our integration structure is necessary.

2.6. Schema Integration

Before we integrate the schemas, we have to identify the commonalities between different
schemas and characterize the inter-schema relationships. Schema integration uses the
correspondences to find similar structures in heterogeneous schemas, which are then used as
integration points.

However, in order to find out the correspondences between a set of independently developed
schemas, we must recognize the causes for the structural heterogeneity between them in advance.

We must gain the interoperability among the underlying sources by solving the heterogeneity
problems between them so that we will achieve information integration. But the causes of the
heterogeneity must be clarified first, and then we can deal with the heterogeneity problems by
pointing out the correspondences between different schemas. Kashyap et al. (1996) and Visser et
al. (2003) have categorized the causes for structural heterogeneity. We summarize the reasons for
them in Table 2-3.

Table 2-3: Causes for Structural Heterogeneity

Causes Explanations

Naming Conflict These are of two types. Synonyms are the one which means that
two attributes (or entities) that are semantically alike might have
different names. Homonyms are the other one which means that
two attributes (or entities) that are semantically unrelated might
have the same names.

Domain Conflict Two attributes that are semantically similar might have different
domains or data types.

Default Value Conflict This one depends on the definition of the domain of the concerned
attributes. For example, the default value for age of an adult might
be defined as 18 in one data source and as 21 in another.

Identifier Conflict The primary keys of two entities in two sources are incompatible,
because they use identifier records that semantically different. For
example, the key of student entity might be defined as ID# in one
source and as NAME in another.

Integrity Constraint Conflict | Two semantically similar attributes might be restricted by
constraints which might not be consistent with each other. For
example, the age of adult is defined to over 18 in one source and
as to over 21 in another.

Missing Data Item Conflict | This conflict arises when, of the entity descriptors modeling

semantically similar entities, one has a missing attribute.

Aggregation Conflict These conflicts arise when an aggregation is used in one source to
identify a set of entities (or attributes) in another source.

Attribute — Entity Conflict This one arises when the same thing is being modeled as an
attribute in one source and an entity in another source.

Data Value — Entity Conflict | It arises when the value of an attribute in one source corresponds

to an entity in another source.

Data Value — Attribute | This conflict arises when the value of an attribute in one source
Conflict correspond to an attribute in another source.

Those mentioned above are possible structural heterogeneity problems likely encountered
while performing the schema integration to construct a global, unified schema to be the
foundation of the information integration. It deserves consideration to construct a global schema
with correspondences or mappings between the different source schemas to solve the structural

10

conflicts between them and then gain the interoperability.

Therefore, we can analyze the structural heterogeneity problems between the schemas that
are rewritten in XML we want to integrate according to the listed causes of recognition. In the
following, we continue to use the example addressed in the previous subsection to explain the
process of correspondences identification.

A. Naming Conflict: element “Teacher” using in schema S1 and element “Faculty” using in

schema S3 are semantically the same but have different names.
Correspondence: S1.Teacher = S2.Faculty
B. Aggregation Conflict: the aggregation of element “fname”, “mname”, and “Iname” using in

schema S2 is semantically the same.
Correspondence:
S1.Teacher.name = S2.Person.name (S2.Person.name.fname +
S2.Person.name.mname + S2.Person.name.lname)
C. Identifier Conflict: the primary key of entity “Teacher” in source schema S1 is “teacher id”,

but the primary key of class “Faculty” in source schema S2 is not specified explicitly, that is

“ssn” which is inherited from its parent class “Person”.

Afterward, we can specify the integration rules according to the identified correspondences
to integrate the independent schemas into the global schema. Continuing the previous example,
we can specify the following integration rules:

A. Correspondence: S1.Teacher = S2.Faculty

Integration rule: G.Faculty
B. Correspondence: Sl.Teachername = S2.Person.name (S2.Person.name.fname +

S2.Person.name.mname + S2.Person.name.lname)

Integration rule:

G.Faculty.name (G.Faculty.name.fname + G.Faculty.name.mname + G.Faculty.name.Iname)
C. Identifier Conflicts:

Integration rule:

Because the semantics of these two identifiers is a little different, we keep them separately in

the integrated schema and use “teacher_id” to be the identifier of the integrated element

“Faculty”.

However, identifying the structural conflicts and correspondences between the independent
schemas and specifying the integration rules for our method still needs the intervention of human
experts. There are still some research efforts for automatic schema matching (Rahm, & Bernstein,
2001) for producing correspondences between different schemas. Once they are identified,
matching elements can be unified under a coherent, integrated schema or viewed by using

techniques like schema merge.
2.7. Special Process for the Unstructured Information Sources
Unstructured information sources such as static web pages, multimedia files, etc. do not

have “schema”, so we must treat such information sources as a special case and provide special

11

process for them. We create indexes of those sources and do not perform transformation on them.
We simply wait until the global schema is created and specify the mapping between them, which
will be described in a later section.

2.8. The Creation of Ontology

XML is a representation language for specifying the structure of the underlying information
sources and thus their structure dimension. The structural representation can represent some
semantic properties but it is not clear how this can be deployed outside of a special purpose
application. To allow for a real semantic interpretation for HII, the common data model, XML,
must be complemented by a conceptual model that adequately describes the domain we want to
perform the information integration. This role cannot be filled by just XML data model (Erdmann,
& Decker, 2000).

Using an ontology containing facts and relationships about the application domain of interest
as the conceptual model to capture real world knowledge may be a promising approach. However,
most ontology creation is carried out on a manual basis. There are a number of publications about
ontological development that have been published. Uschold & Griiniger 1996 proposed four main
phases when developing ontologies, which are: (1) identifying a purpose and scope, (2) building
the ontology: this includes three sub-phases, which are: (a) ontology capturing, (b) ontology
coding, (c) integrating existing ontologies. The later two phases are (3) evaluation and (4)
guidelines for each phase. Furthermore, Sugumaran & Storey 2002 provided a heuristics-based
ontology creation methodology to create the domain ontology.

For our research, we follow the proposed principles to create the needed ontology on a
manual basis. We create ontology in order to allow for real semantic interpretation for HII to
complement the shortcoming of just using XML in the task of information integration. Besides
defining the terms and relationships for the domain in which we perform HII on the ontology, the
semantic heterogeneity should also be considered when creating the needed ontology. We
recognize the reasons for the semantic heterogeneity problems that the ontology in our research
structure wants to handle. Visser et al. (2003) have also categorized the reasons for semantic
heterogeneity. We list and explain the reasons for semantic heterogeneities in Table 2-4.

Table 2-4: Causes for Semantic Heterogeneity

Causes Explanations

Conflicts with Scale and | Two attributes that semantically similar might be represented
Currency using different units and measures.

Representation Conflicts Two attributes are semantically similar, but they might be

represented in different formats, for example, school grade: {1, 2,
3,4,5} vs. {A,B,C,D, E}

Subjective Mapping | The subjective of two attributes is the same, but they are

Conflicts represented in their own styles. For example, German grades: {15,
14, ..., 0} vs. American grades: {A, B, C, D, E}

Subsumption Conflicts The content of an attribute is subsumed by the other one. For

12

example, “hotels” includes “congress-hotels”, but the latter, with
smaller scope of concept, is only part of the former.

Overlapping Conflicts Parts of the content of two attributes are the same, but they are not
equal to each other. For example, hostels and hotels vs. hotels and

camp-sites.

Incompatibilities The concepts of two attributes are the same, but actual meanings
of them are still a little different. For example, hostels and hotels
all mean the places for accommodation when traveling, but
hostels are cheaper, some are only for youth. In contrast, hotels

are more expensive.

Aggregation Conflicts The concept of two attribute are different, but the concept of one
of them is the aggregative concept of the other one. For example,
hotel company vs. hotel. Hotel company means a company that
operates hotels, but hotel means the place for accommodation

when traveling.

We take the above conflicts into consideration when performing the conceptual modeling for
the underlying information sources for the creation of the needed ontology. Afterward, we must
create a connection between the global schema and the created ontology for the use in our
research structure in the following.

Because the ontology defines terms and relationships with axioms of a domain, we view the
elements in the global schema as the instance of the resources defined in the ontology. In other
words, we use the ontology to define the relationships between the elements in the global schema.

The fragment of the above ontology defines a resource “Faculty” and represents the
relationship between resource “Faculty” and resource “Employee” which means faculty must be
an employee. We use such definition to define the element “Faculty” in the global schema.

Under such kind of connection between the two different data model, semantics defined in
the ontology itself can be appended to the elements in the global schema which is represented in
XML format.

We can hardly describe the relationship that a teaching assistant “must be” a graduate
student in XML data model. However, such kind of relationship is common in the real world. To
complement such a shortcoming of XML, we catch the relationship and define it in the ontology.
And then we connect the two data model by defining the element about teaching assistant in the
global schema as the instance of the resource in the ontology.

Afterwards, we can obtain the knowledge that a teaching assistant must be a graduate
student by inferential against the ontology. Obtaining more knowledge about the real world can
help enhance the accuracy and precision of the interoperation between the underlying
heterogeneous information sources.

Although an XML data model could represent certain kinds of semantics, for instance
inheritance, there are still some relationships that cannot be represented by the XML data model,
for instance intersection, union and so on. We use ontology to define the complete relationships

13

of the domain and then use it to define the relationships between the elements in the global
schema by viewing the global schema as an instance of the ontology.

Only while creating the connection between global schema and ontology, we can enable
reasoning over the ontology to assist the query against the global schema in the research structure

and reach the interoperability of structure and semantics.

2.9. Mapping Global Schema to Local Data Sources

After we create the integrated schema, we still have to consider the mapping between global
schema and the local data source schema. Since we view the integration structure as an
independent system from the local data source, we must build some bridges between the schemas
of the integration system and those local data sources. The mapping is the bridge of the global
schema and the local data source schema. However, there have been several proposed approaches
to specify the mapping between global schema and local schema, which are global-as-view
(GAV), local-as-view (LAV) (Levy, 2000; Manolescu, Florescu, & Kossmann, 2001). The first
approach is to define the global schema as a view over the local schemas. In contrast, the second
approach is to define the local sources as views over the global schema. The fundamental
comparison between these three approaches is presented in Table 2-5.
Table 2-5: Comparison between GAV and LAV

GAV

LAV

Query
Reformulation

Translating the query on the global
schema into queries on the local
schemas is a simple process of view
unfolding.

The query on the global schema
needs to be reformulated in the terms
of the local data sources’ schemas;
this process is traditionally known as
“rewriting queries using views” and
is a known hard problem.

Data
Modification

To handle modifications in the local
data sources set or in their schemas,
the new global schema needs to be
redesigned considering the whole
modified set of sources.

A local change to a data source can be
handled locally, by adding, removing
or updating only the view definitions

concerning this source.

Data Format

If the local data sources do not have
the same data format (e.g. some are
relational while others are XML), it
would be difficult to define the global
schema as a view over sources in
different formats.

Each source can be described in
isolation, by a view definition

mechanism appropriate to its format.

We adopt the GAV approach to specify the mapping between global schema and local data

source schema because its query reformulation process is easier than the LAV approaches.
Although the evolution process of GAV approach is harder than LAV approach, the query
reformulation process is our prior consideration of adopting which approach for specifying the

14

mapping. We also apply this approach to the unstructured information sources to specify the
mapping between the global schema and the index created in the previous section.

Creating the mapping between global schema and local source schema gains the
interoperability of different systems. That is also the goal of this research. In the following, we

describe how to apply the integrated model in our research structure.

2.10. Query Resolution in Research Structure

In the beginning, the query interface was designed according to XQuery because we used
XML for the common data model of our research structure. As a result, users have to formulate
their query request in an XQuery form against the integrated schema. Figure 2-6 shows the steps

of query processing in the research structure. We explain every step in more details as follow:
A

<!Element >
<!Attribute >
<!Element >
<!Element >

Integrated
Schema

JoeyIo)ul oY) WOy
1sanbal A1and ¥

01 JUSWINOO(]
TINX

A 4

Reasoning
request Query

Infer§nce .| Reformulation
engine

A

Reasoning
A result

Result

v Composition

Arandx
pare[nwiIojoy

A

Integrated v
Ontologv Query

Decomposition

S)[nNsa1 pagexoed

soonb-qng

A 4

Query Result
Translation Packaging

Native aueries Native results

Information Source

Figure 2-6: Query Processing in Research Structure

15

A. Query Reformulation:

After a user issues an XQuery request from the query interface against the unified view we
provide, this query request would be sent into the mediator, where the query reformulation
component in the mediator would receive it. The query reformulation component would pass a
reasoning request according to the original XQuery request issued by the user to the inference
engine and then inference engine would access the ontology in order to find out the relationships
that are implicit in the user’s original XQuery request.

Since we want to find out the implicit relationships in the user original XQuery request, we
have to take the user query apart. We identify and extract entities in the user query for issuing the
reasoning request to the ontology. According to the reasoning request, inference engine can have
the reasoning results.

The reasoning results are sent back to the query reformulation component. Hence, the query
reformulation component could reformulate the original XQuery request on the basis of the
reasoning results. For example, the user might not discover the implicit relationships between the
entities specified in the global schema because the global schema just gives the user the sketch of
the structure of the underlying information sources. Therefore, the reasoning results can be used
to complement the path expression that formulate by the user original that can clear the
relationships specified in the user query. Besides, the reasoning results may help to find out much
more and related answers of the query by adding new query expression.

Afterward, the query reformulation component would send the reformulated query to the
query decomposition component.

B. Query Decomposition:

After the query decomposition component received the reformulated query, the reformulated
query would be decomposed with the assistance of the mapping between integrated schema and
local source schema. So query decomposition component could use such information to
decompose the query into several sub-queries that are respectively applicable to their target
information sources. Afterwards, query decomposition component would send these sub-queries
to the corresponding wrappers.

C. Query Translation:

The wrapper would then receive the corresponding sub-queries. However, due to the limited
capability of the underlying information source, the wrapper would have to translate the generic
sub-queries (used in this framework) into native queries (e.g. SQL) according to the capability.
Afterwards, such native queries would be issued to the corresponding source in order to find out
the data really needed.

To enable query translation, we have to identify the correspondences between XQuery
expression used in our research structure and the local source query expression. In this research,
we also use the representative heterogeneous information sources that are RDBMS and ODBMS
as the explanation. We identify the correspondences between the different query languages and
list them in Table 2-6 and Table 2-7.

16

Table 2-6: The Correspondences between XQuery Expression and SQL Expression

XQuery Expression SQL Expression
For No Corresponding function
Let
Where Where
Order by Order by
Return Select
Aggregation function Aggregation function
Comparison Comparison
Path expression No Corresponding function
included in XPath expression From
No Corresponding function Group by
Having

Table 2-7: The Correspondences between XQuery Expression and OQL Expression

XQuery Expression OQL Expression
For No Corresponding function
Let
Where Where
Order by Order by
Return Select
Aggregation function Aggregation function
Comparison Comparison
Path expression Path expression
included in XPath expression From
No Corresponding function Group by
Having

According to the list of correspondences between the two different query languages, we can
find out some kinds of the query expression cannot be completely mapped to another one.
However, we just treat the exception of the mapping as a special case and markup it for the
further process that might be the requirement for writing additional rules at the execution time.

D. Result Packaging:

After the information source processes those native queries, it would send the native results
(e.g. record set) back to the wrapper. Because it is one-on-one between a wrapper and a type of
information source, this makes sure that the results would be sent back to the corresponding
wrapper. After receiving the results, the wrapper would package the results into a normal form
and send it back to the mediator.

E. Result Composition:
It is the query composition component in the mediator that would collect several packaged

17

results sent back from several wrappers according to the previous decomposed result. And with
the aids of the integrated schema, the individual results could be composed in a complete XML
document. Finally, it would send the XML document to the interface for the user.

To construct an integration system, we must consider execution rate, completeness of the
query result, and consistency of all the underlying data. And the optimization issue must be taken
into consideration while performing the query process. However, because the optimization issue
is out of our scope, we won’t discuss it here in this research.

3. Research Prototype

According to the research method described in prior section, a schema and ontology-assisted
heterogeneous information integration prototype system is implemented. This system shows that
the integration method of this research is able to obtain the interoperability between multiple
heterogeneous information sources. In this section, the platform, architecture, and development of
our prototype system is described in the following sections.

3.1. Prototype System Architecture

The prototype system architecture is shown in Figure 3-1. In our implementation, we tackle
three kinds of heterogeneous information sources including structured data source,
semi-structured data source, and unstructured data source. They respectively are relational
database management system, native XML database, and web pages. Microsoft SQL Server 2000
is choose as the structured data source as well as Tamino 4.1.4 native XML Database is choose as
the semi-structured data sources. Besides, we also take a web page repository as the unstructured
data source.

Users connect to the prototype system which is built on the web server through the Internet
by the client side browser. The prototype system receives the request from the user and sends it to
the underlying information sources. After the underlying information sources process the requests,
the prototype system collects the results and shows them to the user on the browser.

Client
(W eb Browser)

Prototype System
(W eb Server Application)

W eb Pages

Relational Objectand Native XML W eb Pages
Database Database Repository

Figure 3-1: The Prototype System Architecture

18

3.2. Prototype System Platform

In our implementation, we choose Active Server Page (ASP) and Java Server Pages (JSP) as
our programming language and Microsoft Windows XP Professional edition as the operating
system. We use Microsoft Internet Information Server 6.0 and Tomcat 5.0 as the web server.
Microsoft SQL Server 2000 and Tamino 4.1.4 native XML database are the underlying databases.
This prototype system uses client/server architecture. Microsoft Internet Explorer 6.0 is chosen as
the client side web browser.

We also use Protégé 2.0 with OWL plug-in to edit the required ontology. And we use Jena
API from HP Labs as the ontology inference engine to perform the needed reasoning in the
prototype system.

3.3. Prototype System Design

Because of the lack of real world cases, we choose an application scenario of a university to
implement our prototype system. Under such a scenario, we simulate three kinds of information
sources as the required implementation scenario, which are:

A. Structured information source: Relational Database

B. Semi-structured information source: Native XML Database

C. Unstructured information source: Web Pages Repository

After the simulation of the required scenario, we start to create the needed global schema.
We first use the generic construct correspondences to transform the schema of the structured
information source, the relational database, into the form of XML Schema. Since the form of the
schema of the semi-structured information source, the native XML database, is XML Schema, we
need not to do the transformation on it. Afterward, we create global schema manually by using
the method.

We still must create the required ontology to catch the relationships that can not be hold in
the global schema. We follow the research method to create the ontology in OWL by using the
ontology editor — Protégé 2.0 with OWL plug-in from Stanford. Figure 3-2 demonstrates the

creation of the ontology by means of Protégé 2.0.

19

¥ university Protégé 2.0.1 (F:\Thesisiprototype systemiOntology\university.pprj, OWL Files)

Project Edit Window OWL Help ETEER

C=la] -~ =R [AR FE 6 @
F@OWLCIasses rE[DPropenies ﬂ:ﬂ]Forms r@mun.liduals r@metadata ‘

Asserted Hierarchy ’T"a’?' E : (G i] (s e i) |T-||:|m E
[ol Thing ; [Name | Labels | [Annotations v ’?-"TJ -

C) Assistant i
+e (C] ResearchAssistant i |TeachmgAsswslant | Property \ walue
(C) TeachingAssistant :
@ (C)Employee i Documentation
@ (C) AdministrativeStaf i
@ (CIFaculty
() Lecturer
(C) PostDoc
©- (C) Professar
@ () Organization 2
% Solleie ' | [msserted | Tinferred | AtcClass || AtowlThing | &1 |
epartmen 5:
% ESUME " 55 Asserted Conditions C|G||+]|-|%X [FT[| Properties at Class | %/ ,?"TJ -
esearchGroup |
(S) University
(C)Persan 3
@ () Publication | [Assistant
@ (ClArticle o| T @ teachingAssistantOr Course) 1 Persan
(C) ConferencePaper i 1% musthe GraduateStudent
(C) Journalaicle =
(C) TechnicalReport
() Bonk
(C) manual
(C) Software
(C) Specification
(C) UnofiicialPublication
(C) Schedule

@ (S Student H o P

() GraduateStudent : [= | pisjoints V’a +,’E =%
(C) Undergraduate Student =

& (Clwiork

WECES34RY & SUIFFICIENT Natrie
MECESSART |0 teachingAs sistantor
[O] musthe ©

[aa

Figure 3-2: Demonstration of the creation of the ontology by means of Protégé 2.0
Figure 3-3 shows the prototype system functions design architecture. We provide an open
query interface. Users formulate their query in the form of XQuery expression by referencing the
structure described in the global schema. And the individual function of the other two primary

query-processing components is described one by one as follows:

Query

Interface XQuery Parsing

Inference Processing

Query Reformulating

Prototype System Mediator

Query Decomposing

Result Composing

Wrapper Query Translating

Result Packaging

Figure 3-3: Prototype System Functions

20

A. Mediator:
I. XQuery Parsing:

Because the query interface is designed to accept open query in an XQuery expression, the
system needs an XQuery parser to parse the query issued by the user from query interface.
II. Inference Processing:

After receiving the user query from interface, the mediator issues a reasoning request
according to the user query to the ontology in order to find out the implicit relationships hidden in
the user query.

III. Query Reformulating:

After receiving the reasoning results, the mediator reformulates the user query according to
those results. Due to the reformulation process, the system can find out more answers with higher
precision and accuracy to the query.

IV. Query Decomposing:

The mediator then arranges the query plan and decomposes the reformulated query into
sub-queries according to the specified mapping which is specified according to the GAV
approach.

V. Result Composing:

The mediator takes responsibility for composing the final results in XML document format
from the temporal results sent by the wrapper. Finally, show the results to the user on the browser.
B. Wrapper:

VI. Query Translating:

The wrapper takes the responsibility of translating the sub-query passed by the mediator into
the form of the native query. And then pass the native query into local sources for finding out the
needed answers.

VII. Result Packaging:
The wrapper should also collect the query results sent by the local source and sent it back to

the mediator to wait for further processing.

3.4. Prototype System Presentation

According to the functions description of the previous section, we demonstrate the
implementation of the prototype system as follows:
Figure 3-4 is the query interface of this prototype system.

21

3 EQuery T2 M - Microsoft Internet Explorer

E=)E
RO REE BAO BOESW IED NEE "

Qr=- 0O [¥E@G Pue Jraoee $se @ 3-2 ©-[J)3

AL T \@ hitp:#140.119.150 B0/HII_prototypedindes him

v| Bz Ew >

XQuery Interface

Global Schema:

e Global Schema Decument

XQuery Expression:

Submait

&) = & iriv PIBEABES

Figure 3-4: Query Interface of the Prototype System
Figure 3-5 illustrates that users formulate the query according to the global schema provided

by the prototype system. We give a sample query here to illustrate the query process of the
prototype system.

Sample Query: “find out advisors of teaching assistants of course ‘ADB’”
XQuery Expression:
FOR $a IN document(‘GS.xml’)/GSROOT
LET $b := FOR $t IN document(‘GS.xml”)/GSROOT/TeachingAssistant
LET $d := FOR $c¢ IN document(‘GS.xml”)/GSROOT/course
WHERE $c¢/cname = ‘ADB’
RETURN $c/ta id
WHERE §$t/ta_id = $d
RETURN $t/ta_ name
WHERE $a//name = $b
RETURN $a//advisor, $b

22

Qt=E- O [¥[@ Pus drumz @re @

& -3

FFHLD) |) hitp:140.119.150 SVHIL_prototypedindesc htm

Global Schema:

» Global Schema Diocument

XQuery Expression:

€

BRE GEE KR HHEEW TAD R
DX B @ Pus Sornne @me

HEHE D) |) hitpat140.118.150.24 LHIT_prototypedchemal3S sonl

v| B BE E=E

FOR $a IN document('GS.xml')/GSROOT
LET $b -= FOR $t IN document({ 'GS.xml')/GSROOT/Teachingassistant
LET $d := FOR $c IN document('GS.xml')/GSROOT/course
WHERE %c/cname = 'ADB'
EETUEN fc/ta_id
WHERE $t/ta_id = $d
RETUEN $1/ta_name
WHERE $a//name = fb
RETURN $b, fa//advisor

Subrodt

Figure 3-5: Users formulate the XQuery expression of their own queries according to the global

After receiving the user query, the system sends a reasoning request to ontology to find out
if there have been additional relationships hidden in the user query. Then system reformulates the
user query according to the reasoning result. Figure 3-6 shows the reformulated query generated
by the system after the query reformulation process. The paths highlight in red color in the
reformulated query is complemented by the system automatically according to the reasoning

result.

72} hitp:/7140.119.150.80/HII_prototypefinference_processing.asp - Microsoft Infernet Explorer

<

<department_id /=
<dname />
<dphone /=
<doffice />
<college />

<chair />

</Department >
- <Faculty>

<name />
<uid />
<birthdate />
<gex />

- <address>

<no />

<?xml version="1.0" encoding="UTF-8" 7>

- <GBSROCT

xmins:xsl="http:/ /www.w3.0rg/2001/XMLScheme
-instance''>

- <Department>

~

€

é%ﬁ}i

W TP R

schema

#BREE EEE &R0 #EWEEFWw TARD SAD

Q= - O ¥ [o Pms Jremae @re £

Z8-0J3s

RO |g‘| ‘hitp:#140.119.150 S0/HII_promtypedinference _processing asp

E=E]
.il

v B aE Em >

Oniginal Query:

FOR $a IN document(GS.zmlWGSROOT
LET $b :=FOR $t IN document(GS.zml WG SROOT/Teaching Assistant
LET bd := FOR $c IN document('GS.xml WG SEOOT/Course
WHERE boicname ='ADB'
RETURN Scita_id
WHERE $tta_id = 5d
EETUREMN $t/ta_name
WHERE $adname = b
RETURM $b, $aifadvisor

The Reformulated Query:

FOR $a IN document(GE =ml WGEROOT
LET $b := FOR $t IN document{ G5 zml" WG EROO T/ Teaching Assistant
LET $d := FOR $c IN document{G8.xml W3 SROOT/Course
WHERE Jcfcname = 'ADB'
RETURN Jcia_id
WHERE Jtita_id = $d
RETURN $tfla_name
WHERE $a/Crad Student/name = b
RETURMN $a/Gradstudent/advisor, $b,

Figure 3-6: The reformulated query
The system decomposes the reformulated query and generates the query plan as the
sequential reference of sending the sub-queries to the wrappers. Figure 3-7 shows the query plan

23

Reformulate Query...

~

generated by the prototype system.

<2} hitp:/7140.119.150.80/HII_prototypeidecomposition_plan.asp - Microsoft Internet Explorer

#RE &/EE BAO ENSFw IAD e w
Qix-© ARG Ome fromee @se © @3- 0% & -3
#8400 [) hitp:#1140.119.150 BOMIL_prototype/ieeomposition_plan asp ~ | B e ae >

~

The Query Plan generated by the system:

1.

FOR $c IN document{ G8.zml WG SROOT/ Course
WHERE $cfcname = '4DB'
RETUEN $cita_id

2.

FOR Bt M document('G8.2ml WG SROOT/ Teaching Assistant
LET §d :=$c

WHERE tita_id = §d

RETUEN $tfta_name

3.

FORSa IN document{'GS.xml WGSROOT
LET $b:=5t

WHERE Ba/GradStudent/name = fb
RETUEN $a/Gradstudent/advizor, $b,

Figure 3-7: The query plan generated by the prototype system
According to the query plan, system passes the sub-queries to the corresponding wrapper.
The wrapper takes responsible of translating the sub-query into the corresponding native query.
Then the wrapper sends the native query to the underlying source to find out the answer of the
query request. Figure 3-8 and 3-9 show the translated query generated by wrappers and the
temporal result after querying the underlying source.

2} hilp:/f140.119.150.80/HII_protoiypeidecomposilion.asp - Microsofi Internet Explorer

BEE &E|E WSRO BEmsEW ITAD SR aw
Qtm- O [H[E G P Jrensx @uwa @ (3- L e 3
HEHED)] http:#140.119.150 SIHIL_prototypeddesomposition asp ~| ieE | EE >

Query Translation made by the system:

1.

FOR $e IN document(G8.xml WGSROOT/Course

WHERE $c/cname ='ADB'

RETURN S$cfa_id

Microsoft SQL Server 2000 Wrapper...

The Tramslated Query: (in SQL expression)

SELECT ta_id T
FROM Course

WHERE course_name ='ADEB '

Temporal Results:

TaOL

2.

FOR Bt M document(GS8.2ml WGSROOT/Teaching Assistant
LET $d :=$c

WHERE $tfta_id = $d

RETURN $tta_name

Figure 3-8: The decomposed sub-queries and the translated query generated by wrappers

24

2} hitp-##140.119. 150 S0/HII_prototypedlecomposition.asp - Microsoft Internet Explorer

#wEE REE) RO HWEEW TADO HAD

Q7O @G Ome Frame: @0 @3- & [
#EAHD) @] htp:140.119.150 BOHI_prototypeiiecomposition.asp v| Bz aE >
The Translated Query: (in SQL expression)

e
SELECT ta_name

FROM Teaching Assistant

WHERE ta_id ='Ta01 "

Temporal Resulis:

Tudy

3.

FOR$a IN document({' GS.xml WGSROOT

LET $b:=$t

WHERE $a/GradStudent/name = $b

RETURN $a/Grads$tudent/advizor, §b,

Tamino 4.1.4 XML Database Wrapper...

The Translated Query: (in X-Query expression)
Gradstudent] name = 'Tudy'] Grad Studentfadvisor

Temporal Resulis:

Tom Chen

Figure 3-9: The decomposed sub-queries and the translated query generated by wrappers
(continued)
After finishing the tasks of the wrappers, the system collects the temporal results and

composes them into an XML document to complete the query-processing. Figure 3-10 shows the
completeness of the query-processing.

<2 hitp:/F140.119.150 80/HII_prototype/composition asp - Microsoft Internet Explorer

BEE WHED BR0 #WSEEW IAD AL ”

Q-0 HEG Pre Jramee @re @ (-5 @[3

D) @) hi:140.119.150 0L prototype/ccmpasition.asp v| B uE E# >

Query-Processing Complete!
There 15 1 set of records in the underlying sources matching the query request.

Figure 3-10: Query-processing complete
Figure 3-11 shows the final result in XML document. The structure of the final result is

according to the global schema. We add an additional annotation attribute, source, for showing
the answer that was retrieved from which information source.

a hitp:/f140.119.150 80/HII_prototypefqueryResult xml - Microsoft Internet Explorer

BREE WEED GO #O5ELW IRD N 3

Qir-O HEG Puedrom: @@ 25303

Bk |9j hettp:##140.115.150. B0/MIL_prototypedpuenyResult sml v|1;§ SEgE »

<l version="1.0" encoding="UTF-8" 7=
- <G5ROOT>
- <GradStudent:
<advisor source="Tamino XML Server''=Tom Chen</advisors:
< /Gradstudent =
- <TeachingAssistant=
<ta_name source="SQL Server'>Judy</ta_name:>
</Teaching&ssistant =
< fGSROOT =

Figure 3-11: The query result in XML document

25

4. Conclusions and Future Research Directions
This section presents a summary of this research. At the end, a few possible future works are

also described.

4.1. Summary

The research issues of heterogeneous information integration have become ubiquitous and
critically important in e-business because of the speedy development of information technology
and widespread of the Internet. Users in the contemporary company may face the problems of
accessing multiple heterogeneous information sources simultaneously. Accessing the
heterogeneous information sources separately without integration may lead to the chaos of
information requested. It is also not cost-effective. Therefore, the issue of heterogeneous
information integration in EB is really of great urgency. In this research, we go deep into such
issue and provide our solution by implementing the prototype system as a support. To sum up the
research results, the conclusions are described as follows:

A. Provide generic construct orientation method to generate the global schema of the
underlying heterogeneous information sources.

The creation of the global schema in the preceding research almost needs human experts
give ad hoc specification. We propose a generic construct orientation method to generate the
global schema in this research. Under such an approach, it gives application dependence which is
important to web-based HII in EB. Although it still requires experts to identify the conflicts
between transformed local source schemas, this idea provides a systematic way to generate the
needed global schema when performing heterogeneous information integration.

B. Provide a wiser query method over multiple heterogeneous information sources.

In this research, we add ontology to assist querying over multiple heterogeneous information
sources. Ontology can catch the relationships that cannot be held in the global schema. By
reasoning the relationship described in the ontology, the system finds out the additional implicit
meaning of the user query. As such, it can discover more precise and necessary answers regarding
the user query. We implement it successfully. Therefore, the query capability is enhanced.

C. Enhance the interoperability between the heterogeneous information sources.

The prototype system implemented in this research indeed enhances the interoperability
between the heterogeneous information sources. Through the XQuery interface of the prototype
system, users can get the needed and integrated information from different heterogeneous
information sources without additional considerations of the complexity of accessing each

information source. The contradictory nature of the requested information is reduced through the

26

information integration process. Interoperability enhancement is our emphatic point.

4.2. Future Research Directions

The prototype for HII with schema and ontology assisted implemented in this research are
trying to prove the information integration method we provide and get a satisfactory result. Due
to time and resource restrictions, this research still has a number of areas to improve in the future.
For example, thoroughly design the evolution process of the information integration method. The
automatic or semi-automatic correspondence and conflict identification of the creation process of
the global schema may need further study.

In addition, our method is best used in a stable environment, which seems applicable for
e-businesses and Intranets. However, the trend toward globalization stresses collaboration
between enterprises. The need for information exchange makes the issue of cross-enterprise HII
more and more important. So extending the scope of the heterogeneous information integration
from the e-business to e-commerce or even collaborative-commerce could be an interesting

research direction for further study in the future.

27

References

Baru, C. K., Gupta, A., Ludascher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P., & Chu,
V. (1999). XML-based information mediation with MIX. Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD1999), 597-599.
Baru, C. K., Ludéscher, B., Papakonstantinou, Y., Velikhov, P., & Vianu, V. (1998). Features and
requirements for an XML view definition language: Lessons from XML information mediation.
Position paper, W3C Query Language Workshop (QL’98).
Carey, M., Hass, L. M., Schwarz, P. M., Arya, M., Cody, W. F., Fagin, R., Flickner, M.,
Luniewski, A. W., Niblack, W., Petkovic, D., Thomas, J., Williams, J. H., & Wimmers, E. L.
(1995). Towards heterogeneous multimedia information systems: The Garlic approach. 5
International Workshop on Research Issues in Data Engineering-Distributed Object
Management (RIDE-DOM’95), 124-131.
Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., &
Widom, J. (1994). The TSIMMIS project: Integration of heterogeneous information sources.
Proceedings of the 10" Meeting of the Information Processing Society of Japan (IPSJ), 7-18.
Chu, Yu-Chi. (2001). Integrating heterogeneous information sources through ontology-driven
model and data quality analysis (Doctoral dissertation, National Taiwan University of
Science and Technology, 2001). Electronic Theses and Dissertations System,
089NTUST428107.
Cluet, S., Delobel, C., Siméon, J., & Smaga, K. (1998). Your mediators need data conversion.
Proceedings of the ACM SIGMOD Conference of Management of Data.
Cui, Z., Jones, D., & O’Brien, P. (2001). Issues in ontology-based information integration. Paper
in Joint Session with 1JCAI-01 Workshop on Ontologies & Information Sharing.
Decker, S., Melnik, S., Harmelen, F. V., Fensel, D., Klein, M., Broekstra, J., Erdmann, M., &
Horrocks, I. ~ (2000). The semantic web: The roles of XML and RDF. IEEE Internet Computing,
4(5), 63-74.
Ding, Y., Fensel, D., Klein, M., & Omelayenko, B. (2002). The semantic web: Yet another hip.
Data & Knowledge Engineering, 41(2-3), 205-227.
Elmasri, R., & Navathe, S. B. (2004). Fundamentals of database systems. (4" ed.).
Addison-Wesley.
Erdmann, M., & Decker, S. (2000). Ontology-aware XML-queries. Submission for WebDB 2000.
Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.,
Vassalos, V., & Widom, J. (1997). The TSIMMIS approach to mediation: Data models and
languages. Journal of Intelligent Information Systems, 8(2), 117-132.
Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 5(2),
199-220.
Hass, L. M., Miller, R. J., Niswonger, B., Roth, M. T., Schwarz, P. M., & Wimmers, E. L. (1997).

Transforming heterogeneous data with database middleware: Beyond integration. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering.

28

Jhingran, A. D., Mattos, N., & Pirahesh, H. (2002). Information integration: A research agenda.
IBM SYSTEMS JOURNAL, 41(4), 555-562.

Josifovski, V., Schwarz, P., Haas, L., & Lin, E. (2002). Garlic: A new flavor of federated query
processing for DB2. Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, 524-532.

Kashyap, V., & Sheth A. (1996). Semantic and schematic similarities between database objects:
A context-based approach. The VLDB Journal, 5, 276-304.

Kirk, T., Levy, A., Sagiv, Y., & Srivastava, D. (1995). The information manifold. Proceedings of
the AAAI Spring Symposium on Information Gathering.

Kuo, W. (2003). A Generic Construct based Transformation Model between UML Data Model
and XML (Master Thesis, National Chengchi University, 2003). Electronic Theses and
Dissertations System, 091NCCU5396018.

Levy, A. Y. (2000). Logic-based techniques in data integration. Logic Based Artificial
Intelligence.

Levy, A. Y., Rajaraman, A., & Ordille, J. J. (1996). Querying heterogeneous information sources
using source descriptions. Proceedings of the Twenty-second International Conference on Very
Large Databases, 251-262.

Mena, E., Illarramendi, A., Kashyap, V., & Sheth, A. P. (2000). OBSERVER: An approach for
query processing in Global Information Systems based on interoperation across pre-existing
ontologies. Distributed and Parallel Databases, 8(2), 223-271.

Manolescu, I., Florescu, D., & Kossmann, D. (2001). Answering XML queries over
heterogeneous data sources. Proceedings of the 27" VLDB Conference.

Manolescu, 1., Florescu, D., Kossmann, D., Xhumari, F., & Olteanu, D. (2000). Agora: Living
with XML and relational. Proceedings of the 26" VLDB Conference.

Miller, R. J., Hernandez, M. A., Haas, L. M., Yan, L., Ho, C. T. H., Fagin, R., & Popa, L. (2001).
The Clio project: managing heterogeneity. ACM SIGMOD Record, 30(1), 78-83.

Parent, C., & Spaccapietra, S. (1998). Issues and approaches of database integration.
Communications of ACM, 41(5), 166-178.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. The
VLDB Journal, 10, 334-350.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems. Information
and Software Technology, 37(7), 383-393.

Roth, M. T., Arya, M., Hass, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomas, J., &
Wimmers, E. (1996). The Garlic project. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, 557.

Sugumaran, V., & Storey, V. C. (2002). Ontologies for conceptual modeling: their creation, use,
and management. Data & Knowledge Engineering, 42(3), 251-271.

Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O., Naacke, H., & Raschid, L. (1997). The
Distributed Information Search Component (Disco) and the World Wide Web. ACM
SIGMOD.

29

Tomasic, A., Raschid, L., & Valduriez, P. (1998). Scaling access to distributed heterogeneous
data sources with DISCO. Proceedings of the IEEE Transactions on Knowledge and Data
Engineering.

Uschold, M., & Griiniger, M. (1996). Ontologies: principles, methods and applications.
Knowledge Engineering Review, 11(2), 93-136.

Vdovjak, R., & Houben, G. (2001). RDF-based architecture for semantic integration of
heterogeneous information sources. Proceedings of the Workshop on Information
Integration on the Web 2001, 51-57.

Visser, U., Stuckenschmidt, H., & Wache, H. (2003). Ontology-based information integration.
[IJCAI-Tutorial SP5. http://www.cs.vu.nl/~heiner/IJCAI-03/Tutorial (Data Accessed: January
7,2004)

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hiibner, S.
(2001). Ontology-based integration of information — A survey of existing approaches.

Proceedings of the IJCAI-01 Workshop: Ontologies and Information Sharing.
Wiederhold, G. (1993). Intelligent integration of information. ACM SIGMOD Conference on
Management of Data, 434-437.

Internet References
TSIMMIS: http://www-db.stanford.edu/tsimmis/tsimmis.html
DISCO: http://www-caravel.inria.fr/Eprototype_Disco.html

Garlic: http://www.almaden.ibm.com/cs/garlic/

MIX: http://www.npaci.edu/DICE/mix-system.html

Agora: http://www-rocg.inria.fr/~manolesc/AGORA/index.html
OBSERVER: http://soll.cps.unizar.es:5080/OBSERVER/
ONTOBROKER: http://ontobroker.aifb.uni-karlsruhe.de/index ob.html
HERA: http://wwwis.win.tue.nl/~hera/

W3C: http://www.w3.org

XQuery: http://www.w3.org/ XML/Query

XML Schema: http:// www.w3.org/XML/Schema

RDF: http://www.w3.org/RDF/

OWL: http://www.w3.0rg/2001/sw/WebOnt/

Jena: http://jena.sourceforge.net/

Protégé: http://protege.stanford.edu
APA Style Essentials: http://www.vanguard.edu/faculty/ddegelman/index.cfm?doc_id=796#title
Other :http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

30

