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一、 中文摘要

我們提出數種以迴歸 (regression) 為基礎的演算法。 這些演算法可針對離散事

件 (discrete-event) 模擬或馬可夫鏈蒙地卡羅 (Markov Chain Monte Carlo)

模擬中的均態 (steady-state) 參數提供信賴區間估計。 在本計畫中, 我們將探

討這些演算法的理論特性, 並將利用數個文獻中典型的實例來測試它們的實際

效能 (empirical performance)。 這些演算法可以在單一或是多個 CPU 的電

腦上運算。

關鍵詞 : 迴歸, 離散事件模擬, 均態模擬, 馬可夫鏈蒙地卡羅

Abstract

We propose several regression-based procedures for building confidence
interval estimators of steady-state parameters in discrete event simulations
and Markov Chain Monte Carlo (MCMC) simulation. In this project, we
will explore the theoretical properties of these procedures and test their
empirical performance on various classical problems in discrete event and
MCMC simulations. These procedures can be implemented on parallel
processors or single processor architecture.

Keywords: Regression, discrete event simulation, steady-state simu-
lation, Markov Chain Monte Carlo

2



二、 研究目的與文獻探討

Let Y = (Y (t) : t ≥ 0) be a real-valued stochastic process representing
the output of a simulation. Suppose that there exists a (deterministic)
constant α for which

Ȳ (t) ≡ 1

t

∫ t

0

Y (s)ds ⇒ α (1)

as t → ∞, where ⇒ denotes weak convergence. The steady-state simu-
lation problem is concerned with computing the steady-state quantity α.
(If the process of interest is a discrete-time sequence (Yn : n ≥ 0), we can
embed the process in continuous time by setting Y (t) = Y⌊t⌋ for t ≥ 0,
where ⌊t⌋ is the so-called “floor” of t.)

One of the principal complications associated with the steady-state
simulation problem is that of the “initial transient”. In particular, the
process Y is typically initialized with an initial condition that is atypical of
steady-state behavior, there by inducing an initial transient period during
which the observations collected are biased relative to the steady-state
mean α.

In great generality, it is known the bias of the time average estimator
Ȳ (t) can be expressed as

EȲ (t) = α +
b1

t
+

b2

t2
+ · · · + bk

tk
+ o(t−k) (2)

as t → ∞, where 0 = b2 = b3 = · · · and o(f(t)) represents a function
having the property that o(f(t))/f(t) → 0 as t → ∞, see of Section 2.
This supports the use of the approximation

EȲ (t) ≈ α +
b

t
(3)

for large t, where b = b1. Given the approximation (3), this suggests
the possibility of developing an estimator for the steady-state quantity α
that improves upon Ȳ (t), based on regression methods in which α and b
are treated as unknown regression parameters. This paper develops the
theory and reports empirical findings based on this regression approach to
reducing initial transient bias.

三、 研究方法

My coauthor is Professor Peter Glynn. Professor Glynn is an expert in
steady-state simulation. He had published a great number of influential
papers about steady-state simulations. Therefore, I am looking forward
to the cooperation opportunity. Below are examples of Professor Glynn’s
previous works in steady-state simulations.

1. Glynn and Iglehart (1988)
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2. Glynn and Whitt (1991)

3. Glynn and Whitt (1994)

4. Glynn (1995)

5. Glynn and Heidelberger (1990)

6. Glynn and Heidelberger (1991a)

7. Glynn and Heidelberger (1991b)

8. Glynn and Heidelberger (1992a)

9. Glynn and Heidelberger (1992c)

10. Glynn and Heidelberger (1992b)

1 Related works

The steady-state simulation problem is a very important topic in simu-
lation. It has been studied for a long time and is continue to be a hot
research topic; see Law and Kelton (2000), Bratley et al. (1983), Banks
et al. (2000), Meketon and Heidelberger (1982) Cash et al. (1992), Glynn
(1995), Goldsman et al. (1994), Schruben (1982), Schruben et al. (1983),
K. Preston White (1997), and Jr. et al. (2000), Hsieh et al. (2004), and
Steiger et al. (2005).

We start with a justification of (2). It is typically the case that when
(1) holds, there exists a random variable (rv) Y (∞) for which

Y (t) ⇒ Y (∞) (4)

as t → ∞, where α = EY (∞). (For example, (4) holds when Y is a
positive recurrent regenerative process having a spread-out cycle-length
distribution; see ?, p. 351). In the presence of uniform integrability,

a(t)
△
= EY (t) − α → 0

as t → ∞. The representation (2) then hinges on the question of how fast
a(t) converges to zero as t → ∞.

Proposition 1.1 If a(t) = o(t−p) as t → ∞ for p > 1 and a(·) is a
bounded function, then

EȲ (t) = α +
b1

t
+

b2

t2
+ · · · + bk

tk
+ o(t−k) (5)

as t → ∞, where k = ⌊p⌋ and 0 = b2 = b3 = · · ·. If a(t) = o(exp(−rt))
as t → ∞ for r > 0 and a(·) is a bounded function, then EȲ (t) = α +
o(exp(−rt)) as t → ∞.

4



One sufficient condition guaranteeing the first set of hypotheses of
Proposition 1.1 is that Y be a bounded regenerative process having a
spread-out cycle length distribution with the (p + 1)’th cycle length mo-
ment being finite. The second set of hypotheses follows for some r > 0
whenever Y is a bounded regenerative process having a spread-out cy-
cle length distribution with some finite exponential cycle length moment.
Such exponential convergence rates also hold whenever Y is a suitable
real-valued functional of a geometrically ergodic Markov chain.

Several of our regression-based estimators will require knowledge of the
covariance structure of the process Y . For ε > 0, set

Z̄ε(t) = ε

∫ t/ε

0

(Y (u) − α)du.

Under modest mixing conditions on the process Y ,

ε−1/2Z̄ε
fdd−→ σB (6)

as ε ↓ 0, where B = (B(t) : t ≥ 0) is a standard Brownian motion

(BM), and
fdd−→ denotes “weak convergence of the finite-dimensional dis-

tributions” (i.e. for each n ≥ 1 and selection of time points t1 < . . . < tm,
ε−1/2(Z̄ε(t1), . . . , Z̄ε(tm)) ⇒ (σB(t1), . . . , σB(tm)) as ε ↓ 0). The vari-
ance parameter σ2 appearing in (6) is often called the time-average vari-
ance constant (TAVC) of the process Y . Such convergence of the finite-
dimensional distributions is implied by weak convergence in the function
space C[0,∞), for which many sufficient conditions are known (φ-mixing,
strong mixing, positive association, and strong invariance principle.

In any case, if (Z̄ε(t)
2 : ε ≥ 1) is uniformly integrable, then (6) implies

that

Cov

(

Z̄ε(s)

s
,
Z̄ε(t)

t

)

= Cov(Ȳ (s/ε), Ȳ (t/ε))

∼ εCov

(

σB(s)

s
,
σB(t)

t

)

= εσ2 min(1/s, 1/t) (7)

as ε ↓ 0, where ∼ means that the ratio of the left-hand side to the right-
hand side converges to 1 as ε ↓ 0. The above description of the asymptotic
covariance structure of Ȳ (·) will play a key role in our theoretical analyses.

2 Regression via Ordinary Least Squares

We start with the most obvious regression-based means of exploiting (3).
In particular, given a simulation of Y up to time t, consider estimating α
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and b by minimizing the sum of squares

m
∑

i=1

(Ȳ (ti) − α − b

ti
)2, (8)

where 0 < t1 < · · · < tm = t. The minimizer α̂1 = α̂1(t) of (8) is given
by

α̂1(t) =
(
∑m

i=1
1
t2i

)(
∑m

j=1 Ȳ (tj)) − (
∑m

i=1
Ȳ (ti)

ti
)(

∑m
j=1

1
tj

)

m
∑m

i=1
1
t2i
− (

∑m
j=1

1
tj

)2

Put si = ti/t and s0 = 0. For m = 2, α̂1(t) simplifies to

α̂1(t) =
Ȳ (t) − s1Ȳ (s1t)

1 − s1

=
1

t − t1

∫ t

t1

Y (u)du,

so that α̂1(t) corresponds then to the time-average obtained when the first
interval [0, t1] of observations is deleted from the sample. Furthermore, in
the presence of (7),

E(α̂1(t) − α)2

E(Ȳ (t) − α)2
→ 1

1 − s1

as t → ∞, establishing that α̂1(t) is inferior (in terms of mean square error
(MSE)) to the time-average Ȳ (t) when t is large.

For m = 3 and s1 = 1/3, s2 = 1/3, and s3 = 1,

α̂1(t) = Ȳ (t/3)

(−17

26

)

+ Ȳ (2t/3)

(

8

13

)

+ Ȳ (t)

(

27

26

)

=

∫ 2t/3

t/3
Y (s)ds

(t/3)

(

17

26

)

+

∫ t

2t/3
Y (s)ds

(t/3)

(

9

26

)

.

Here, α̂1(t) deletes the initial interval [0, t/3] but weights observations
from two subsequent intervals [t/3, 2t/3] and [2t/3, t] unequally. Also

E(α̂1(t) − α)2

E(Ȳ (t) − α)2
→ 555

313
,

establishing again that the original time-average estimator Ȳ (t) is prefer-
able when t is large.

For general values of m, the following result provides an exact expres-
sion for the limiting ratio of the MSE of α̂1(t) to that of Ȳ (t).

Proposition 2.1 Assume (5) and (8). Then,

Eα̂1(t) = α + o(t−k) (9)
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and
E(α̂1(t) − α)2

E(Ȳ (t) − α)2
→

m
∑

i=1

(si − si−1)β
2
i (10)

as t → ∞, where

βi =
(
∑m

j=i
1
sj

)(
∑m

k=1
1
s2
k

) − (
∑m

j=i
1
s2
j

)(
∑m

k=1
1
sk

)

m(
∑m

k=1
1
s2
k

) − (
∑m

k=1
1
sk

)2

Our main result in this section establishes that the ordinary least
squares regression estimator always exhibits a larger asymptotic MSE than
that of Ȳ (t) (except in the trivial case in which m = 1 and α̂1(t) = Ȳ (t),
in which case the MSE coincides).

Theorem 2.2 If m > 1,
m

∑

i=1

(si − si−1)β
2
i > 1.

3 Regression via Generalized Least Squares

In the presence of (6), the random vector (Ȳ (t1), . . . , Ȳ (tm)) has a dis-
tribution that is approximately Gaussian when the ti’s are large. This
suggests that α and b should be estimated by maximizing the (approxi-
mate) Gaussian likelihood of (Ȳ (t1), . . . , Ȳ (tm)) over α and b. This leads
to the generalized least squares problem

min
α,b

m
∑

i=1

m
∑

j=1

(Ȳ (ti) − α − b

ti
)Γij(Ȳ (tj) − α − b

tj
) (11)

where Γ = (Γij : 1 ≤ i, j ≤ m) is the inverse of the covariance matrix
of the random vector (Ȳ (t1), . . . , Ȳ (tm)), with corresponding minimizers
α̂2(t) and b̂2(t). Of course, in general, the (exact) covariance matrix is
unknown. This suggests two possibilities. One is to use the asymptotic
description of the covariance matrix given by (7); the alternative is to use
a covariance matrix that is estimated from the simulated data.

We consider first the case in which the covariance is obtained from (7).

Proposition 3.1 Let 0 < v1 < · · · < vm. The inverse of the m × m
matrix C̃ with (i, j)’th entry given by min(vi, vj) is the matrix Γ̃ = (Γ̃ij :
1 ≤ i, j ≤ m) with



















Γ̃i,i = vi+1−vi−1

(vi+1−vi)(vi−vi−1)
, 1 ≤ i ≤ m − 1,

Γ̃m,m = 1
vm−vm−1

,

Γ̃i,i+1 = − 1
vi+1−vi

, 1 ≤ i ≤ m − 1,

Γ̃i,i−1 = − 1
vi−vi−1

, 2 ≤ i ≤ m,
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and Γ̃i,j = 0 otherwise, where v0
△
= 0.

4 Numerical examples

In this section, we present computational results which illustrate the theo-
retical properties of the regression based estimators mentioned above. We
start with a description of the (three) stochastic processes and associated
paramaters.

The first stochastic process is the waiting time process in the M/M/1
queue with server utilization ρ = 0.9, service rate µ = 1, and an empty-
and-idle initial condition.

We next turn to review the specific estimators for α that we shall
consider in this paper. Given a realization of Y up to time t, our first
steady-state estimator is the time average estimator

Ȳ (t) ≡ 1

t

∫ t

0

Y (s)ds

Given selection of time points t1 < · · · < tm = t, our regression based
estimators are all linear combinations of Ȳ (ti)’s.

Let T denote matrix transpostion and set

Ȳ = (Ȳ (t1), Ȳ (t2), . . . , Ȳ (tm))T , A =











1 1/t1
1 1/t2
...

...
1 1/tm











, and θ =

(

α
b

)

.

Then the ordinary least square problem (8) can be rewritten as

min
θ

(Ȳ − Aθ)T (Ȳ − Aθ) (12)

It is well known that the solution θ∗ to (12) must satisfy the normal
equation (Golub and Van Loan, 1996, p. 238):

(AT A)θ∗ = AT Ȳ (13)

It is clear that A has full rank, thus θ∗ = (AT A)−1AT Ȳ . Our first
regression-based estimator α1(t) is therefore just the first element of θ∗,
i.e. θ∗(1).

Let Σ be the covariance matrix of Ȳ . We have shown that, when Σ is
assumed to be the asymptotic matrix obtained from (7), the estimators
based on the ideas of generalized least squares and best unbiased linear
estimator lead to the same standard truncated time-average estimator
α̂2(t) (equation (??)). However, we are also interested in investigating the
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performance of these estimators when Σ is estimated by p independent
replications of Ȳ . We denote this sample covariance matrix Ĉ (equation
(??). Here, we shall show that, when Σ is estimated by Ĉ, the estimators
based on the ideas of generalized least squares and best unbiased linear
estimator also lead to the same estimator. Actually, as long as Σ is positive
definite, both approaches will produce identical estimator.

We rewrite (11) as

min
θ

(Ȳ − Aθ)T Σ−1(Ȳ − Aθ) (14)

Let R be Σ’s Choleskey triangle, i.e., Σ = RRT . Set Ỹ = R−1Ȳ and
Ã = R−1A. Then, program (14) can be written as

min
θ

(Ỹ − Ãθ)T (Ỹ − Ãθ)

Again, it is easy to see that Ã has full rank. Therefore, above program
has an unique solution

θ̂ = (ÃT Ã)−1ÃT Ỹ

= (AT R−T R−1A)−1AT R−T R−1Ȳ

= (AT Σ−1A)−1AT Σ−1Ȳ

Use Ĉ in place of Σ, we obtain our next estimator α̂3(t). In particuilar,

α̂3(t) = eT (AT Ĉ−1A)−1AT Ĉ−1Ȳ , (15)

where eT = (1, 0).
Let w = (w1, . . . .wm) be the weights of Ȳ . Best linear unbiased esti-

mator for α can be obtained by solving the quadratic program

min
w

wT Σw (16)

subject to AT w = e

From the theory of optimization (Gill, Murray, and Wright 1991), program
(16) has an unique solution w∗ if there exists λ ∈ ℜ2, such that

Aλ = Σw∗

Above equation basically says that the gradient of wTΣw at w∗ lies in the
column space of A. With this optimal condition for (16) and knowinf Σ
is positive definite, we have

w∗ = Σ−1Aλ (17)
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表 1: Estimated MSE of Various Estimators for the M/M/1 Queue Wait-
ing Time Process: m = 3, MSE is estimated by 1000 independent replica-
tions.

Batch size MSE(Ȳ ) MSE(α̂1) MSE(α̂2) MSE(α̂1)/MSE(Ȳ ) MSE(α̂2)/MSE(Ȳ )
100 27.6963 40.3183 41.9098 1.4557 1.5132
500 14.5060 23.6877 23.6909 1.6330 1.6332

2500 4.2540 7.7698 6.7426 1.8265 1.5850
12500 0.8659 1.4544 1.3076 1.6795 1.5101
62500 0.2044 0.3402 0.3077 1.6641 1.5050

312500 0.0393 0.0648 0.0592 1.6476 1.5058

Multiplying both sides by AT , we find that

e = Aw∗ = AT Σ−1Aλ

Now using the fact A has full rank, we can invert AT Σ−1A and write

λ = (AT Σ−1A)−1e

Next using above equation and (17) to obatin

w∗ = Σ−1A(AT Σ−1A)−1e

It follows that, when Ĉ is used in place of Σ, the best linear unbiased
estimator for α is

(w∗)T Ȳ = (Ĉ−1A(AT Ĉ−1A)−1e)T Ȳ = eT (AT Ĉ−1A)−1AT Ĉ−1Ȳ ,

which is just α3(t).
Our first set of numerical experiments produce Ȳ (t), α̂1(t), and α̂2(t)

from single replication of Y up to time t. W e use a simple rule to select
time points selection. In particular, we select batch size and the number
of time points m and set ti = i× batch size.

The results of this project is a joint work with Professor Glynn at
Stanford University. We will submit the results of this project to a suitable
journal for publication in the near future.
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