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A Bottleneck-based Heuristic for Minimizing Makespan in a Flexible 
Flow Line with Unrelated Parallel Machines 
 
Abstract 

This study proposes the use of a bottleneck-based heuristic for a flexible flow line 
(BBFFL) to address a flexible flow line problem with a bottleneck stage, where 
unrelated parallel machines exist in all the stages, with the objective of minimizing the 
makespan. The essential idea of BBFFL is that scheduling jobs at the bottleneck stage 
may affect the performance of a heuristic for scheduling jobs in all the stages. Therefore, 
in BBFFL, a variant of Johnson’s rule was used to develop a bottleneck-based initial 
sequence generator (BBISG). Then, a bottleneck-based multiple insertion procedure 
(BBMIP) was applied to the initial sequence to control the order by which jobs enter the 
bottleneck stage to be the same as that at the first stage. Five experimental factors were 
used to design 243 different production scenarios and ten test problems were randomly 
generated in each scenario. These test problems were used to compare the performance 
of BBFFL with several well-known heuristics. Computational results show that the 
BBFFL significantly outperforms all the well-known heuristics. 
 
KEY WORDS: Bottleneck-based multiple insertion heuristic; Flexible flow line; 

Bottleneck, Unrelated parallel machines; Makespan 
 
 
1. Introduction 

This study considers the scheduling problems in a flexible flow line with a 
bottleneck stage and with unrelated parallel machines in all the stages.  A flexible flow 
line (FFL) is also called a flexible flow shop (FFS), a hybrid flow shop (HFS), or a flow 
shop with multiple processors (FSMP).  A typical FFL problem can be defined as 
follows: there are N jobs passing through a J-stage flow line with one or more parallel 
machines at each stage.   There are unlimited buffers between two successive stages.  
The flow of jobs through the shop is unidirectional and moves from the first stage to the 
last stage in order.  Flexible flow lines occur in many different manufacturing 
environments, including electronics manufacturing (Wittrock, 1988), the packaging 
industry (Adler et al., 1993), the pharmaceutical sector (Guinet and Solomon, 1996), 
glass container fabrication (Leon and Ramamoorthy, 1997), automobile assembly 
(Agnetis et al., 1997), printed circuit board (PCB) assembly (Jin et al., 2002; Sawik, 
2002), PCB fabrication (Alisantoso et al., 2003; Lee et al., 2003; Choi et al., 2005), 
multilayer ceramic capacitor (MLCC) manufacturing (Yang et al., 2004), leadframe 
manufacturing (Lee et al., 2004), ceramic tile manufacturing (Ruiz and Maroto, 2006), 
and metal forming, plastic injection, weaving, and assemblies (Jenabi et al., 2007). 

The bottleneck phenomena occur frequently in many manufacturing systems. 
Goldratt and Cox (1992) stated the idea that bottleneck resources govern overall system 
performance.  Bottleneck management is a very important task on the shop floor and is 
extremely effective in production scheduling.  Scheduling approaches for flow shop 
and job shop problems with bottleneck stages usually include three steps (Adler et al., 
1993; Pinedo, 2002): (1) identify bottleneck stage, (2) schedule bottleneck stage, and (3) 
schedule non-bottleneck stages.  The drum-buffer-rope (DBR) scheduling method 
proposed by Goldratt and Fox (1986), derived from the theory of constraint (TOC), is a 
renowned approach.  This method concentrates on scheduling constraint resources 
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(bottleneck resources) and deals with other resources (non-bottleneck resources) 
casually.  However, Conway (1997) stated that it is often important to schedule 
subordinate resources carefully to ensure timely support of constraint resources.  
Therefore, several researchers considered full resource and presented bottleneck-based 
methods to solve FFL and flow shop problems.   Chen and Lee (1998) suggested a 
bottleneck-based group scheduling procedure to solve flow line cell scheduling 
problems.  The procedure was based on the bottleneck machine and attempted to fully 
utilize the bottleneck machine and minimize makespan.  Lee et al. (2004) developed a 
bottleneck-based heuristic to solve a multi-stage hybrid flow shop problem with 
identical parallel machines at each stage and with minimum total tardiness as the 
objective.  The heuristic first focuses on the bottleneck stage, constructs the schedule 
of the bottleneck stage, and then constructs schedules for other stages based on the 
schedule of the bottleneck stage.  The heuristic uses the sum of processing times of a 
job at the upstream stages to be the arrival time of the job at the bottleneck stage.  If 
the procedure results in an infeasible schedule, then the arrival times of the jobs at the 
bottleneck stages will be iteratively modified until a feasible schedule is obtained.  
They compared the performance of eight well-known dispatching rules with the 
bottleneck-based heuristic, and the computational results showed that the heuristic 
dominated all the dispatching rules.  Rajendran and Alicke (2007) considered the 
problem of dispatching in flowshop with bottleneck machines; their objective was to 
develop dispatching rules to solve flowshop scheduling problems.  They measured 
performance by considering three factors: the minimization of total flowtime, the 
minimization of the sum of earliness and tardiness, and the minimization of total 
tardiness, each considered separately. 

Unrelated parallel machine problems considered in this paper refer to a job that 
may have different processing times at a stage in a flexible flow line.  Unrelated 
parallel machine manufacturing systems are common in real-world factories.  This 
may be because factories want to extend the capacity of their production by adding 
supplementary parallel machines at certain stages.  Load imbalance is another factor 
leading to the supplementing of machines at certain stages.  In addition, unrelated 
parallel machines may exist in stages due to the coexistence of new and old machines.  
Unrelated parallel machine scheduling can be found in real-world manufacturing 
environments, such as the drilling operations of PCB fabrication (Yu et al., 2002; Hsieh 
et al., 2003) and semiconductor wafer manufacturing (Kim et al., 2003).  Since these 
manufacturing systems usually include a large number of stages, they can be classified 
as flexible flow lines with unrelated parallel machine problems.  For example, Ruiz 
and Maroto (2006) presented a ceramic tile manufacturing system as a flexible flow line 
with unrelated parallel machine problems. 

For the last few decades, many researchers have studied the FFL problem.  
However, most of them have dealt with multiple stages involving identical parallel 
machines.  To the best of our knowledge, the FFL problem with unrelated parallel 
machines is rarely solved.  The FFL problem is a NP-hard problem; it requires much 
computational time to find the optimal solution.  A heuristic is an acceptable practice 
to find a good solution.  Therefore, in this study, we develop a bottleneck-based 
heuristic to solve the FFL problem with a bottleneck stage and with unrelated parallel 
machines in all the stages.  The objective of the candidate problem is to minimize 
makespan.  The remainder of this study is organized as follows.  In section 2 we 
provide a literature review.  Section 3 presents the proposed heuristics.  Section 4 
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describes and analyzes computational experiments.  Finally, section 5 summarizes the 
major findings of this research and proposes some further research. 

 
2. Literature review 

Heuristics can be classified into three types: index-development, solution- 
construction, and solution-improvement (Framinan et al., 2004).  However, some 
heuristics may consist of one or more of these types.  Dispatching rule belongs to the 
type of index-development, and multiple-insertion heuristic is a solution-construction 
type.  Meta-heuristic such as tabu search algorithm and simulated annealing algorithm 
can be regarded as a solution-improvement type.  Obviously, solution-improvement 
type heuristics take the longest computation time to find a solution, but index- 
development type heuristics find a solution fast.  A brief review of literature on the 
work in FFL problems using these three types of heuristics is presented below. 

Over the past several decades, many heuristics have been developed for FFL 
problems with identical parallel machines.  Dispatching rules are commonly used 
heuristics for FFL problems.  Hunsucker and Shah (1994) evaluated six priority rules 
under congestion levels in a constrained flow shop with multiple processors 
environments for makespan, mean flowtime and maximum flowtime.  The results of 
the simulation study indicated that the shortest processing time rule (SPT) yielded 
superior performance for makespan and mean flow time criteria.  However, for the 
maximum flow time criterion, clear superiority of a particular dispatching procedure 
was not established.  Kadipasaoglu et al. (1997) have also found the SPT rule to be the 
best rule on flow time and makespan.  Brah and Wheeler (1998) investigated the effect 
on mean flow time and makespan of scheduling rules with dynamically established 
priorities in a FFL.  Nine rules were tested and the SPT rule was consistently superior.  
Jayamohan and Rajendran (2000) studied many dispatching rules in flexible flow shops.  
They reported that PT +WINQ+AT (process time + work in next queue + arrival time) 
rule could offer good performance for the makespan.   

In addition, many heuristics have been developed for pure flow shop problems.  
Palmer (1965), CDS (Campbell et al., 1970), Gupta (1971), DAN (Dannenbring, 1977), 
NEH (Nawaz et al., 1983), and CDSD (Park et al., 1984) are well-known ones.  These 
heuristics have recently been applied to solve FFL problems.  Santos et al. (1996) 
evaluated the performance of the heuristics of Palmer, CDS, Gupta, and DAN on FFL 
problems.  Their results showed that the heuristics of CDS and DAN outperformed the 
other two heuristics.  Brah and Loo (1999) investigated the performance of the 
heuristics of CDS, Gupta, DAN, NEH and CDSD.  Their results showed that NEH 
dominated all other heuristics.  Note that NEH is a solution-construction type heuristic.   

Local searches or meta-heuristics such as tabu search, genetic algorithm, and 
simulated annealing algorithm are common approaches used to solve FFL problems.  
Chen et al. (1998) proposed a tabu search heuristic to solve flexible flow line scheduling 
problems with minimizing makespan.  Wardono and Fathi (2004) considered FFL 
problems with limited buffer capacities between stages.  Their primary objective was 
to find a schedule that would minimize makespan.  They developed a tabu search 
algorithm to solve problems.  Bertel and Billaut (2004) developed a genetic algorithm 
to solve a multi-processor flow shop problem involving recirculation and considered the 
objective of minimizing the total number of weighted tardy jobs.  Sivrikaya Serifoglu 
and Ulusoy (2004) also proposed a genetic algorithm to solve FFL problems with 
minimizing makespan.  Jin et al. (2006) proposed the simulated annealing algorithm to 

 4



solve FFL problems with minimizing makespan.   
As surveyed in Linn and Zhang (1999), most heuristics study identical parallel 

machines.  To our best knowledge, only a few studies consider FFL problems with 
unrelated parallel machines.  Adler et al. (1993) considered a very specific problem 
and proposed a bottleneck-based five-step method to solve the problem.  Low (2005) 
developed a simulated annealing heuristic to solve flexible flow lines with unrelated 
parallel-machine problems in a flow shop.  They considered the objective of 
minimizing the total flow time.  Ruiz and Maroto (2006) proposed a genetic algorithm 
to solve a hybrid flow shop with sequence dependent setup times and with minimum 
makespan as the objective.  Jenabi et al. (2007) considered the economic lot sizing and 
scheduling problem in FFL with unrelated parallel machines and considered the 
objective of minimizing the sum of setup and inventory holding costs per unit time 
without any stock-out.  They proposed two hybrid meta-heuristics, a hybrid genetic 
algorithm, and a simulated annealing to solve the problems. 

In summary, FFL problems with unrelated parallel machines are seldom solved and 
meta-heuristics are the most common approaches to solve the problems.  Although 
meta-heuristics are usually effective and reasonably efficient, it may not be appropriate 
when efficiency is especially critical, such as a decision-making on job scheduling on 
the shop floor.  Therefore, other types of heuristics such as index-development and 
solution-construction are needed to be developed to solve the problems considered in 
the study.  
 
3. A bottleneck-based heuristic for the flexible flow line scheduling problem 

A bottleneck-based heuristic is proposed to solve the candidate FFL problem.  
Because unrelated parallel machines are considered at each stage, three machine 
selection rules will be used to determine the schedule of the jobs at each stage in this 
study.  Given a job at a stage, the first machine selection rule, EAAM, is to select the 
machine with the earliest available time among the available machines.  The second 
selection rule, ECAM, is to select the machine with the earliest completion time when 
the job is assigned to the available machines.  The third selection rule, ECALLM, is to 
select the machine with the earliest completion time when the job is assigned to all the 
machines at the stage, including available and unavailable machines.  This rule may 
cause an idle period of the job.  However, since unrelated parallel machines are 
considered at the stage, an unavailable but more efficient machine may produce an 
earlier completion time for the job.  The three machine selection rules will be 
employed in all algorithms. 

The notations, assumptions, and details of the proposed heuristics will be presented 
in the following subsections.  

 
3.1 Notations  
To describe the proposed method, we use the following notations: 
i = job index, i = 1,2,3,…,n 
j = stage index, j = 1,2,3,…,J 
b = bottleneck stage index, b∈[1,2,3,…,J] 
s = machine index at stage j, s =1,2,3,…,mj 

jm = number of unrelated parallel machines at stage j 

ijp = average processing time of job i at stage j  
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ibsP = processing time of job i on machine s at bottleneck stage b  
RRj= the workload of stage j 

iJC = completion time of job i at last stage J 
min

ifP = total minimum processing time required for job i before the bottleneck stage b 
min

ilP = total minimum processing time required for job i after the bottleneck stage b 
 
3.2 Assumptions 

The FFL problem considered in this paper assumes that there are J stages and 
include a bottleneck stage b.  There are mj unrelated parallel machines in stage j and 
the number mj may vary from stage to stage.  There are n jobs to be processed and 
each job has the same routing and must visit all the stages consecutively.  All jobs are 
available at time zero.  The processing time of an operation of a job at a stage depends 
on the machine assigned at the stage, and it is known in advance.  A machine can 
process only one job at a time, and jobs cannot be preempted.  There are unlimited 
buffers between stages.  There is no machine breakdown and no set-up time required 
before jobs are processed on any machine. 

The workload is used as an indicator to identify the bottleneck stage.  Since the 
machines are unrelated at each stage, the processing time of an operation at a stage is 
dependent upon the machine assigned to the operation.  The workload of stage j is 
computed by the sum of the average processing times of all the operations processed at 
the stage divided by its number of machines, denoted as RRj = j

n

i ij mp /)(
1∑=

.  The stage 
with the largest Rj,R  is defined as the bottleneck stage.  
 
3.3 The Bottleneck-Based Heuristic for the Candidate FFL problem (BBFFL) 

Garey et al. (1976) proved that minimizing makespan for the flow shop problem 
with three machines is NP-hard in the strong sense. Hoogeveen et al. (1996) proved that 
minimizing makespan for two-stage FFL problems with stage 1 having one machine and 
stage 2 having two machines or with stage 1 having two machines and stage 2 having 
one machine is NP-hard. Therefore, the candidate FFL problem considered is at least 
NP-hard.    

A bottleneck-based heuristic (BBFFL) is proposed to solve the candidate FFL 
problem. The proposed heuristic belongs to the classification of solution construction.  
Its main idea is that scheduling the jobs at the bottleneck stage may affect the 
performance of a heuristic for scheduling the jobs in all the stages. Therefore, BBFFL 
generates schedules on the basis of the schedule produced at the bottleneck stage. This 
heuristic consists of three steps: (1) Identifying the bottleneck stage, (2) generating an 
initial sequence of the jobs by a bottleneck-based initial sequence generator (BBISG), 
and (3) applying a bottleneck-based multiple insertion procedure (BBMIP) to the initial 
sequence to generate the final schedule.   

Applying Johnson’s rule to solve the two-machine flow shop problem with 
makespan as the objective can obtain the optimal schedule. There have been many 
studies extending the idea of Johnson’s rule to construct several variant heuristics 
(Gupta, 1997; Chen and Lee, 1998; Kurz and Askin, 2003). The bottleneck-based initial 
sequence generator (BBISG) is also a variant of Johnson’s rule (SPT-LPT rule). The 
FFL can be divided into three subsystems: the upstream subsystem (the stages ahead of 
the bottleneck stage), the bottleneck subsystem (the bottleneck stage), and the 
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downstream subsystem (the stages after the bottleneck stage). The BBISG heuristic 
generates job sequences mainly based on the total processing times in the upstream 
subsystem and the downstream subsystem of the jobs.  Since unrelated parallel 
machines are considered in the stages, for each job, we choose the minimum processing 
time in each stage and sum up the minimum processing times in the stages (denoted as 
total minimum processing time) in the upstream subsystem and in the downstream 
subsystem respectively. The bottleneck-based initial sequence generator (BBISG) is 
described as follows:  
Step 1.  Set Ω toφ . 
Step 2.  Divide the system into upstream subsystem, bottleneck subsystem and 

downstream subsystem. Compute the total minimum processing times of the 
upstream subsystem ( min

ifP ) and the downstream subsystem ( min
ilP ) for each job. 

Step 3.  Assign jobs to set U if the jobs satisfy the following condition: minmin
ii lP ; 

assign jobs to set L if the jobs satisfy the following condition: minmin
ii lP . 

fP ≤

>fP

Step 4.  If U = φ , go to Step 5.  Select the job with the smallest value of min
ifP  for 

Ui∈ .  If there is more than one job having the same smallest value of min
ifP , 

select the job with the maximum average processing time at the bottleneck 
stage ( ibp ). If the figures are, once again, the same, break the tie arbitrarily.  
Append the selected job to Ω and remove the job from set U; redo Step 4. 

Step 5.  If L = φ , go to Step 6.  Select the job with maximum value of min
ilP  for 

Li∈ .  If there is more than one job having the same maximum value of 
min

ilP , select the job with the maximum average processing time at the 
bottleneck stage ( ibp ). If the figures are, once again, the same, break the tie 
arbitrarily.  Append the selected job to Ω and remove the job from set L; redo 
Step 5.  

Step 6.  Obtain an initial sequence of the jobs in Ω. 
Step 7.  Stop. 

 
The BBMIP applies a multiple insertion procedure to the initial sequence generated 

by BBISG. Given a job sequence with n jobs, n-1 iterations will be performed in a 
general multiple insertion procedure. In each iteration, say iteration k, k partial 
sequences are generated by inserting the k-th job in the initial sequence into the 
positions before, between, and after every two consecutive jobs in the best partial 
sequence found in the k-1-th iteration, which includes the first k-1 job in the initial 
sequence. The partial sequence with the smallest makespan is the best partial sequence 
in the k-th iteration. Note that to calculate the makespan of a partial sequence, since the 
FFL problem is a flow shop problem, we can schedule the jobs in the partial sequence 
stage by stage. In the first stage, the jobs enter the stage according to the partial 
sequence, and a machine in the stage is chosen for a job based on a specified machine 
selection rule. The completion time of each job at the first stage becomes the arrival 
time of the job at the second stage. This determines the jobs’ entering sequence at the 
second stage, which may not be the same as that at the first stage. The same machine 
selection rule is used to assign the machines in the second stage to the jobs. This 
procedure continues until the last stage and the completion of the last job at the stage 
determines the makespan of the partial sequence. In BBMIP, we modify the calculation 
of makespan for a partial sequence by adjusting the jobs’ entering sequence at the 
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bottleneck stage to be the same as that at the first stage. The procedure of BBMIP is 
presented as follows. 
Step 1. Select the first job in the initial sequence generated by BBISG and let it be the 

current partial sequence. 
Step 2. Select the next job in the initial sequence and insert the job into the positions 

before, between and after every two consecutive jobs of the current partial 
sequence. 

Step 3. Calculate makespan for each partial sequence produced in Step 2 while 
adjusting jobs’ entering sequence at the bottleneck stage to be the same as that 
at the first stage. 

Step 4. Select the partial sequence with minimum makespan and let the partial 
sequence be the current partial sequence. 

Step 5. If the current partial schedule includes all the n jobs, then stop; otherwise go to 
Step 2. 

 
We use a simple example to illustrate the procedure of BBFFL.  This example 

includes three jobs and three stages; each stage has two machines.  The processing 
times of the jobs on each machine at each of the stages are shown in Figure 1.  The 
workloads of the stages are RR1 = 66.25, R2R  = 135, RR3 = 72.5; Stage 2 is the bottleneck 
stage.  ECALLM is the machine selection rule used in this example to select the 
machines at all the stages.  Figure 2 displays the procedure to generate the initial 
sequence by using BBISG for the example, and Figure 3 displays the procedure to 
generate the best schedule by using BBMIP for the example.  A four-field notation is 
used to express the schedule of a job at a stage in Figure 3.  The first field describes 
the job number and the second field describes the selected machine for the job at the 
stage.  The third and the fourth fields provide the start time and completion time of the 
job on the selected machine, respectively.  Note that, in Figure 3, while calculating the 
makespan for all the partial sequences, the entering sequence at the bottleneck stage, 
Stage 2, is adjusted to be the same as that at Stage 1.  However, as mentioned 
previously, jobs’ entering sequence at a stage is dependent on the jobs’ completion times 
at its previous stage, so jobs’ entering sequence at Stage 2 may not be the same as that at 
Stage 1 if BBMIP is not applied.  Figure 4 presents the two cases in Figure 3 whose 
jobs’ entering sequence at Stage 2 is not the same as that at Stage 1 if BBMIP is not 
applied.  For instance, in calculating the makespan for job sequence 3-1, the entering 
sequence of the two jobs at Stage 2 should be 1-3 if BBMIP is not applied because the 
completion time of job 1 at Stage 1 is 40, 1/M12/0/40, and the completion time of job 3 
at Stage 1 is 45, 3/M11/0/45.  With this entering sequence at Stage 2, if machine 1 is 
assigned to job 1, the completion time of job 1 is 130, and if machine 2 is assigned to 
job 1, the completion time of job 1 is 150.  Therefore, according to ECALLM, 
machine 1 is selected for job 1 at Stage 2 and denoted as 1/M21/40/130.  The first case 
in Figure 4 presents the result for calculating the makespan for partial sequence 3-1 
without the application of BBMIP; the makespan is 215, which is worse than that of the 
same sequence with the application of BBMIP.  The second case in Figure 4 presents 
the result for calculating makespan for partial sequence 3-1-2 without the application of 
BBMIP; the makespan is 240, which is worse than that for the same sequence with the 
application of BBMIP. 
 
4. Computational experiments  
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A series of computational experiments have been conducted to evaluate the 
performance of BBFFL under different production scenarios.  Table 1 summarizes the 
experimental factors used to define the production scenarios: the number of jobs, the 
number of stages, the variation of job processing times, the position of the bottleneck 
stage in the flow line, and the workload difference between bottleneck and 
non-bottleneck stages.  The number of jobs has three levels with values set at 30, 50, 
and 100 (low, medium, and high).  The number of stages also has three levels with 
values set at 5, 10, and 20 (low, medium, and high), where the number of machines at 
each stage is generated from discrete uniform distribution in the range of [1, 10].  The 
processing times of an operation on different machines at stage j are generated from a 
discrete uniform distribution multiplied by the number of machines at stage j, mj.  The 
purpose of the term, mj, is to balance the workload of the stages (Lee et al., 2004).  
Three ranges are considered for uniform distribution to define the variation of job 
processing times.  They are the following ranges: [10, 50], [10, 100], and [10, 200] 
(low, medium, and high).  The position of the bottleneck stage in the system has three 
levels: the first quarter, the second quarter, and the third quarter of the flow line.  The 
exact position of the bottleneck stage is randomly selected from the first quarter, the 
second quarter, or the third quarter of the flow line.  The workload difference between 
the bottleneck stage and the highest workload non-bottleneck stage is set at three ratios 
of 1.1, 1.5 and 2.0 (low, medium, and high).  The workload of a specified bottleneck 
stage is created as follows: (1) with a given combination of the number of jobs and the 
number of stages, randomly generate the processing times of the operations of every job 
on every stage; (2) calculate workload Rj = jij mp /)(∑  for every stage 1  ≦ j  ≦ J, 
and choose the stage, say stage j′ , with the largest R value; (3) randomly select a 
bottleneck stage b, b ≠ j′ , from a predetermined quarter on the flow line; (4) with a 
specified workload difference (wd), modify the processing time of job i on machine m at 
bottleneck stage b, ibsp , where new ibsp = (old ibsp )×( jR ′ /old RRb)×(wd).  This 
procedure will guarantee that the ((new RbR )/ jR ′ ) equals the specified wd.  
 

“Please Insert Table 1 about here” 
 
With the five three-level factors considered in Table 1, there are a total of 243 

production scenarios and ten test problems are generated for each scenario in the 
experiment.  These problems are conducted to compare the performance of BBFFL 
and four well-known heuristics: CDS, DAN, NEH, and CDSD.  The relative 
percentage deviation (RPD) from the best solution and the number of best solutions 
produced (NBS) are chosen to evaluate the performance of the heuristics.  The RPD is 
defined as: 

100.×
−

b

ba

S
SS=RPD  

Sa is the solution value obtained by method a, and Sb is respectively the best solution 
value among those obtained by the algorithms included in the comparison. 

Table 2 presents the computational results of the heuristics and shows several 
noteworthy points.  First, the machine selection rules significantly affect the 
performance of the well-known heuristics and BBFFL.  For the well-known heuristics, 
when EAAM is used, the average RPDs are all around 79.34 to 91.17.  They decrease 
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to around 31.08 to 45.58 when ECAM is used and further decrease to around 3.28 to 
10.78 when ECALLM is used.  Also, when EAAM is used, the NBS are all 0, and they 
increase to several hundred when ECAM and ECALLM are used.  As for BBFFL, 
when EAAM is used, the average RPD is around 70.16.  It significantly decreases to 
about 22.07 when ECAM is used and further decreases to about 0.70 when ECALLM is 
used.  The NBS shows the same tendency as that of the well-known heuristics.  When 
EAAM is used, the NBS is 0.  It increases to over 50 when ECAM is used and further 
increases to over 1,600 when ECALLM is used.  These results demonstrate the strong 
effect of the machine selection rule, ECALLM, on the performance of all the heuristics.  
This may be due to the fact that in a stage with unrelated parallel machines, an 
unavailable but more efficient machine may produce earlier completion time for a job.  
Second, within each of the machine selection rules, BBFFL outperforms the well-known 
heuristics.  When EAAM is used, the RPD produced by BBFFL is 70.16, and the RPD 
produced by the best well-known heuristic, CDS, is 79.34.  When ECAM is used, the 
RPD produced by BBFFL is 22.07, and the RPD produced by the best well-known 
heuristic, NEH, is 31.08.  When ECALLM is used, the RPD produced by BBFFL is 
0.70, while the RPD produced by the best well-known heuristic, NEH, is 3.28.  The 
NBS shows the same tendency; when ECALLM is used, the NBS produced by BBFFL 
is 1,639, and the NBS produced by the best well-known heuristic, NEH, is 470.  Note 
that although BBFFL using ECALLM is not able to produce best solutions for all the 
test examples, it deviates from the best solutions, on average, by only 0.7%.   

 
“Please Insert Table 2 about here” 

 
We further applied the analysis of variance (ANOVA) and the least significance 

difference method (LSD) to test the RPD of the 2,430 test problems to confirm the 
previous conclusions.  The four well-known heuristics and BBFFL are grouped into a 
factor and denoted as the algorithms.  Table 3, the ANOVA table, shows that machine 
selection rules significantly affect the performance of the well-known heuristics and 
BBFFL, and Table 4, the result of the LSD test, shows that ECALLM significantly 
dominates ECAM and EAAM.  Note that in Table 4, the machine selection rules are 
sequenced in descending order in terms of their average RPD, and the rules with the 
same letter represent that the performance of the rules are not significantly different.  
Then, within each of the machine selection rules, we applied the analysis of variance 
and the LSD test to test if BBFFL significantly outperforms the well-known heuristics.  
Since the test results for the three machine selection rules are about the same, we 
present only the results for ECALLM here.  Table 5, the ANOVA table, shows that the 
performance of BBFFL and the four well-known heuristics is significantly different, and 
Table 6, the result of the LSD test, shows that BBFFL significantly dominates all the 
well-known heuristics.   

 
“Please Insert Table 3 about here” 
“Please Insert Table 4 about here” 
“Please Insert Table 5 about here” 
“Please Insert Table 6 about here” 

 
According to the previous analyses, BBFFL working with ECALLM is the best 

heuristic for the candidate problem, and it is denoted as BBFFL/ECALLM.  We further 
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studied the performance of BBFFL/ECALLM under different production scenarios.  
We applied the LSD test to study the relative performance of BBFFL/ECALLM and the 
best well-know heuristic, NEH/ECALLM, at different levels of the experimental factors.  
Table 7 summarizes the average RPD produced by BBFFL/ECALLM and 
NEH/ECALLM at each level of all the factors, and Table 8 summarizes of the results of 
the LSD tests.  The results show that BBFFL/ECALLM significantly dominates 
NEH/ECALLM at each level of all the factors.  These results show the consistent 
performance of BBFFL/ECALLM at different production scenarios. 

 
“Please Insert Table 7 about here” 
“Please Insert Table 8 about here” 

 
Finally, we discuss the efficiency of BBFFL/ECALLM.  All the heuristics are 

coded using the C++ language, and all experiments are performed on a PC with Intel 
Xeon, 3.2 GHz CPU and 4 GB RAM.  Table 9 displays the average computation time 
(in seconds) required for BBFFL and the four well-known heuristics to solve a problem.  
The results show that the average CPU time for BBFFL to solve a 100-job problem is 
around 6.88 seconds, which has no significant different from that of NEH.  This 
concludes that BBFFL/ECALLM is efficient enough for real world problems.   

 
“Please Insert Table 9 about here” 

 
5. Conclusions  

This research has concluded that machine selection rule is a key factor affecting 
the performance of the heuristics for the FFL problem with unrelated parallel machines, 
and the machine selection rule, ECALLM, significantly dominates the other two 
machine selection rules, EAAM and ECAM.  Also, the proposed heuristic, BBFFL 
significantly outperforms the four well-known heuristics, CDS, CDSD, DAN and NEH.  
The heuristic, BBFFL/ECALLM, produced best solutions for most of the test problems 
(1639 out of 2430), and it deviates from the best solutions, on average, by only 0.7%.  
Furthermore, the experimental design has shown that the performance of BBFFL is 
fairly stable; it consistently and significantly dominates all the well-known heuristics in 
different levels of all the experimental factors. 

As mentioned in the literature review, there were only a few research papers 
published on the FFL problem with unrelated parallel machines.  These papers dealt 
with FFL problems considering different characteristics such as sequence dependent 
setup times and solved the problems using local search methods such as simulated 
annealing and genetic algorithms.  Although local search methods were usually 
effective for the problems, they were computationally burdensome for large size 
problems.  Therefore, the proposed bottleneck-based heuristic, BBFFL/ECALLM, can 
be further applied to FFL problems considering some characteristics such as sequence 
dependent setup operations and reentrant processing; it can also be applied to solve 
other scheduling problems such as job shop problems with bottleneck stages. 
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Table 1. Experimental design for generating test problems 
Experimental Factors Levels  

Number of jobs 30 
50 
100 

L 
M 
H 

Number of stages 5 
10 
20 

L 
M 
H 

Variation of processing 
times 

U[10, 50] 
U[10, 100] 
U[10, 200] 

L 
M 
H 

Position of bottleneck stage The first quarter of the flow line  
The second quarter of the flow line  
The third quarter of the flow line 

L 
M 
H 

Workload difference 1.1 
1.5 
2.0  

L 
M 
H 
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Table 2.  Performance comparisons of the proposed heuristics and the dispatching rules (in terms of 
average RPD and number of best solutions (NBS)) 

Algorithms 

Average RPD NBS 

Machine selection rules Machine selection rules 

EAAM ECAM ECALLM EAAM ECAM ECALLM 

CDS 79.3433 36.6330 5.2855 0 0 173 

DAN 91.1659 45.5789 10.7767 0 0 9 

CDSD 79.5552 36.6229 5.2743 0 0 173 

NEH 79.8047 31.0792 3.2767 0 7 470 

BBFFL 70.1643 22.0729 0.6988 0 54 1639 
 

Table 3.  Analysis of Variance to test the significance of the machine selection rules 
Source of variation Degree of freedom Sum of squares Mean squares F**

Algorithms 4 1236277.50 309069.37 495.51**

Machine selection rules 2 34657428.41 17328714.20 27781.95**

Error 36443 22730955.43 623.74  

Total 36449 58624661.33   
**Difference in the effects at significance level 0.01. 

 
Table 4.  Results of LSD Test for the machine selection rules 

Machine selection rules RPD Results* (groups) 

ECALLM 5.0624 A 

ECAM 34.3974 B 

EAAM 80.0067 C 
*Statistically significant difference (at significance level of 0.01) between machine selection rules with 
different alphabet letters. 

 
Table 5.  Analysis of Variance to test the significance of the algorithms when ECALLM is used 

Source of variation Degree of freedom Sum of squared error Mean squared error F**

Algorithms 4 133595.82 33398.96 1571.89**

Error 12145 258052.00 21.25  

Total 12149 391647.82   
**Difference in the effects at significance level 0.01. 
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Table 6.  Results of LSD Test for the algorithms when ECALLM is used 
Algorithms RPD Results* (groups) 

BBFFL 0.6988 A 

NEH 3.2767 B 

CDSD 5.2743 C 

CDS 5.2855 C 

DAN 10.7767 D 
*Statistically significant difference (at significance level of 0.01) between machine selection rules with 
different alphabet letters. 

 
Table 7.  Average RPD produced by BBFFL/ECALLM and NEH/ECALLM at each level of the 

experimental factors  

Algorithms 
Number of Jobs Number of Stages Position of the 

bottleneck stage
Workload 
differences 

Range of 
processing times

L M H L M H L M H L M H L M H 

BBFFL/ECALLM 1.1226 0.604 0.37 0.6472 0.6956 0.7537 0.6525 0.6727 0.7713 0.7013 0.6836 0.7116 0.5055 0.6489 0.9421

NEH/ECALLM 3.0135 3.333 3.4836 3.2236 3.2624 3.3441 2.9636 3.3524 3.514 3.0501 3.3054 3.4747 3.3838 3.3199 3.1264

 
Table 8.  Results of LSD Test for BBFFL/ECALLM and NEH/ECALLM at each level of the 

experimental factors 

Algorithms 
Number of Jobs Number of 

Stages 
Position of the 

bottleneck stage
Workload 
differences 

Range of 
processing times

L M H L M H L M H L M H L M H

BBFFL/ECALLM A A A A A A A A A A A A A A A

NEH/ECALLM B B B B B B B B B B B B B B B

 
Table 9.  Average computation time required for the proposed heuristic and the dispatching rules 

Heuristics 

CPU times (s) 

Number of jobs Number of stages 
Overall 

Low Medium High Low Medium High 

CDS 0.0071 0.0140 0.0421 0.0035 0.0124 0.0473 0.0211 

DAN 0.0008 0.0012 0.0030 0.0009 0.0014 0.0027 0.0017 

CDSD 0.0073 0.0141 0.0423 0.0037 0.0126 0.0473 0.0212 

NEH 0.1244 0.6372 7.0868 1.1457 2.2474 4.4553 2.6161 

BBFFL 0.1238 0.6292 6.8824 1.0566 2.1725 4.4063 2.5451 

 
 


