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Bottleneck-based heuristics to minimize tardy jobs in a flexible flow line with unrelated 
parallel machines 

CHUN-LUNG CHEN and CHUEN-LUNG CHEN* 
*Department of MIS, National Chengchi University, ZhiNan Rd., Wenshan District,  

Taipei City 11605, Taiwan, R.O.C. 
 
1. Proposed bottleneck-based heuristics 

Lenstra et al. (1977) proved that the FFL with two stages is NP-hard in the strong sense, 
so the candidate problem is a NP-hard problem as well.  It requires much computational time 
to find the optimal solution.  A heuristic is an acceptable practice to find a good solution.  
In this paper, several bottleneck-based heuristics are proposed to solve the candidate problem 
with unrelated parallel machines.  The heuristics consist of three steps: 

Step 1. Identify the bottleneck stage. 
Step 2. Schedule jobs at the bottleneck stage and the upstream stages. 
Step 3. Schedule jobs at the downstream stages 

The workload is used as an indicator to identify the bottleneck stage.  Since the machines 
are unrelated at each stage, the processing time of an operation at a stage is dependent upon 
the machine assigned to the operation.  The workload of stage j is computed by the sum of 
the average processing times of all the operations processed at the stage divided by its number 
of machines, denoted as Rj= j

n

i ij mp /)(
1∑=

.  The stage with the largest Rj, is defined as the 
bottleneck stage.  

When scheduling jobs at the bottleneck stage, the arrival times of the jobs to the 
bottleneck stage must be determined.  Since the bottleneck stage may not be the first stage, 
the arrival times of the jobs to the bottleneck stage may not be zero.  The sum of the 
processing times of the operations at the upstream stages of a job is commonly used as the 
arrival time to the bottleneck stage of the job (Lee et al. 2004).  However, since it will 
produce infeasible schedule, complicated procedures are needed to modify the schedule at the 
bottleneck stage until a feasible and promising schedule is obtained.  This method of 
determining a job’s arrival time to the bottleneck stage will be even more difficult for the 
candidate problem because the processing time of an operation at a stage is not a constant in 
an unrelated parallel machines environment. 

In this research, we propose a new approach to iteratively schedule the jobs at the 
bottleneck stage and the upstream stages.  At the initial iteration, let all the jobs be 
unscheduled jobs; for each unscheduled job, three machine selection rules are used to assign 
the job to a machine at each of the upstream stages and determine the arrival time of the job to 
the bottleneck stage.  When the arrival times of all the unscheduled jobs to the bottleneck 
stage are determined, two decision rules are used to select the best job for the bottleneck stage.  
The schedule of the selected job at the upstream stages and the bottleneck stage is then fixed.  
This job becomes a scheduled job, and the next iteration follows to schedule the remaining 
unscheduled jobs under the constraint of the scheduled jobs.  This procedure will continue 
until all the jobs are scheduled.  Since, in each iteration, the new approach constructs the 
schedule at each of the upstream stages and the bottleneck stage by adding only one job to the 
schedule of the stages constructed in the previous iteration, it clearly will produce feasible 
schedules.  This procedure neatly overcomes the difficulty of determining feasible arrival 
time of a job at the bottleneck stage, especially when unrelated parallel machines are 
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considered.  When the arrival times of all the jobs at the bottleneck stage are determined, any 
heuristics for unrelated parallel machines can be applied to schedule the jobs at the bottleneck 
stage. 

The three machine selection rules used in this research are as follows: given a job at a 
stage, the first machine selection rule, EAAM, is to select the machine with the earliest 
available time among the available machines.  The second selection rule, ECAM, is to select 
the machine with the earliest completion time when the job is assigned to the available 
machines.  The third selection rule, ECALLM, is to select the machine with the earliest 
completion time when the job is assigned to all the machines at the stage, including available 
and unavailable machines.  This rule may cause an idle period of the job.  However, since 
unrelated parallel machines are considered at the stage, an unavailable but more efficient 
machine may produce earlier completion time for the job.  When the machine selection rules 
are used in the bottleneck-based heuristics to determine the arrival time of a job to the 
bottleneck stage, the application is straightforward.  Since only one job is considered at a 
time, when the job arrives at each of the upstream stages, it is easy to calculate its completion 
time on each available machine and each unavailable machine and determine the machine that 
the job will be assigned to according to the machine selection rules.  However, when the 
machine selection rules are applied with dispatching rules, the procedure will become more 
complicated.  Since the candidate problem is a flow shop problem, we can schedule jobs 
stage by stage.  At each stage, an array is set to record the updated machine available time 
for each machine, and an array is set to record the updated arrival time of each job.  Also, a 
time clock is set to record the updated decision time for schedule making; the updated 
decision time is the smallest updated machine available time.  The initial available times of 
all the machines are zero, and the initial arrival time of a job is its completion time at the 
previous stage.  When the time clock runs to time t, the machine or machines whose updated 
available time(s) are earlier than time t will be identified, and the job or jobs whose updated 
arrival times are earlier than time t will be identified.  Then, the dispatching rules will be 
used to select the best available job, the machine selection rules will be used to assign an 
appropriate machine to the selected job, and the completion time of the job on the machine 
will be used to update the available time of the machine.  

The two decision rules at the bottleneck stage are derived by considering a variation of 
Moore’s algorithm (Moore 1968), which minimizes the total number of tardy jobs for single 
machine scheduling.  The main idea of Moore’s algorithm is that it does not consider a job 
for scheduling if the job is decided to be tardy.  As for the non-tardy jobs, they are scheduled 
according to the earliest due date (EDD) rule.  The decision rules compare a job’s due date 
and completion time to justify its tardiness.  Two types of due dates and two types of 
completion times are considered.  Given a job, say job i, the two types of due dates are the 
given due date (di) and the estimated operational due date ( id

)
= min

ibi wd − ), and the two types 
of completion times are the completion time at the bottleneck stage b ( ibC = }{min ibsibss

pR + ) 

and the estimated completion time at the last stage J ( iJC
)

= min
ibib wC + ).  Note that Ribs is the 

ready time of job i to be processed on machine s at the bottleneck stage, which is the larger 
value between the arrival time of job i at the bottleneck stage and the available time of 
machine s at the bottleneck stage.  Also, since unrelated parallel machines exist at the 
bottleneck stage, job i can be assigned to any machine s at the stage.  Its completion time 
( ibC ) is defined to be the smallest of the completion times on all the machines at the stage 
( }{min ibsibss

pR + ).  When the tardiness of all the jobs is justified, the non-tardy jobs will be 

scheduled according to the decision rules.  The first decision rule selects the job with the 
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smallest due date, }min{ iiJi dCd ≤
)

.  The second decision rule selects the job with the 

smallest estimated operational due date, }min{ minmin
ibiibibi wdCwd −≤− .  If there are no 

non-tardy jobs present, the job with the minimum completion time at the bottleneck stage will 
be chosen.   

The decision rules using the minimum remaining processing time of job i after the 
bottleneck stage b, min

ibw , in id
)

 and iJC
)

 was based on a thorough experiment.  Since there 
are unrelated parallel machines in the stages, a job’s remaining processing time after the 
bottleneck stage (the downstream stages) is not a constant.  We defined the remaining 
processing time in three ways: the minimum, the average, and the maximum.  The minimum 
remaining processing time of a job was to sum up the minimum processing time of the job on 
every one of the downstream stages.  Similarly, the average and maximum remaining 
processing times were found the same way as the minimum remaining processing time.  A 
large number of test problems were developed to evaluate the performance of the decision 
rules with minimum, average, and maximum remaining processing times.  In terms of the 
average number of tardy jobs, computational results showed that the rules with minimum 
remaining processing time performed slightly better than the rules with average remaining 
processing time, and it significantly dominated the rules with maximum remaining processing 
time.  Therefore, decision rules with minimum remaining processing time were chosen in 
this research. 

The procedures, up to the bottleneck stage, of the proposed bottleneck-based heuristics are 
presented with respect to each of the decision rules: 

Procedure 1: Bottleneck with due date (BDD) 
Step 1. Assign all the jobs to set Ω, where Ω = {1, 2, 3, …, n}.  Set the schedule for the 

bottleneck stage S = φ . 
Step 2. If Ω is φ , then stop. 
Step 3. Compute the arrival time for each job Ω∈i  at the bottleneck stage b ( iba ). 
Step 4. Compute the completion time for each job Ω∈i  at the bottleneck stage b ( ibC ).  

Note that ibC  = }{min ibsibss
pR + . 

Step 5. Compute the estimated completion time iJC
)

, where iJC
)

= min
ibib wC +  for each job 

Ω∈i . 
Step 6. Let U = {i| iiJ dC ≤

)
} and V = {i| iiJ dC >

)
}. 

Step 7. If U≠ φ , select the job with the smallest due date.  If there are more than one job 
with the same smallest due date, select the one with the smallest estimated 
completion time, iJC

)
.  If U = φ , select the job with the smallest value of ibC  

for i∈V.  Let the selected job be job k. 
Step 8. Save the schedule of job k at the bottleneck stage to schedule S and remove k from 

Ω.  Fix the schedule of job k at the upstream stages and the bottleneck stage. 
Step 9. Go to step 2. 
 
Procedure 2 is identical to Procedure 1 except for Step 5 to Step 7 to implement different 

decision rules. 
Procedure 2: Bottleneck with estimated operational due date (BODD) 
Step 5. Compute the estimated operational due date, id

)
, where id

)
= min

ibi wd − , for each job 
Ω∈i . 
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Step 6. Let U = }{ min
ibiib wdCi −≤  and V = }{ min

ibiib wdCi −> . 
Step 7. If U≠ φ , select the job with smallest estimated operational due date.  If there are 

more than one job with the same smallest estimated operational due date, select the 
one with the smallest completion time at the bottleneck stage, ibC .  If U = φ , 
select the job with the smallest completion time at the bottleneck stage, ibC  for 
i∈V.  Let the selected job be job k. 

 
When the jobs for the bottleneck stage and the upstream stages are scheduled, the jobs 

will move to the downstream stages according to their schedule at the bottleneck stage, that is 
the schedule S, and the dispatching rules will be used to schedule the jobs at the downstream 
stages.  Many dispatching rules have been developed for flexible flow line problems.  
Hunsucker and Shah (1992) evaluated the performance of six priority rules under congestion 
levels in the constrained flow shop with multiple processors for mean tardiness and number of 
tardy jobs.  This study suggested that the SPT rule yielded good performances for both the 
performance measures considered.  Brah (1996) examined the performance of ten 
well-known dispatching rules in static flow shop with multiple processors.  The study 
suggested that S/RPT+SPT, MDD, and EDD rules would be best for mean tardiness and 
maximum tardiness.  Kadipasaoglu et al. (1997) conducted a study to make a comparison of 
dispatching rules in static and dynamic hybrid flow systems.  The COVERT rule performed 
well in regards to the total tardiness criterion in their research.  Jayamohan and Rajendran 
(2000) studied many dispatching rules in flexible flow shops.  They reported that simple 
dispatching rules, such as SPT, could offer a good performance for the number of tardy jobs.  
Lee et al. (2004) used several dispatching rules to compare the performance with their 
proposed heuristics in the hybrid flow shop.  The ATC and COVERT dispatching rules 
showed good results in regard to the total tardiness.  Since the previous researches showed 
different conclusions regarding the performance of the dispatching rules on the FFL problems 
with due date related objectives, a pilot experiment with a large number of randomly 
generated problems was conducted to evaluate the effect of all the previous  dispatching 
rules on scheduling the jobs at the downstream stages in the proposed bottleneck-based 
heuristics.  Computational results showed that these dispatching rules have insignificant 
effect on the proposed heuristics; however, ATC performed slightly better than the other 
dispatching rules.  Therefore, ATC was chosen to schedule the jobs at the downstream stages, 
and two bottleneck-based heuristics, denoted as BDD+ATC and BODD+ATC, were 
developed for the candidate problem.  Priority functions of the six dispatching rules are 
stated as below:  

 
(1) Shortest Processing Time (SPT) 

iji pZ =  
(2) Earliest Due Date (EDD) 

ii dZ =  
(3) Modified Due Date (MDD) 

},max{ iii wtdZ +=  
(4) Combining of the Slack per Remaining Work and the Shortest Processing Time 

(S/RPT + SPT) 
},/)max{( ijijiiii ppwtwdZ ×−−=  

(5) Apparent Tardiness Cost (ATC) 
ijijijiii ppatppwcdZ /]/})({exp[ ⋅−−−−−−= +  
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(6) Cost Over Time (COVERT) 
++ ⋅⋅−−−−= ]/}/)(1[{ ijiiii pwcatwdZ  

 
2. Computational experiments 

In order to evaluate the performance of the bottleneck-based heuristics, a series of 
computational experiments have been conducted to compare the results produced by the 
heuristics and the dispatching rules on randomly generated problems under different 
production scenarios.  Table 1 summarizes the experimental factors used to define the 
production scenarios: the number of jobs, the number of stages, the variation of job 
processing time, the tightness of job due date, the position of the bottleneck stage in the flow 
line, and the workload difference between bottleneck and non-bottleneck stages.  The 
number of jobs has three levels with values set at 30, 50, and 100 (low, medium, and high).  
The number of stages has three levels with values set at 5, 10, and 20 (low, medium, and high), 
where the number of machines at each stage is generated from discrete uniform distribution in 
the range of [1, 5].  The processing times of an operation on different machines at stage j are 
generated from a discrete uniform distribution multiplied by the number of machines at stage j, 
mj.  The purpose of the term, mj, is to balance the workload of the stages (Lee et al., 2004).  
Three ranges are considered for the uniform distribution to define the variation of job 
processing time.  They are the following: [10,50], [10,100], and [10,200] (low, medium, and 
high).  The due dates of jobs are generated from a discrete uniform distribution U[L(1-T-R/2), 
L(1-T+R/2)] where L is a lower bound of the makespan, and T and R are the tardiness factor 
and due date range, respectively.  The maximum of the total processing times of all the jobs, 

∑ =

J

j iji pMax 1
}{ , is a lower bound for the FFL problem with identical parallel machines 

(Santos et al. 1995).  Since unrelated parallel machines are considered in this research, we 
define L to be equal to ∑ =

J

j iji pMax 1
}{ .  Not that this L cannot guarantee to produce the 

lower bound for the candidate problem.  There are three groups of T and R, [0.1, 1.6], [0.3, 
1.2] and [0.5, 0.8], considered in this research.  The three discrete uniform distributions for 
due date generation are then created as follows: U[0.1L, 1.7L], U[0.1L, 1.3L], and U[0.1L, 
0.9L].  Clearly, a smaller tardiness factor, T, and a larger due date range, R, will crate a 
uniform distribution with wider range for due date generation, and vice versa.  

The position of the bottleneck stage in the system has three levels: the first quarter, the 
second quarter, and the third quarter of the flow line.  The exact position of the bottleneck 
stage is randomly selected from the first quarter, the second quarter, or the third quarter of the 
flow line.  The workload difference between the bottleneck stage and the highest workload 
non-bottleneck stage is set at three ratios of 1.1, 1.5 and 2.0 (low, medium, and high).  The 
workload of a specified bottleneck stage is created as follows: (1) with a given combination of 
the number of jobs and the number of stages, randomly generate the processing times of the 
operations of every job on every stage; (2) calculate workload Rj = j

n

i ij mp /)(
1∑=

 for every 
stage 1 ≦ j ≦ J, and choose the stage, say stage k, with the largest R value; (3) randomly 
select a bottleneck stage b, b ≠ k, from a predetermined quarter on the flow line; (4) with a 
specified workload difference (wd), modify the processing time of job i on machine m at the 
bottleneck stage b, ibmp , where new ibmp = (old ibmp )×(Rk/old Rb)×(wd).  This procedure will 
guarantee that the ((new Rb)/Rk) equals the specified wd.  With the six three-level factors 
considered, there are a total of 729 production scenarios, and ten test problems are generated 
for each scenario in the experiment. 

Table 2 presents the computational results of the six dispatching rules and the two 
bottleneck-based heuristics, with each of the three machine selection rules, for the 7290 test 
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problems.  The average number of tardy jobs, the relative deviation index (RDI) and the 
number of best solutions produced (NBS) are the three criteria used to evaluate the 
performance of the dispatching rules and the bottleneck-based heuristics.  The relative 
deviation index (RDI) has been used in several papers such as Lee et al. (2004) and Choi et al. 
(2005), which is defined as below: 

RDI 
⎪⎩

⎪
⎨

⎧ ≠−
−
−

=
otherwise. 0

 0,)( if bw
bw

ba SS
SS
SS

 

Sa is the solution value obtained by method a, and Sb and Sw are, respectively, the best and 
the worst solution values among the solutions obtained by all the methods included in the 
comparison.  

“Please Insert Table 2 about here” 
The results of the average number of tardy jobs in Table 2 show several noteworthy points.  

First, the machine selection rules significantly affect the performance of the dispatching rules 
and the bottleneck-based heuristics.  When the dispatching rules are used, the average of the 
average number of tardy jobs produced by EAAM is 41.48; this number of ECAM and 
ECALLM is 22.27 and 16.97, respectively.  These numbers show that ECALLM dominates 
EAAM and ECAM by 59% and 24%, respectively.  A similar result can be obtained for the 
bottleneck-based heuristics; ECALLM dominates EAAM and ECAM by about 66% and 13%, 
respectively.  Therefore, we conclude that ECALLM is the machine selection rule that 
should be considered for the candidate problem.  Second, within each of the machine 
selection rules, the bottleneck-based heuristics significantly outperform the dispatching rules.  
When EAAM is used, the average number of tardy jobs produced by the worst 
bottleneck-based heuristic, BODD+ATC, is 34.40, and produced by the best dispatching rule, 
S/RPT+SPT, is 37.58; BODD+ATC dominates S/RPT+SPT by 8%.  This dominance 
percentage increases to 38% and 27%, respectively, when ECAM and ECALLM are used.  
Also, within each of the machine selection rules, the average numbers of tardy jobs produced 
by the bottleneck-based heuristics are very close.  These numbers are all around 34, 11, and 
10, respectively, when EAAM, ECAM, and ECALLM are used.  These results reach to one 
conclusion: the performance of the two decision rules used to schedule the jobs at the 
bottleneck stage is very close. 

The results of the average RDI and the NBS in Table 2 strongly support the previous 
conclusions.  For the dispatching rules, when EAAM is used, the average RDIs are all 
around 0.80 to 0.90.  They decrease to around 0.20 to 0.40 when ECAM is used and further 
decrease to around 0.10 to 0.20 when ECALLM is used.  On the contrary, when EAAM is 
used, all the NBS are 0, and they increase to a few hundred when ECAM and ECALLM are 
used.  As for the bottleneck-based heuristics, when EAAM is used, the average RDIs are all 
around 0.68.  They significantly decrease to about 0.04 when ECAM is used and further 
decrease to about 0.01 when ECALLM is used.  The NBS shows the same tendency as that 
of the dispatching rules.  When EAAM is used, all the NBS are less than or equal to 3.  
They significantly increase to over 3,500 when ECAM is used and further increase to over 
5,500 when ECALLM is used.  Therefore, we can conclude that ECALLM significantly 
dominates ECAM and EAAM for the dispatching rules and the bottleneck-based heuristics.  
Also, within each of the machine selection rules we can easily identify that the 
bottleneck-based heuristics significantly dominates the dispatching rules.  When EAAM is 
used, the average RDIs of the dispatching rules are all around 0.80, and they decrease to 
around 0.68 when the heuristics are used.  When ECAM and ECALLM are used, this 
comparison is even clearer; the average RDI of the dispatching rules is about 10 times that of 
the heuristics, and the NBS of the dispatching rules is about 1/10 that of the heuristics.   
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We further applied the analysis of variance (ANOVA) and Duncan's multiple range test to 
analyze the output (the number of tardy jobs) of the 7290 test problems to confirm the 
previous conclusions.  The dispatching rules and the bottleneck-based heuristics are grouped 
into a factor and denoted as the algorithms.  Table 3, the ANOVA table, shows that machine 
selection rules significantly affect the output of the test problems, and Table 4, the result of 
the Duncan test, shows that ECALLM significantly dominates ECAM and EAAM.  Note 
that in Table 4, the machine selection rules are sequenced in descending order in terms of their 
average number of tardy jobs, and the rules with the same letter represent that the 
performance of the rules is not significantly different.  Then, within each of the machine 
selection rules, we applied the analysis of variance and Duncan's multiple range test to test if 
the bottleneck-based heuristics significantly outperform the dispatching rules.  Since the test 
results for the three machine selection rules are about the same, we present only the results for 
ECALLM here.  Table 5, the ANOVA table, shows that the algorithms significantly affect 
the output, and Table 6, the result of the Duncan test, shows that the bottleneck-based 
heuristics significantly dominate the dispatching rules, but the performance of the heuristics is 
not significantly different.   
 

“Please Insert Table 3 about here” 
“Please Insert Table 4 about here” 
“Please Insert Table 5 about here” 
“Please Insert Table 6 about here” 

 
According to the previous analyses, ECALLM should be the machine selection rule 

chosen to work with the bottleneck-based heuristics for the candidate problem.  Although the 
performance of the bottleneck-based heuristics is very close when ECALLM is used, all the 
three criteria in Table 2 show that BODD+ATC is slightly better than the other heuristics.  
Therefore, it is concluded that BODD+ATC working with ECALLM is the best heuristic for 
the candidate problem, and it is denoted as BODD+ATC/ECALLM.  We further study the 
performance of BODD+ATC/ECALLM under different production scenarios.  Table 7 
summarizes the average RDI for each level of the six experimental factors for generating the 
729 production scenarios.  The first two factors, the number of jobs and the number of stages, 
are in relation to the problem size of the test problems.  For each of these two factors, the 
average RDI values of the three levels are all within 0.007 to 0.009, so we conclude that the 
relative performance of BODD+ATC/ECALLM is quite robust to the problem size.  The 
next two factors are the variation of job processing time and the tightness of job due date.  
Note that three different ranges are used in discrete uniform distribution to generate job's 
processing times.  The average RDIs of the three ranges are within 0.0074 to 0.0086, so we 
conclude that the relative performance of BODD+ATC/ECALLM is insensitive to the 
variation of job processing time.  As for the range of the distribution for due date generation, 
the low level stands for the tight range, and the high level stands for the loose range.  The 
average RDI increases to 0.0112 when the due date range is tight (the low level).  We 
calculated the average RDI and NBS of all the bottleneck-based heuristics and the dispatching 
rules at each level and found that when the due date range is getting tighter, the NBS of 
BODD+ATC/ECALLM decreases and causes the increase of its average RDI.  However, this 
is the phenomenon for all the heuristics and the dispatching rules.  The relative performance 
of dispatching rules gets even worse when due date range gets tighter.  When the range is 
tight, the average RDI of the best-performance dispatching rule, ATC/ECALLM, is 0.1726. 

The last two factors, the workload difference and the position of the bottleneck stage, are 
in relation to the bottleneck stage.  The average RDI of the workload difference shows that 
the relative performance of BODD+ATC/ECALLM improves when the workload difference 
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increases.  The average RDI decreases from 0.0099 to 0.0060 when the workload difference 
increases from 1.1 (low level) to 2.0 (high level).  This result shows that 
BODD+ATC/ECALLM is more effective for the problems with higher distinct bottleneck 
phenomenon.  However, it still performs well even when the bottleneck phenomenon is not 
distinct.  We calculated the average RDI for ATC/ECALLM under the condition where the 
workload difference is 1.1 and found that the average RDI is 0.1442.  This value is obviously 
much worse than that of BODD+ATC/ECALLM.  Also, the average RDI shows that the 
relative performance of BODD+ATC/ECALLM improves when the bottleneck stage is placed 
further back in the flow line.  The average RDI decreases from 0.0107 to 0.0052 when the 
position of the bottleneck stage moves from the first quarter of the line (low level) to the third 
quarter of the line (high level).     

Finally, we take into consideration the efficiency of the bottleneck-based heuristics.  All 
heuristics are coded in C++ language, and all experiments are performed on a PC with 
Pentium 4, 2.4 GHz CPU and 512 MB RAM.  Table 8 displays the average computation time 
(in sec.) required for BODD+ATC/ECALLM to solve a problem.  The results indicate that 
the average CPU time for BODD+ATC/ECALLM to solve a 100-job problem is less than 0.3 
seconds, which is fast enough for it to be used in practice. 

 
“Please Insert Table 7 about here” 
“Please Insert Table 8 about here” 

 
3. Conclusions 

This paper develops bottleneck-based heuristics to solve the FFL problem with unrelated 

parallel machines and with a bottleneck stage.  The objective is to minimize the number of tardy 

jobs of the problem.  Computational results have shown that the proposed bottleneck-based 

heuristics significantly outperform six well-known dispatching rules for the candidate problem.  

This is mainly contributed by the new approach for determining the arrival times of the jobs to the 

bottleneck stage and the decision rules for scheduling the jobs on the bottleneck stage.  The 

results have also shown that the machine selection rule, ECALLM, should be used when the 

unrelated parallel machines are considered in the stages. 

The experimental design has also found some interesting points.  First, the effectiveness 
of BODD+ATC/ECALLM is robust to the problem size and to the variation of job processing 
time.  Second, BODD+ATC/ECALLM is still effective even if the bottleneck phenomenon is 
not distinct.  Third, the relative performance of BODD+ATC/ECALLM improves when the 
bottleneck stage is placed further back.  Finally, BODD+ATC/ECALLM is very efficient and 
can be applied to real world problems. 

As mentioned in the literature review, there are only a few research papers published on 
the FFL problem with unrelated parallel machines.  These papers deal with the FFL problem 
considering different characteristics, such as sequence dependent setup times, and solve the 
problem using local search methods, such as simulated annealing and genetic algorithms.  
Therefore, this new bottleneck-based approach can be further applied to the FFL problem 
considering other characteristics, such as setup operations and reentrant processing; it can also 
consider other objectives such as total tardiness, total flow time, and makespan.  Also, the 
new approach deserves to be applied to solve other scheduling problems with bottleneck 
stages.  Furthermore, while conducting this research, we found that different methods for 
generating job’s processing time at each stage significantly affected the performance of the 
dispatching rules but not the performance of the proposed heuristics.  For instance, the job’s 
processing time is generated with the assumption that the efficiency of the machines at a stage 
is consistent for all the jobs.  None of the topics, considering the processing time information 
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on parallel processors, have been studied for the FFL problem with unrelated parallel 
machines.  This is another interesting research topic. 
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Table 1.  Experimental Design for Generating Test Problems 

Experimental Factor Factor Levels (low, medium, high) 

Number of jobs 30, 50, 100  

Number of stages 5, 10, 20 

Variation of job processing time U[10,50], U[10,100], U[10,200] 

Tightness of job due date U[0.1L, 0.9L], U[0.1L, 1.3L], U[0.1L, 1.7L], 

Workload difference  1.1, 1.5, 2.0  

Position of the bottleneck stage The first, second, and third quarter of the flow line 

 
Table 2.  Performance comparisons of the proposed heuristics and the dispatching rules (in terms of average 

RDI, average number of total tardy jobs (ATJ), and number of best solutions (NBS)) 
ATJ Average RDI (NBS) 

Machine selection rules Machine selection rules Heuristics 

EAAM ECAM ECALLM EAAM ECAM ECALLM 

SPT 39.21  25.63  20.52  0.8322 (0) 0.4063 (19) 0.2793 (66)

EDD 45.35  25.52  17.58  0.9486 (0) 0.3631 (267) 0.1987 (711)

MDD 40.46  19.07  15.35  0.8353 (0) 0.234 (182) 0.1483 (421)

S/RPT+SPT 37.58  23.70  18.71  0.7869 (0) 0.3555 (21) 0.2346 (95)

ATC 44.80  19.92  14.10  0.9388 (0) 0.2384 (352) 0.1162 (847)

COVERT 41.47  19.78  15.56  0.8574 (0) 0.2506 (170) 0.1548 (385)

BDD+ATC 34.21  11.47  10.11  0.6771 (1) 0.0360 (3548) 0.0095 (5560)

BODD+ATC 34.40  11.68  10.07  0.6796 (3) 0.0379 (3805) 0.0077 (5981)
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 Table 3.  Analysis of variance to test the significance of the machine selection rules (α=0.01). 
Source of variation Degree of freedom Sum of squared error Mean squared error F**

Algorithms 7 2559331.23 365618.75 1213.07**

Machine selection rules  2 19821925.05 9910962.52 32883.17**

Error 174950 52729795.65 301.40  
Total 174959 75111051.92   

 
Table 4.  Results of Duncan’s multiple range test for machine selection rules. 

Machine selection rules ATJ Results (groups) 

ECALLM 15.25  A 
ECAM 19.59  B 
EAAM 39.69  C 

 
Table 5.  Analysis of variance to test the significance of the algorithms when ECALLM is used (α=0.01). 

Source of variation Degree of freedom Sum of squared error Mean squared error F**

Algorithms 7 727490.25 103927.18 850.14**

Error 58312 7128457.72 122.25  
Total 58319 7855947.98   

 
Table 6.  Results of Duncan’s multiple range test for bottleneck-based heuristics. 

Heuristics ATJ Results (groups) 

BODD+ATC/ECALLM 10.07 A 
BDD+ATC/ECALLM 10.11 A 
ATC/ECALLM 14.10 B 
MDD/ECALLM 15.35 C 
COVERT/ECALLM 15.56 C 
EDD/ECALLM  17.58 D 
S/RPT+SPT/ECALLM 18.71 E 
SPT/ECALLM 20.52 F 

 
Table 7.  Effect of the experimental factors on the BODD+ATC/ECALLM (in terms of average RDI) 

Average RDI 

Factors Low Medium High 

Number of jobs 0.0075 0.0071 0.0086 

Number of stages 0.0090 0.0072 0.0071 

Processing time 0.0074 0.0072 0.0086 

Due date tightness 0.0112 0.0062 0.0058 

Workload difference 0.0099 0.0073 0.0060 

Position of the bottleneck stage 0.0107 0.0073 0.0052 

 
Table 8.  Average computational time required for the heuristics 

CPU times (s) 

Number of jobs Number of stages 

Heuristics Low Medium High Low Medium High 
Overall 

ATC/ECALLM 0.0102 0.0167 0.0358 0.0107 0.0209 0.0311 0.0209 

BODD+ATC/ECALLM 0.0286 0.0658 0.2852 0.0715 0.1286 0.1795 0.1265 

 


