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一、 中文摘要

對改進偶發事件 (rare event) 模擬的效率, 重點抽樣這種模擬技術通常是最好的選

擇。 過去, 在佇列 (queueing) 與可靠度 (reliability) 模型上, 應用重點抽樣成功的

例子不少。 但是, 對一特定的模型, 選取一個有效率的重點抽樣分配, 通常是困難與

費時的。 為解決這樣的難題, 我們針對佇列模型開發出一種能自我調適 (adaptive)

的演算法來選取好的重點抽樣分配。 我們進行的數值例子顯示我們提出的演算法確

能有效的減少估計的變異數。

關鍵詞 : 自我調適的演算法, 重點抽樣, 偶發事件, 佇列網路, 模擬, 變異數縮

減

Abstract

To improve the efficiency of rare event simulation, the technique of im-
portance sampling is usually the best candidate. A number of successful
examples of applying importance sampling to rare event simulation exist
in queueing and reliability models. However, it is usually difficult and
time consuming to select an effective importance sampling distribution
for a particular model. Toalleviate such difficulty, we developed an adap-
tive algorithm for selecting effective importance sampling distributions for
queueing models. The numerical examples we conducted showed that the
porposed algorithm is effectiveness in reducing estimator’s variance.

Keywords: Adaptive algorithm, importance sampling, rare event,
queueing networks, simulation, variance reduction
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二、 研究目的與文獻探討

We develop an adaptive algorithm for estimating probabilities of rare,
but significant, events that appear in performance evaluation of queue-
ing models. In particular, we wish to develop an algorithm to estimate
buffer overflow probabilities in a generalized open Jackson network - open
networks of GI/G/1 queues with Markovian routing. The probability we
consider will be πK , the steady-state probability that the total population
in the network exceed K. This type of problem has received considerable
attention in the literature, see, e.g., (Parekh and Walrand, 1989; Glasser-
man and Kou, 1995; Frater et al., 1991; Frater and Anderson, 1994). It
is very inefficient or sometimes impossible to estimate small probabilities
via naive simulation. Hence, techniques for accelerating simulation speed
are essential. Importance sampling (Hammersley and Handscomb, 1965;
Glynn and Iglehart, 1989) is such a technique.

A number of successful examples of applying importance sampling to
rare event simulation exist in queueing and reliability models (see Heidel-
berger (1995); Shahabuddin (1995); Asmussen and Rubinstein (1995) for
surveys.) However, it is difficult and time consuming to select an effective
importance sampling distribution for a particular model. To alleviate such
difficulty, we propose an adaptive algorithm for selecting effective impor-
tance sampling distributions for queueing models. The algorithm is based
on the conditioned limit theorem for random walks. It computes a good
importance sampling distribution via the samples obtained under certain
conditioned events.

三、 研究方法

We start with a simple model first. Consider the waiting time sequence
W = {Wn : n ≥ 0} of the GI/G/1 queue with traffic intensity ρ < 1. Let
Vn (n ≥ 0) be the processing times, Un = An − An−1 (n ≥ 1) the inter-
arrival times, where An is the arrival time of the n-th customer. Set
Xn = Vn−1−Un, n ≥ 1. Then W follows the well known Lindey recursion
(see, e.g., Feller (1971)):

W0 = 0, and Wn = (Wn−1 +Xn)+ for n ≥ 1, (1)

where a+ = max(a, 0).
Suppose we want to compute α(x) = P (W∞ > x), where W∞ is the

steady-state waiting time distribution. If we apply importance sampling,
the key quantity to be estimated is

γx = P (T (x) < τ),

where T (x) = inf{n ≥ 0 : Wn > x}, τ = inf{n ≥ 1 : Wn = 0}; see, in
particular, § 5 of Glynn and Torres (1997).
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Let ψ(θ) = logE exp(θXi) be the cumulant moment generating func-
tion of Xi. We make the following assumptions:

A1 X is a non-lattice random variable.
A2 There exist θ∗ > 0 such that θ∗ is the root of the equation ψ(θ) = 0.
A3 ψ(θ) <∞ for |θ| < θ0, 0 < θ∗ < θ0.
Assume X has a common density function f(·). Then, under A1-A3,

fθ(x) = exp(θx−ψ(θ))f(x) is also a density function. This specific change
of measure is called “exponential twisting” or “exponential tilting.” Let
us denote E(·) and P (·) as the expectation and probability under f(·),
and Eθ(·) and Pθ(·) as the expectation and probability under fθ(·).

Consider the indicator function

I(A) = 1 if A occurs, and I(A) = 0 otherwise. (2)

We estimate γx via “importance sampling” with twist θ by using an
estimator based on replications of

Zθ(x) = exp(−θST (x) + T (x)ψ(θ))I(T (x) < τ) = LT (x)(θ)I(T (x) < τ)

under Pθ, where LT (x)(θ) = exp(−θST (x)+T (x)ψ(θ)) is the likelihood ratio.
By the convexity property of ψ(·) and the fact that ψ′(0) = EX < 0, we
know ψ′(θ∗) > 0. Hence Eθ∗X > 0. Also, Pθ(T (x) < ∞) = 1 for θ in a
neighborhood of θ∗. Note that LT (x)(θ

∗) reduces to exp(−θ∗ST (x)).
Results in Siegmund (1976) show that

arg minθVar(Zθ(x)) → θ∗, as x→∞,

and, under suitable regularity conditions,

Var(Zθ∗(x)) ∼ c · exp(−2θ∗x)− γ2
x, as x→∞, (3)

for some constant c. (We write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1.)
Thus, θ∗ is called the optimal twist and is a good value with which to do
importance sampling. In fact, Lehtonen and Nyrhinen (1992) show that
the exponential twist change of measure with parameter θ∗ is the unique
asymptotically optimal change of measure.

Now, we try to approximate θ∗ via simulation. For this purpose, we
need the following theorem due to Asmussen (1982).

Conditioned Limit Theorem for Random Walks
Let ⇒ denote weak convergence. Then under A1-A3, there exists a ran-
dom element (· · · , Y−1, Y0) of <{···,−1,0} such that

P ((· · · , XT (x)−1, XT (x)) ∈ ·|T (x) < τ) ⇒ P ((· · · , Y−1, Y0) ∈ ·),

as x→∞, where (Y−n : n ≥ 0) has the property that

(· · · , Y−n−1, Y−n) ⇒ (· · · , Z−1, Z0)
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as n→∞, with the Z−k i.i.d. with common density function fθ∗(·).
To utilize the idea in the Theorem, let

χ(x) =
E0[WT (x)|T (x) < τ ]

E0[T (x)|T (x) < τ ]
=
E0[

∑T (x)
i=1 Xi|T (x) < τ ]

E0[T (x)|T (x) < τ ]
.

Above theorem suggests, when x is large, that

χ(x) ≈ Eθ∗X = ψ′(θ∗).

Now, a natural estimator for χ(x) is

χ̄m(x) =

∑m
i=1W

(i)
Ti(x)I(Ti(x) < τi)∑m

i=1 Ti(x)I(Ti(x) < τi)
, (4)

where Ti(x), τi, and W
(i)
Ti(x) are independent replications of T (x), τ, and

WT (x) respectively. The basic idea is that we approximate ψ′(θ∗) by
χ̄m(βx), for some β ∈ (0, 1] to be determined. If {Ti(x) < τi} is a rare
event, then {Ti(βx) < τi} is also a rare event when β > 1. Therefore,
we restrict β to be less than 1 in order to obtain an effective estimator of
ψ(θ∗). (We say χ̄m(·) is an “effective” estimate for χ(·) if

m∑
i=1

I(Ti(·) < τi) ≥ c (5)

for some constant c.)
we extend the idea above to rare event simulation of queueing networks.

We describe the model detail of queueing networks we consider and the
rare event simulation problem we would like to solve as follows.

Problem Description
We consider rare event simulations involving stable, single-class, open,
generalized open Jackson networks. “Stable” means that the utilization
of each queue is less than 1. “Single-class” means that there is only one
type of customer. “Open” means that every arriving customer leaves the
system with probability one.

A d-node queueing network with the following characteristics is a Jack-
son network (see Jackson (1957, 1963)):

1. Arrivals from the “outside” to node i follow a Poisson process with
rate λi. That is, inter-arrival times from the “outside” to node i are
independent and exponentially distributed with parameter λi.

2. Services times at node i are independent and exponentially dis-
tributed with parameter µi.
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3. The probability that a customer who has completed service at node
i will go to node j is Pij (independent of the state of the system),
where i = 1, 2, . . . , d, j = 0, 1, 2, . . . , d, and Pi0 indicates the proba-
bility that a customer will depart from the system from node i.

A generalized Jackson network is a Jackson network with the following
relaxation:

1. Inter-arrival times from the “outside” to node i are independent and
identically distributed, but can be non-exponentially distributed.

2. Services times at node i are independent and identically distributed,
but can be non-exponentially distributed.

We are interested in estimating the following performance measure
associated with such networks:

πK = the steady-state probability that the network population exceeds K.

Let us consider a d-node generalized Jackson network. Let Qi(·), Ai(·),
and Si(·) be the processes associated with the queue-length, interarrival
times, and service times of station i of the network. Specifically, we let
Qi(t) be the number of customers in service and in queue i at time t, Ai(·)
be the age process associated with the renewal exogenous arrival process
(since inter-arrival times are independent and identically distributed, the
arrival process is a renewal process; for general background on renewal and
the associated age processes, see, e.g. § 5 of Karlin and Taylor (1975))
at node i, and Si(·) be the age of the current customer that has been in
service at node i if Qi(t) > 0, and 0 otherwise. Then X = {X(t) : t ≥ 0}
is a Markov process, where

X(t) = (Q1(t), . . . , Qd(t), A1(t), . . . , Ad(t), S1(t), . . . , Sd(t)).

Let

Q(t) =
d∑

i=1

Qi(t),

i.e., Q(t) be the total network population of J at time t.
Let V be the set of states of X when Q(t) = 0 and define

t0 = 0 and, ti = inf{t > ti−1 : X(t) ∈ V,X(t−) 6∈ V } for i ≥ 1. (6)

We define a V -cycle to be the process between two successive epochs ti,
ti+1 at which X enters the set V . We let ν be the steady-state distribution
of X conditioned on X entering the set V , i.e.,
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ν(B) = lim
n→∞

1

n

n∑
i=1

I(X(ti) ∈ B) a.s.

for any subset B of V . Let NV (t) be the number of V -cycles completed
up to time t. We also let Y =

∫ ti+1

ti
I(Q(s) ≥ K)ds, τ be the length of a

V -cycle. Then assuming the limits below exists, it is evident that

πK = lim
t→∞

∫ t

0
I(Q(s) ≥ K)ds

t
= lim

t→∞

(
∫ t

0
I(Q(s) ≥ K)ds)/NV (t)

t/NV (t)
=
EνY

Eντ
,

where the subscript ν in the expectation denotes the steady-state distri-
bution of X at the beginning of an V -cycle.

We define

TK = inf{t ≥ 0 : Q(t) ≥ K},
T0 = inf{t ≥ 0 : Q(t) = 0, Q(t−) 6= 0}.

That is, TK is the first time the network population exceeds K and T0

is the first time the network population becomes zero.
Let us define

γK = Pν(TK < T0) (7)

That is, γK is the probability that the system population reaches K
during a busy period, given that the system starts empty. Then

πK =
γK · Eν [

∫ τ

0
I(X(s) ≥ K)ds|TK < T0]

Eντ
.

The technique used for estimating πK is to simulate Y =
∫ τ

0
I(X(s) ≥

K)ds under an appropriate change of measure, and simulate τ under the
original dynamics. However, since X does not start from ν, one needs to
apply some techniques that can deal with the initial transient problem in
order to obtain accurate values of EνY = Eν [

∫ τ

0
I(X(s) ≥ K)ds] and Eντ .

The detailed description of this technique can be found in Nicola et al.
(1993). But, it is true that the change of measure for estimating γK is
closely related to the right change of measure for estimating Y (when K
is big.) Specifically, suppose L is the likelihood ratio under which γK can
be efficiently computed. Then

Var(Y L) = E(Y 2L2|TK < T0)γK − {E(Y L|TK < T0)γK}2

= E{E[Y 2|X(TK)]L2 · I(TK < T0)} − E{E[Y |X(TK)]L · I(TK < T0)}2

= E{φ2(X(TK))L2 · I(TK < T0)} − E{φ1(X(TK))L · I(TK < T0)}2,
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where φ1(·) = E[Y 2|·] and φ2(·) = E[Y |·]. Typically,

φi(X(TK)) = θ(1), i = 1, 2 as K →∞.

(We say a(n) = θ(b(n)) if there exist constants c1, c2 and n0 such that

c1 · b(n) ≤ a(n) ≤ c2 · b(n)

for all n ≥ n0.) Then, we expect that

Var(Y L) = θ(Var(LI(TK < T0)).

In other words, Var(Y L) behaves in roughly the same way as the vari-
ance of the estimator of γK for K large. Hence, an efficient change of
measure for estimating γK is the key to estimating πK .

It is straightforward to estimate γK . Notice that a generalized Jackson
network can be easily fit into a GSMP (Generalized Semi-Markov Pro-
cess) framework. Therefore, so long as we can compute an appropriate
importance sampling distribution, we can apply the importance sampling
technique for GSMP described in Section 4 of Glynn and Iglehart (1989)
to estimate γK .

The basic idea of obtaining an importance sampling distribution is as
follows.

Simulatem sample paths from the original network starting with initial
distribution ν and stop at min(TK′ , T0), where K ′ < K.

Similar to (4), we let

Ū (j)
m (K ′) =

∑m
i=1

∑N(i)
l=1 U

(j)
l I(Ti(K

′) < Ti(0))∑m
i=1N(i)I(Ti(K ′) < Ti(0))

,

where Ti(K
′) and Ti(0) are independent replications of TK′ and T0, U

(j)
l is

independent replications of the interarrival time at node j, and N(i) de-

notes the number of U
(j)
l generated for sample path i. We then compute

the importance sampling distribution for U (j) (interarrival time distribu-
tion at station j). We compute importance sampling distributions for V (j)

(service time distribution at station j) and M (j) (routing distribution at
station j) similarly.

四、 結果與討論

We consider a sequence of rare events {AK : K = 1, 2, . . .} ({Ax : x ≥ 0}),
and γK (γx) → 0 denotes the probability of the rare event AK (Ax). From
the conditioned limit theorems of random walks (Asmussen, 1982; Igle-
hart, 1975), we usually can get an effective importance sampling distribu-
tion if we have samples conditioned on AK (Ax), when K (x) large, does
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happen. The basic idea of our algorithm is to get importance sampling
distributions via samples conditioned on a small K (x). For example, in
the generalized Jackson network context, let AK denote the event of the
network population reach K before network becomes empty, the algorithm
computes a good importance sampling distribution by simulating the orig-
inal network for a small value of K, corresponding to “scaling down” the
original rare event. We then simulate the desired rare-event probability,
by “scaling up” the importance sampling distribution suggested by the
key paths associated with the small K network. We call our proposed
method SEEKPATH.

It is usually desirable to prove an importance sampling estimator is
asymptotically optimal. For a definition and examples, see, e.g., p. 49
of Heidelberger (1995). In the queueing network context, the results of
asymptotic optimal estimators is very limited, even for non-adaptive im-
portance sampling estimators. To our best knowledge, the only rigorous
proof of asymptotic optimality is for M/M/1 queues in tandem, and the
result covers only for a certain parameter range of such networks (Glasser-
man and Kou, 1995).

Nevertheless, the empirical results indicate the SEEKPATH estima-
tor enjoys the asymptotic optimal property for a much broader class of
queueing models, and can be a pragmatic choice of practitioners.

The results of this project is a joint work with Professor Glynn at
Stanford University. We will submit the results of this project to a suitable
journal for publication in the near future.
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