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An Effective Particle Swarm Optimization Algorithm for Portfolio
Selection

Abstract

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart in 1995, is a
social population-based search algorithm that have been successfully applied to solve various
hard optimization problems. In this research we developed three new strategies to overcome the
major drawback of PSO, the swarm stagnation, in order to improve its explorative capability.
The proposed PSO has been applied to solve the well-known Markowitz mean-variance
portfolio selection model with the five benchmark data sets presented in the OR library.
Computational results showed that with the new strategies, the proposed PSO significantly
improves the performance of a basic PSO. In addition, the proposed PSO generated better
efficient frontiers than genetic algorithm (GA), simulated annealing (SA), and tabu search
(TS).

Keywords: Particle swarm optimization, swarm stagnation, Markowitz mean-variance model

1. Introduction

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [12] in 1995, is
a social population-based search algorithm for solving optimization problems. The searching
process of PSO for an optimization problem starts with a population with randomly generated
solutions (particles). Applying the concept of social influence and social learning of the
social-psychological model, each particle in the population searches the solution space by
considering the effect of the best solution that all the particles have ever searched (global best)
and the effect of the best solution that the particle has ever searched (individual best). The new
position of a particle in the next population is determined by its current position plus the effect
of the global best solution (social influence) and the effect of the individual best (social
learning). This process will continue until a termination criterion is satisfied. Since its
introduction, PSO has been successfully applied to solve various hard optimization problems [1,
2]. However, many researches have discovered a critical drawback of PSO, the swarm
stagnation, and have proposed different methods to overcome this drawback [11, 14, 17, 18, 19,
21]

The portfolio selection problem is a problem that determines an effective way for
allocating resources to a given set of securities or assets. The mean—variance model of
Markowitz is one of the most well-known models for solving the portfolio selection problem.
The model assumes that the total return of a portfolio can be described using the mean return of
the assets and the variance of return among these assets (risk) [3, 10]. In its basic form, this
model generates a portfolio of assets which minimizes the risk while achieving a predetermined
level of mean return. The combinations of different levels of mean return and the corresponding
risk generated by the model constitute an efficient frontier, which provides an effective way for
allocating assets under different level of desired mean return. Due to its critical value for
researchers and practitioners, several optimization methods, genetic algorithm [3], tabu search
[3], simulated annealing [3, 5] and neural networks [9], have applied to solve the model.
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In this research, we proposed three new strategies to overcome the swarm stagnation
problem of PSO and applied the proposed PSO to solve the Markowitz’s mean-variance model
with five benchmark data sets contained in the OR library [3]. For each data set, the OR library
provides an exact efficient frontier for reference. Computational results showed that the new
strategies help overcome the swarm stagnation problem for a basic PSO and improve its
explorative capability. In addition, for each benchmark data set, the proposed PSO algorithm
generated an efficient frontier closer to the referred efficient frontier than those generated by
genetic algorithms, tabu search, and simulated annealing for all the test data sets. The rest of
this paper is organized as follows. Section 2 presents literature reviews on PSO and
Markowitz’s model. Section 3 presents the proposed PSO as well as the way to apply it to solve
Markowitz’s model. The computational results are discussed in Section 4 and Section 5
concludes some findings in this paper.

2. Literature Review

In this section, we first review the PSO and the parameters that may affect its performance.
Then, we describe the standard Markowitz model and illustrate the way to generate the efficient
frontier.

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO), similar to evolutionary algorithms, is a
population-based search algorithm. Particle, a member in a population, searches a solution
space by dynamically adjusting its position (a solution in the solution space) according to its
own experience and the experiences of all the particles in the population [1, 12, 13]. The
position of a particle is described as follows:

X (t+1) =x () +V;(t+1) Q)
Where x; (t) denotes the current position of particle i in the search space at time step t. The
position of the particle is changed by adding a velocity V;(t+1) to the current position and
Vi (t+1) is calculated as follows:

Vi (t+2) =wxV; (1) +¢; xrand () x (p; — % (1)) +¢, xrand () x (pg —; (t)) 2
Where V;(t) is the velocity of particle i at time step t. The inertia weight, w, is a parameter used
to weight the contribution of the previous velocity on the new velocity; it is designed as a
mechanism to control the exploration and exploitation abilities of PSO [1, 4, 19, 20]. The
personal best position, p;, is the best position that particle i has ever visited, and the global best
position, pg, is the best position that all the particles have ever visited. The c; and ¢, are positive
constants used to scale the contribution of the personal best solution and the global best
solution respectively, and rand() is a random value sampled from a uniform distribution with a
range of [0, 1]. Therefore, the term, ¢, xrand()x(p; —x;(t)), refers to the effect of personal
experience on particle i (social learning) and the term, c, xrand() x(py —X; (t)) , refers to the

effect of global experience on particle i (social influence). Population size and termination
criterion are two other parameters needed to be determined when implementing PSO. The
maximum number of time steps, tmax, IS @ commonly used termination criterion. The procedure
of a basic PSO can be summarized as follows:

Step 1: Randomly generate a population with M particles at initial time step (t = 0).

Step 2: Calculate the objective value for each particle in the population and find the personal



best solution, p;, for each particle and the global best solution, py.
Step 3: Calculate the new position for each particle using equations (1) and (2).
Step 4: If the current time step t is equal to tmax, then stop; else go to Step 2.

Many empirical studies have shown that PSO is an effective optimization approach, but
the performance of the PSO is affected by the values of the parameters. Some parameter
choices may lead to divergent, cyclic behavior or stagnation. The inertia weight, w, is important
to ensure convergent behavior, and to reasonably tradeoff exploration and exploitation. For w
=1, velocity usually increases over time, accelerating towards the maximum velocity, and
swarm diverges. Particles fail to change direction in order to move back towards promising
areas. Forw =1, particles usually decelerate until their velocity reach zero. Therefore, a larger
w value will promote global exploration and a smaller w will promote local exploitation.
Eberhart and Shi [6] suggested that the w value be initially set to 0.9 and linearly reduced to 0.4
for an optimization run. The constants c; and c; are also referred to as trust parameters, where c;
expresses how much confidence a particle has in itself and c; expresses how much confidence a
particle has in its neighbors. If c; is larger than c,, each particle is much more attracted to its
own personal best position, resulting in excessive wandering. On the other hand, if c; is larger
than cy, particles are strongly attracted to the global best position, causing particles to rush
prematurely towards optima. Kennedy and Eberhart [12] suggested that c; and c; coexist in a
good balance with a value of 2.

Besides the study of the effects of the parameters, several searchers have developed
different methods to improve the exploration capability of PSO in order to overcome the swarm
stagnation problem. Van den Bergh and Engelbrecht [21] suggested a new method to select the
global best solution for calculating the new velocity in equation (2). In stead of directly
selecting the true global best solution, they randomly select a solution from an area within a
radius of the global best solution and use it as the global best solution in equation (2). Krink et
al. [14] proposed three bouncing strategies to keep the search of PSO from converging into
local optima. Riget and Vesterstrm [18] proposed an attractive and repulsive approach; it first
calculates the diversity of a population to measure the level of convergence and determine a
threshold level of convergence. If a search satisfies the threshold level, the search will be
repulsed to explore other solution regions. Ratnaweera et al. [17] proposed a strategy to adjust
the values of ¢y and c; in equation (2) so that the search will focuses on exploration in the early
stages and encourage the convergence to a good solution near the end of the optimization
process. Integrating PSO with other optimization methods is another approach to improve the
performance of PSO. Juang [11] integrated PSO with genetic algorithms (GA) to propose an
algorithm, HGAPSO (Hybrid Genetic Algorithm Particle Swarm Optimization). The algorithm
selects a number of elite particles in every stage and applies crossover and mutation operations
of GAto the particles in order to improve the solutions in each stage and keep the search from
trapping into local optima.

2.2 The Markowitz Mean-Variance Selection Model

The problem of optimally selecting a portfolio among N assets was formulated by
Markowitz in 1952 as a quadratic minimization problem [3]. In this model, each asset is
characterized by a return varying randomly with time. The risk of each asset is measured by the
variance of its return. Let
N be the number of assets available,

w; be the proportion of an investor’s wealth allocated to asset i,
u; be the expected return of asset i (i=1,... ,N),
aij be the covariance between assets i and j (i=1,... , N; j=1, ..., N),
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Rexp be the desired expected return,
then the standard Markowitz mean —variance model is presented as follows:

N N
Min > > wi-w; o 1)
i=1 j=1
subject to
N
Z Wiui :Rexp (2)
i=1
N
Zwizl (3)
i=1
O<w<1, i=1,..,N

Equation (1) minimizes the total variance (risk) associated with the portfolio; Equation (2)
ensures that the portfolio has an expected return of Rep; Equation (3) ensures that the
proportions add to one. Solving the model with different levels of expected return, we can
produce different combinations of expected returns and risks that can trace out an efficient
frontier. Chang et al. [3] modified the model by introducing a parameter, A, to weight the
relative importance of the expected return and the risk. The case A=0 represents a case that
maximizes portfolio expected return (without caring the risk), and the case A=1 is the case that
minimizes the total risk with selected portfolio (without caring the expected return). Between
the two extreme cases, A represents a tradeoff between the risk and the expected return.

N

n o[5S [ @S]

i=1 j=1 i=1

subject to
N
> w=1

1
O<w <1, i=1,.,N (20)

3. Proposed particle swarm optimization for portfolio selection

We propose three strategies to help overcome the swarm stagnation for the basic PSO and
improve its explorative capability. Strategy one proposes to utilize multiple global best
solutions for the particles in each population. In this research, the top three solutions, denoted
as Pg1, Pg2, and pgs, are chosen to be the global best solutions. Then in each time step, the
population is equally divided into three groups and py; is used as the global best solution for
calculating the velocity for the particles in the first group, pg. is used as the global best solution
for calculating the velocity for the particles in the second group; however, by trial-and-error, the
average of the three global best solutions, (pg1+Pg2+Pg3)/3, is used as the global best solution for
calculating the velocity for the particles in the third group. Strategy two proposes to use the idea
of the mutation operation of genetic algorithms. It sets a threshold value for the velocity for
each particle. If, during the search of PSO, the velocity of a particle is less than the threshold



value, a new position (solution) will be randomly generated for the particle. The threshold
value, in this research, is set to be 0.000001 by trial-and error. The third strategy proposes to
drastically change the searching region for PSO after a predetermined number of time steps so
as to keep the search from trapping into local optima. In this research, since all the models
include large numbers of variables, from 31 variables up to 225 variables, by trial-and-error, we
set the termination criterion (tmax) €qual to 3000 for the basic PSO algorithm. When the third
strategy is applied, we purposely reinitialize the population by randomly generating positions
for all the particles after every 300 time steps, denoted as a phase in this research; however, the
global best solutions are retained for every new phase. The search will terminate after 10 phases,
which is equal to tyax.

The parameter values used in the proposed PSO are determined as follows. We adopt the
idea of Eberhart and Shi [6] to determine the values of inertia weight, where an initial inertia
weight 0.9 is linearly decreased to a small value of 0.2, and the inertia weight for time step t,
w(t), is calculated using the following equation:

w®) = ) -w()) L) (6)
t

Where n¢is the maximum number of time steps used in each phase, w(0) is the initial inertia
weight and w(n,) is the final inertia weight. When the third strategy is applied, n; is equal to 300
for every phase; otherwise n; is equal to tmax, Which is 3000. The values of w(0) and w(n;) are, as
mentioned above, 0.9 and 0.2 respectively. As for the constants c¢; and ¢, we adopt the
suggestion of Kennedy and Eberhart [12] and set ¢; = ¢, = 2.0 in this research. Although 40 is
the population size suggested by most of the research for PSO [1], we use 100 as the population
size for the proposed PSO because all the models include large numbers of variables.

4. Computational Results
The proposed PSO algorithm has been applied to the Markowitz model. One more
subscript, j, is added to the variables in equations (1) and (2) to describe the properties of an

individual asset in a solution (a portfolio) for the Markowitz model. For instance, X; (t) denotes
the proportion of asset j in portfolio i at time step t. Equations (1) and (2) are rewritten for the
Markowitz model as follows:

X; (t+1) =x; () +V; (t+1)

V; (t+1) =wxV; (t) +c, xrand () x (p; —x; (t)) +¢, xrand () x (py; — X; (1))
Each variable in the initial population, X;(0) , is randomly generated from a uniform

distribution with a range of [0, 1]. Since the sum of the proportions in a portfolio must equal
one, the proportions are normalized by summing up the proportions first and then dividing each
proportion by the sum. Note that as long as a solution is generated, the solution needs to be
normalized.

Five test data contained in the OR library are used to test the performance of the proposed
PSO algorithm. Chang et al. [3] constructed these data sets by considering stocks involved in
five major capital markets indices in the world: Hang Seng 31 in Hong Kong, DAX 100 in
Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan; the number in each data
set refers to the number of assets considered in the data set. Using the data in each data set,
Chang et al [3] optimally solved the basic Markowitz model (equations (1)-(4)) to produce
2000 pairs of mean return and risk and generate an exact efficient frontier for the data set. Then
they used these exact efficient frontiers to evaluate the efficient frontiers generated by three
heuristics, genetic algorithms (GA), simulated annealing (SA) and tabu search (TS). For each



data set, these three heuristics were applied to the model (equations (5)-(7)) with fifty different
A values equally spaced in [0, 1] to generate 50 pairs of mean return and risk; the average
percentage deviation of the fifty pairs of solutions from the corresponding efficient frontier is
used to evaluate the performance of the heuristics.

The proposed PSO was also applied to the model with the same fifty different A values to
generate 50 pairs of mean return and risk for the data sets. We first applied the algorithm with
different combinations of the strategies to the first data set, Hang Seng 31, and compared their
performance to investigate the effects of the proposed strategies on the basic PSO algorithm.
Then we applied the proposed PSO with the best combination of the strategies to the other four
data sets and compared the average percentage deviation produced by the proposed PSO with
those produced by the three heuristics, GA, SA, and TS, developed by Chang et al [3]. Table 1
presents the average percentage deviations between the efficient frontiers, produced by the
proposed PSO with different combinations of the strategies, and the exact efficient frontier for
Hang Seng 31. Athree-dimension array is used to denote the combinations. The first element in
the array refers to the condition of the first strategy: 1 means the strategy is used and 0 means
the strategy is not used. The second and the third elements in the array similarly refer to the
condition of the second and the third strategy respectively. The proposed PSO with an array (0,
0, 0) refers to the basic PSO algorithm that does not utilize any of the three strategies. The
average percentage deviations produced by the proposed PSO with (0, 0, 0), (1, 0, 0), (0, 1, 0)
and (0, 0, 1) are 1.77e-03, 4.49e-04, 2.31e-007 and 2.30e-05 respectively. These results show
that all the proposed strategies are able to improve the effectiveness of the basic PSO, but the
effect of the second strategy is much stronger than the other two strategies. This may conclude
that although all the three strategies are able to help overcome the swarm stagnation for the
basic PSO algorithm, the second strategy is much more advanced than the other two strategies.
Furthermore, the results produced by the proposed PSO with (0, 1, 0), (0, 1, 1) and (1, 1, 0)
show that the third strategy further improves the performance of the proposed PSO with (0, 1,
0); it reduces the average percentage deviation from 2.31e-005 to 5.22e-006. However, the
results show that the first strategy and the second strategy have strong interaction. The average
percentage deviation produced by the proposed PSO with (1, 1, 0) is 6.90e-05, which
significantly worsens the average percentage deviation (2.31e-007) produced by the proposed
PSO with (0, 1, 0). At last, the results of the proposed PSO with (0, 1, 1) and (1, 1, 1) show that
the first strategy slightly improves the performance of the proposed PSO with (0, 1, 1); it
reduces the average percentage deviation from 5.22e-006 to 4.30e-006.

Table 1 concludes that the proposed PSO with (1, 1, 1) produced the best result, so it was
applied to the other four data sets. Table 2 presents the average percentage deviations produced
by the proposed PSO, the basic PSO, the constriction PSO, and the heuristics, GA, SAand TS,
developed by Chang et al. [3] for all the five data sets. The mean percentage deviations show
that the proposed PSO outperforms the basic PSO and the constriction PSO in all the data sets.
This confirms that the proposed PSO is able to help overcome the swarm stagnation for the
basic PSO algorithm and improve its explorative capability. In addition, the mean percentage
deviations show that the proposed PSO outperforms GA, SA and TS in all the data sets. This
concludes that the proposed PSO is an effective algorithm for the candidate problem.
Furthermore, Chang et al. [3] showed that the number of solutions searched using their GA, SA
and TS to generate a pair of mean return and risk on an efficient frontier is 1000*N (N is the
number of assets in a data set), so the number of solutions searched using Chang et al.’s [3] GA,
SAand TS for Hang Seng 31 is 31,000, for DAX 85 is 85,000, and so on. However, the number
of solutions searched using the proposed PSO is 300,000 for all the data sets. Therefore, the GA,
SAand TS heuristics are more efficient than the proposed PSO.



Table 1. Average percentage deviation produced by the proposed PSO with different
combinations of the new strategies

Combination of the The average percentage deviation
proposed strategies

(0,0, 0) 1.77e-03

(1,0,0) 4.49e-04

(0,1,0) 2.31e-07

(0,0,1) 2.30e-05

0,1,1) 5.22¢-08

(1,1,0) 6.90e-05

(1,0,1) 1.10e-05

(1,1,1) 4.30e-08

Table 2. Average percentage deviation produced by different algorithms for all the data sets

Index Hang Seng DAX FTSE S&P Nikkei

Number of Assets (N) 31 85 89 08 225
GA Average 2.02e-04 1.36e-04 6.3e-05 8.4e-05 8.5e-05
Solutions Searched 31,000 85,000 89,000 98,000 225,000
SA Average 1.13e-03 | 3.94e-04 | 2.16e-03 | 2.16e-03 1.7681
Solutions Searched 31,000 85,000 89,000 98,000 225,000
TS Average 8.97e-03 | 3.5645 3.2731 4.4280 15.9163
Solutions Searched 31,000 85,000 89,000 98,000 225,000
Basic PSO Average 1.77e-03 | 2.25e-03 | 5.16e-03 | 7.62e-03 5.9824
Solutions Searched | 300,000 300,000 300,000 300,000 300,000
Proposed Average 4.30e-08 | 7.70e-06 | 1.25e-05 | 1.9e-05 6.7e-05
PSO Solutions Searched | 300,000 300,000 300,000 300,000 300,000

5. Conclusions
In this paper we proposed a new PSO using three strategies to help overcome the swarm
stagnation for the basic PSO. The proposed PSO was applied to solve portfolio selection
problem based on standard Markowitz mean-variance model. Computational results show that
the proposed PSO significantly dominates the basic PSO. This confirms the expectation that
the proposed strategies are able to help overcome the swarm stagnation for the basic PSO and
improve its explorative capability. In addition, computational results show that the proposed
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PSO is more effective than the GA, SA and TS developed by Chang et al. for generating
efficient frontiers for the candidate problem with the five benchmark data sets.

As mentioned, many PSO algorithms have been applied to solve complicated
optimization problems; the proposed strategies are worthwhile to work with other PSO
algorithms for solving optimization problems.
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