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An Effective Particle Swarm Optimization Algorithm for Portfolio 

Selection 
 

Abstract 

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart in 1995, is a 

social population-based search algorithm that have been successfully applied to solve various 

hard optimization problems. In this research we developed three new strategies to overcome the 

major drawback of PSO, the swarm stagnation, in order to improve its explorative capability. 

The proposed PSO has been applied to solve the well-known Markowitz mean-variance 

portfolio selection model with the five benchmark data sets presented in the OR library. 

Computational results showed that with the new strategies, the proposed PSO significantly 

improves the performance of a basic PSO. In addition, the proposed PSO generated better 

efficient frontiers than genetic algorithm (GA), simulated annealing (SA), and tabu search 

(TS). 
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1. Introduction 

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [12] in 1995, is 

a social population-based search algorithm for solving optimization problems.  The searching 

process of PSO for an optimization problem starts with a population with randomly generated 

solutions (particles). Applying the concept of social influence and social learning of the 

social-psychological model, each particle in the population searches the solution space by 

considering the effect of the best solution that all the particles have ever searched (global best) 

and the effect of the best solution that the particle has ever searched (individual  best). The new 

position of a particle in the next population is determined by its current position plus the effect 

of the global best solution (social influence) and the effect of the individual best (social 

learning). This process will continue until a termination criterion is satisfied.  Since its 

introduction, PSO has been successfully applied to solve various hard optimization problems [1, 

2]. However, many researches have discovered a critical drawback of PSO, the swarm 

stagnation, and have proposed different methods to overcome this drawback [11, 14, 17, 18, 19, 

21]  

The portfolio selection problem is a problem that determines an effective way for 

allocating resources to a given set of securities or assets. The mean–variance model of 

Markowitz is one of the most well-known models for solving the portfolio selection problem. 

The model assumes that the total return of a portfolio can be described using the mean return of 

the assets and the variance of return among these assets (risk) [3, 10]. In its basic form, this 

model generates a portfolio of assets which minimizes the risk while achieving a predetermined 

level of mean return. The combinations of different levels of mean return and the corresponding 

risk generated by the model constitute an efficient frontier, which provides an effective way for 

allocating assets under different level of desired mean return. Due to its critical value for 

researchers and practitioners, several optimization methods, genetic algorithm [3], tabu search 

[3], simulated annealing [3, 5] and neural networks [9], have applied to solve the model. 



 2 

In this research, we proposed three new strategies to overcome the swarm stagnation 

problem of PSO and applied the proposed PSO to solve the Markowitz’s mean-variance model 

with five benchmark data sets contained in the OR library [3]. For each data set, the OR library 

provides an exact efficient frontier for reference. Computational results showed that the new 

strategies help overcome the swarm stagnation problem for a basic PSO and improve its 

explorative capability. In addition, for each benchmark data set, the proposed PSO algorithm 

generated an efficient frontier closer to the referred efficient frontier than those generated by 

genetic algorithms, tabu search, and simulated annealing for all the test data sets.  The rest of 

this paper is organized as follows. Section 2 presents literature reviews on PSO and 

Markowitz’s model. Section 3 presents the proposed PSO as well as the way to apply it to solve 

Markowitz’s model. The computational results are discussed in Section 4 and Section 5 

concludes some findings in this paper. 

 

 

2. Literature Review 

In this section, we first review the PSO and the parameters that may affect its performance. 

Then, we describe the standard Markowitz model and illustrate the way to generate the efficient 

frontier.   

2.1 Particle Swarm Optimization 

Particle swarm optimization (PSO), similar to evolutionary algorithms, is a 

population-based search algorithm. Particle, a member in a population, searches a solution 

space by dynamically adjusting its position (a solution in the solution space) according to its 

own experience and the experiences of all the particles in the population [1, 12, 13]. The 

position of a particle is described as follows: 
)1()()1(  tVtxtx iii             (1) 

Where )(txi denotes the current position of particle i in the search space at time step t. The 

position of the particle is changed by adding a velocity )1( tVi to the current position and 

)1( tVi  is calculated as follows: 

))((()))((())()1( 21 txprandctxprandctVwtV igiiii      (2) 

Where )(tVi  is the velocity of particle i at time step t. The inertia weight, w, is a parameter used 

to weight the contribution of the previous velocity on the new velocity; it is designed as a 

mechanism to control the exploration and exploitation abilities of PSO [1, 4, 19, 20]. The 

personal best position, pi , is the best position that particle i has ever visited, and the global best 

position, pg, is the best position that all the particles have ever visited. The c1 and c2 are positive 

constants used to scale the contribution of the personal best solution and the global best 

solution respectively, and rand() is a random value sampled from a uniform distribution with a 

range of [0, 1]. Therefore, the term, ))((()1 txprandc ii  , refers to the effect of personal 

experience on particle i (social learning) and the term, ))((()2 txprandc ig   , refers to the 

effect of global experience on particle i (social influence). Population size and termination 

criterion are two other parameters needed to be determined when implementing PSO. The 

maximum number of time steps, tmax, is a commonly used termination criterion. The procedure 

of a basic PSO can be summarized as follows: 

Step 1: Randomly generate a population with M particles at initial time step (t = 0). 

Step 2: Calculate the objective value for each particle in the population and find the personal 
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best solution, pi,  for each particle and the global best solution, pg. 

Step 3: Calculate the new position for each particle using equations (1) and (2). 

Step 4: If the current time step t is equal to tmax, then stop; else go to Step 2. 

Many empirical studies have shown that PSO is an effective optimization approach, but 

the performance of the PSO is affected by the values of the parameters. Some parameter 

choices may lead to divergent, cyclic behavior or stagnation. The inertia weight, w, is important 

to ensure convergent behavior, and to reasonably tradeoff exploration and exploitation. For w 
≧1, velocity usually increases over time, accelerating towards the maximum velocity, and 

swarm diverges. Particles fail to change direction in order to move back towards promising 

areas. For w ≦1, particles usually decelerate until their velocity reach zero.  Therefore, a larger 

w value will promote global exploration and a smaller w will promote local exploitation.  

Eberhart and Shi [6] suggested that the w value be initially set to 0.9 and linearly reduced to 0.4 

for an optimization run. The constants c1 and c2 are also referred to as trust parameters, where c1 

expresses how much confidence a particle has in itself and c2 expresses how much confidence a 

particle has in its neighbors. If c1 is larger than c2, each particle is much more attracted to its 

own personal best position, resulting in excessive wandering. On the other hand, if c2 is larger 

than c1, particles are strongly attracted to the global best position, causing particles to rush 

prematurely towards optima. Kennedy and Eberhart [12] suggested that c1 and c2 coexist in a 

good balance with a value of 2. 

Besides the study of the effects of the parameters, several searchers have developed 

different methods to improve the exploration capability of PSO in order to overcome the swarm 

stagnation problem. Van den Bergh and Engelbrecht [21] suggested a new method to select the 

global best solution for calculating the new velocity in equation (2). In stead of directly 

selecting the true global best solution, they randomly select a solution from an area within a 

radius of the global best solution and use it as the global best solution in equation (2). Krink et 

al. [14] proposed three bouncing strategies to keep the search of PSO from converging into 

local optima. Riget and Vesterstrm [18] proposed an attractive and repulsive approach; it first 

calculates the diversity of a population to measure the level of convergence and determine a 

threshold level of convergence. If a search satisfies the threshold level, the search will be 

repulsed to explore other solution regions. Ratnaweera et al. [17] proposed a strategy to adjust 

the values of c1 and c2 in equation (2) so that the search will focuses on exploration in the early 

stages and encourage the convergence to a good solution near the end of the optimization 

process. Integrating PSO with other optimization methods is another approach to improve the 

performance of PSO. Juang [11] integrated PSO with genetic algorithms (GA) to propose an 

algorithm, HGAPSO (Hybrid Genetic Algorithm Particle Swarm Optimization). The algorithm 

selects a number of elite particles in every stage and applies crossover and mutation operations 

of GA to the particles in order to improve the solutions in each stage and keep the search from 

trapping into local optima.     

2.2 The Markowitz Mean-Variance Selection Model  

The problem of optimally selecting a portfolio among N assets was formulated by 

Markowitz in 1952 as a quadratic minimization problem [3]. In this model, each asset is 

characterized by a return varying randomly with time. The risk of each asset is measured by the 

variance of its return. Let 

N be the number of assets available, 

wi be the proportion of an investor’s wealth allocated to asset i, 

ui be the expected return of asset i (i=1,… ,N), 

σij be the covariance between assets i and j (i=1,… , N;  j=1, …, N), 
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Rexp be the desired expected return, 

then the standard Markowitz mean –variance model is presented as follows: 
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Equation (1) minimizes the total variance (risk) associated with the portfolio; Equation (2) 

ensures that the portfolio has an expected return of Rexp; Equation (3) ensures that the 

proportions add to one. Solving the model with different levels of expected return, we can 

produce different combinations of expected returns and risks that can trace out an efficient 

frontier.  Chang et al. [3] modified the model by introducing a parameter, λ, to weight the 

relative importance of the expected return and the risk. The case λ=0 represents a case that 

maximizes portfolio expected return (without caring the risk), and the case λ=1 is the case that 

minimizes the total risk with selected portfolio (without caring the expected return). Between 

the two extreme cases, λ represents a tradeoff between the risk and the expected return. 
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3. Proposed particle swarm optimization for portfolio selection 

We propose three strategies to help overcome the swarm stagnation for the basic PSO and 

improve its explorative capability. Strategy one proposes to utilize multiple global best 

solutions for the particles in each population. In this research, the top three solutions, denoted 

as pg1, pg2, and pg3, are chosen to be the global best solutions. Then in each time step, the 

population is equally divided into three groups and pg1 is used as the global best solution for 

calculating the velocity for the particles in the first group, pg2 is used as the global best solution 

for calculating the velocity for the particles in the second group; however, by trial-and-error, the 

average of the three global best solutions, (pg1+pg2+pg3)/3, is used as the global best solution for 

calculating the velocity for the particles in the third group. Strategy two proposes to use the idea 

of the mutation operation of genetic algorithms. It sets a threshold value for the velocity for 

each particle. If, during the search of PSO, the velocity of a particle is less than the threshold 
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value, a new position (solution) will be randomly generated for the particle. The threshold 

value, in this research, is set to be 0.000001 by trial-and error. The third strategy proposes to 

drastically change the searching region for PSO after a predetermined number of time steps so 

as to keep the search from trapping into local optima. In this research, since all the models 

include large numbers of variables, from 31 variables up to 225 variables, by trial-and-error, we 

set the termination criterion (tmax) equal to 3000 for the basic PSO algorithm. When the third 

strategy is applied, we purposely reinitialize the population by randomly generating positions 

for all the particles after every 300 time steps, denoted as a phase in this research; however, the 

global best solutions are retained for every new phase. The search will terminate after 10 phases, 

which is equal to tmax. 

   The parameter values used in the proposed PSO are determined as follows. We adopt the 

idea of Eberhart and Shi [6] to determine the values of inertia weight, where an initial inertia 

weight 0.9 is linearly decreased to a small value of 0.2, and the inertia weight for time step t, 

w(t), is calculated using the following equation:    

 
( - )

( ) ( (0) - ( )) + ( )                                                6t
t t

t

n t
w t w w n w n

n
  

Where nt is the maximum number of time steps used in each phase, w(0) is the initial inertia 

weight and w(nt) is the final inertia weight. When the third strategy is applied, nt is equal to 300 

for every phase; otherwise nt is equal to tmax, which is 3000. The values of w(0) and w(nt) are, as 

mentioned above, 0.9 and 0.2 respectively. As for the constants c1 and c2, we adopt the 

suggestion of Kennedy and Eberhart [12] and set c1 = c2 = 2.0 in this research. Although 40 is 

the population size suggested by most of the research for PSO [1], we use 100 as the population 

size for the proposed PSO because all the models include large numbers of variables.  

 

 

4. Computational Results 

 The proposed PSO algorithm has been applied to the Markowitz model. One more 

subscript, j, is added to the variables in equations (1) and (2) to describe the properties of an 

individual asset in a solution (a portfolio) for the Markowitz model. For instance, )(txij denotes 

the proportion of asset j in portfolio i at time step t. Equations (1) and (2) are rewritten for the 

Markowitz model as follows: 

 )1()()1(  tVtxtx ijijij  

 ))((()))((())()1( 21 txprandctxprandctVwtV ijgjijijijij   

Each variable in the initial population, )0(ijx , is randomly generated from a uniform 

distribution with a range of [0, 1]. Since the sum of the proportions in a portfolio must equal 

one, the proportions are normalized by summing up the proportions first and then dividing each 

proportion by the sum. Note that as long as a solution is generated, the solution needs to be 

normalized.  

Five test data contained in the OR library are used to test the performance of the proposed 

PSO algorithm. Chang et al. [3] constructed these data sets by considering stocks involved in 

five major capital markets indices in the world: Hang Seng 31 in Hong Kong, DAX 100 in 

Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan; the number in each data 

set refers to the number of assets considered in the data set. Using the data in each data set, 

Chang et al [3] optimally solved the basic Markowitz model (equations (1)-(4)) to produce 

2000 pairs of mean return and risk and generate an exact efficient frontier for the data set. Then 

they used these exact efficient frontiers to evaluate the efficient frontiers generated by three 

heuristics, genetic algorithms (GA), simulated annealing (SA) and tabu search (TS). For each 
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data set, these three heuristics were applied to the model (equations (5)-(7)) with fifty different 

λ values equally spaced in [0, 1] to generate 50 pairs of mean return and risk; the average 

percentage deviation of the fifty pairs of solutions from the corresponding efficient frontier is 

used to evaluate the performance of the heuristics.      

 The proposed PSO was also applied to the model with the same fifty different λ values to 

generate 50 pairs of mean return and risk for the data sets. We first applied the algorithm with 

different combinations of the strategies to the first data set, Hang Seng 31, and compared their 

performance to investigate the effects of the proposed strategies on the basic PSO algorithm. 

Then we applied the proposed PSO with the best combination of the strategies to the other four 

data sets and compared the average percentage deviation produced by the proposed PSO with 

those produced by the three heuristics, GA, SA, and TS, developed by Chang et al [3]. Table 1 

presents the average percentage deviations between the efficient frontiers, produced by the 

proposed PSO with different combinations of the strategies, and the exact efficient frontier for 

Hang Seng 31. A three-dimension array is used to denote the combinations. The first element in 

the array refers to the condition of the first strategy: 1 means the strategy is used and 0 means 

the strategy is not used. The second and the third elements in the array similarly refer to the 

condition of the second and the third strategy respectively. The proposed PSO with an array (0, 

0, 0) refers to the basic PSO algorithm that does not utilize any of the three strategies. The 

average percentage deviations produced by the proposed PSO with (0, 0, 0), (1, 0, 0), (0, 1, 0) 

and (0, 0, 1) are 1.77e-03, 4.49e-04, 2.31e-007 and 2.30e-05 respectively.  These results show 

that all the proposed strategies are able to improve the effectiveness of the basic PSO, but the 

effect of the second strategy is much stronger than the other two strategies.  This may conclude 

that although all the three strategies are able to help overcome the swarm stagnation for the 

basic PSO algorithm, the second strategy is much more advanced than the other two strategies. 

Furthermore, the results produced by the proposed PSO with (0, 1, 0), (0, 1, 1) and (1, 1, 0) 

show that the third strategy further improves the performance of the proposed PSO with (0, 1, 

0); it reduces the average percentage deviation from 2.31e-005 to 5.22e-006. However, the 

results show that the first strategy and the second strategy have strong interaction. The average 

percentage deviation produced by the proposed PSO with (1, 1, 0) is 6.90e-05, which 

significantly worsens the average percentage deviation (2.31e-007) produced by the proposed 

PSO with (0, 1, 0). At last, the results of the proposed PSO with (0, 1, 1) and (1, 1, 1) show that 

the first strategy slightly improves the performance of the proposed PSO with (0, 1, 1); it 

reduces the average percentage deviation from 5.22e-006 to 4.30e-006.  

Table 1 concludes that the proposed PSO with (1, 1, 1) produced the best result, so it was 

applied to the other four data sets. Table 2 presents the average percentage deviations produced 

by the proposed PSO, the basic PSO, the constriction PSO,  and the heuristics, GA, SA and TS, 

developed by Chang et al. [3] for all the five data sets. The mean percentage deviations show 

that the proposed PSO outperforms the basic PSO and the constriction PSO in all the data sets. 

This confirms that the proposed PSO is able to help overcome the swarm stagnation for the 

basic PSO algorithm and improve its explorative capability. In addition, the mean percentage 

deviations show that the proposed PSO outperforms GA, SA and TS in all the data sets. This 

concludes that the proposed PSO is an effective algorithm for the candidate problem. 

Furthermore, Chang et al. [3] showed that the number of solutions searched using their GA, SA 

and TS to generate a pair of mean return and risk on an efficient frontier is 1000*N (N is the 

number of assets in a data set), so the number of solutions searched using Chang et al.’s [3] GA, 

SA and TS for Hang Seng 31 is 31,000, for DAX 85 is 85,000, and so on. However, the number 

of solutions searched using the proposed PSO is 300,000 for all the data sets. Therefore, the GA, 

SA and TS heuristics are more efficient than the proposed PSO. 
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Table 1. Average percentage deviation produced by the proposed PSO with different 

combinations of the new strategies 

Combination of the 

proposed strategies 

The average percentage deviation 

(0, 0, 0)  1.77e-03 

(1, 0, 0) 4.49e-04 

(0, 1, 0) 2.31e-07 

(0, 0, 1) 2.30e-05 

(0, 1, 1) 5.22e-08 

(1, 1, 0) 6.90e-05 

(1, 0, 1) 1.10e-05 

(1, 1, 1) 4.30e-08 

 

  

 

Table 2. Average percentage deviation produced by different algorithms for all the data sets 

 
Index Hang Seng DAX FTSE S&P Nikkei 

Number of Assets (N) 31 85 89 98 225 

GA 
Average 2.02e-04 1.36e-04 6.3e-05 8.4e-05 8.5e-05 

Solutions Searched 31,000 85,000 89,000 98,000 225,000 

SA 
Average 1.13e-03 3.94e-04 2.16e-03 2.16e-03 1.7681 

Solutions Searched 31,000 85,000 89,000 98,000 225,000 

TS 
Average 8.97e-03 3.5645 3.2731 4.4280 15.9163 

Solutions Searched 31,000 85,000 89,000 98,000 225,000 

Basic PSO 
Average 1.77e-03 2.25e-03 5.16e-03 7.62e-03 5.9824 

Solutions Searched 300,000 300,000 300,000 300,000 300,000 

Proposed 

PSO 

Average 4.30e-08 7.70e-06 1.25e-05 1.9e-05 6.7e-05 

Solutions Searched 300,000 300,000 300,000 300,000 300,000 
 

 

5. Conclusions 

In this paper we proposed a new PSO using three strategies to help overcome the swarm 

stagnation for the basic PSO. The proposed PSO was applied to solve portfolio selection 

problem based on standard Markowitz mean-variance model. Computational results show that 

the proposed PSO significantly dominates the basic PSO. This confirms the expectation that 

the proposed strategies are able to help overcome the swarm stagnation for the basic PSO and 

improve its explorative capability. In addition, computational results show that the proposed 



 

 

PSO is more effective than the GA, SA and TS developed by Chang et al. for generating 

efficient frontiers for the candidate problem with the five benchmark data sets.  

As mentioned, many PSO algorithms have been applied to solve complicated 

optimization problems; the proposed strategies are worthwhile to work with other PSO 

algorithms for solving optimization problems. 
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