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Beta variates are used extensively in Bayesian statistics, stochastic modeling and
simulation, program evaluation and review techniques (PERT), eritical path method
(CPM), and project management and control systems (for more applications, see
Gupta and Nadarajah, 2004; Morgan and Henrion, 1990). A standard beta variate
Beta(z, ) has the probability density function

x + p)
[ ()
with 2 = 0 and f = 0 being shape parameters. Over the last two decades, the

statistical/ mathematical software packages (such as R, Splus, SAS, SPSS, and
Matlab) have been well developed for generating various types of random numbers.

flx|o p) = 1 =x)f1, 0<x<1, (1)

These software packages are useful for fundamental simulation studies, but prove
inefficient for research involving complex computer codes and requiring a large
amount of random number generation.

Owver the years, many algorithms have been infreduced in the literature for
the computer generation of beta variates. Among them, a large class of algorithms
are based on acceptance,rejection methods. The well-known ones are: Johnk's
method (Jéhnk, 1964) and Forsvthe s method (Forsythe, 1972), which are valid for
all «, f = 0; the BN algorithm by Ahrens and Dieter (1974), which is valid for
%, i = 1; two switching algorithms that are valid for min(x, f) = 1. and a general
switching algorithm that is valid for all =, f = 0 (Atkinson, 1979; Atkinson and
Whittaker, 1976). Some of these methods were also studied by Atkinson and Pearce
(1976), wherein a comparison of computer generation times was made. Cheng
(1978) proposed different modified versions of Forsythe's method that are valid
for o, f = 0 (algorithm BA), =, f = | {algorithm BB). and min(x, f) = 1 {algorithm
BC), respectively. Schmeiser and Shalaby (1980) developed three algorithms that are
valid for =z, i = 1. These three algorithms are called BNM, B2P, and B4P, where
BNM is a modification of the BN algorithm. A detailed comparison of the above
beta algorithms was also carried out by Schmeiser and Shalaby (1980), wherein
the BB algorithm was shown to be the fastest for heavily skewed distributions
while the BNM algorithm was shown to be the fastest for heavy-tailed symmetric
distributions. For more detailed discussions and comparisons, the readers can refer
to work done by Cheng (1978), Devroye (1986), and Johnson et al. (1995).

Schmeiser and Babu (1980, 1983) proposed two algorithms that are valid for
%, i = 1. These two algorithms are called B2PE and B4PE, which are extensions of
algorithm B2P and B4P, respectively. Sakasegawa (1983) proposed three algorithms
that are wvalid for «, < 1 (algorithm B0O0), x <=1 = fi or i = 1 = 2 (algorithm
BO1), and =, f = 1 (algorithm Bll). These algorithms all belong to the class of



stratified rejection methods, in which piece-wise envlopes and exponentials are
applied in the center and tails of the desired beta distribution, respectively. Zechner
and Stadlober (1993) proposed two algorithms that are valid for =, ff = 1. These
two algorithms are called BPRS and BPRB. which improve acceptance/rejection
in the center of the desired beta distribution by using the idea of patchwork
rejection. We now summarize some important results obtained in these studies.
When =z, f = 1, algorithm B0OD has the smallest computer generation time among all
existing algorithms. When x = 1 <= f or f = | = «, algorithm BOl has the smallest
computer generation time among all existing algorithms. When «, ff = 1, if one
parameter is close to 1 and the other is large, algorithm B4PE has the smallest
computer generation time; otherwise algorithm BPRS has the smallest computer
reneration time.

(=) FE

Kennedy (1988) proposed a stochastic search procedure that asymptotically
generates beta variates. However, one finds the following problems in implementing
Kennedy’s algorithm: (i) not all beta variates with = = 0. fi = 0 can be generated;
and (ii) different parameter settings in the algorithm may (asvmptotically) generate

the same beta variate. Our goal here is to first identify the beta variates that can possibly
be generated by Kennedy’s algorithm. Next, for any valid « and g, we introduce an

optimal parameter setting so that this algorithm can achieve the fastest speed of
generation. In the last part, we evaluate the optimized version of Kenney’s algorithm
(called Kennedy’s MK algorithm) by comparing with other beta algorithms and the

default beta random number generators of three statistical /mathematical software
packages (R, SAS, and Matlab), in terms of the following performance measures:
(i) validity of choice of shape parameters (ie.. all (. §) that can possibly be
generated); (i) computer generation time; (iii) initial set-up time; (iv) goodness of fit;
and (v) amount of random number generation required. From these comparisons
based on an empirical study, we present three guidelines for choosing the best suited
beta algorithm.

(Z) P

We first study Kennedy’s algorithm for generating beta variates. Consider a
stochastic search procedure starting with the interval [A,. B,] = [0. 1]. Suppose that
at the nth stage, the search is confined to a random subinterval [A,. B,]|. Let C,
and D, be the minimum and maximum of & independent random points that are
uniformly distributed on the subinterval [A,. B,]. The next subinterval [A,,,. B,4]
is then taken to be [C,.B,]. [A,. D,]. or [C,. D,] with probabilities p, 4. and r,
respectively, such that p + g + r = 1. It was shown by Kennedy (1988} and Johnson
and Kotz (1990) that the limiting distribution of [A,, B,] (as n — o) is a beta
distribution with shape parameters & = k(p 4 ») and § = k(g + r).

Validity of Choice of Shape Parameters



Case l. a=1,p<=1
From (2), it is clear that & does not exist when « 4+ f§ < 1, and k = 1 otherwise.

Case 2. =1, =1
In this case, Eq. (2) reduces to [f] =k < |« + f#]. Therefore, k does not exist
when [ff] = |+ f]. k= when f € Z+, and k = | /] + | otherwise.

Case3. az=1,f=1
Since this is a symmetric version of Case 2, it follows that & does not exist when
[2] = |2+ p]. k = x when & € Zt, and k = | x| + 1 otherwise.

Cased. a=1,=1
There exists at least one solution with &£ = [max(z, f)].

Figure 1 displays the result of & (up to the choice of x=5, = 3) by
summarizing the resulis in Cases 1-4 above.

5

Figure 1. All possible values of (x, ) (ie. the set &) that can be generated through
Kennedy's algorithm (the grey part).

Mote that from (2), one may have more than one choice of k& for generating
a particular beta variate with («, f) € ®. So, the natural question now is how to
choose the value of k so that the algorithm has the best performance in some sense.

O FEREFIR

Choosing Optimal k
For any given (x. /) € ®, the collection of all possible choices of & is given by

K(x, )= {.l’c € Z%: max{[max(o. /)]. 1} =k = |o + f] } (3)

In order to distinguish the search results of Kennedy's algorithm induced by
different choices of £, let us denote the interval length at the mth stage by L (k) =
B (k) — A (k). k € K(x [f). Next, let us introduce a tolerance level A (0 = A = 1) s0
that the search stops as soon as L, (k) = A. This then introduces a stopping time
(stage) of the algorithm as



N(k)=min{n e Z*: L (k) <A}, ke K(ax p). )

The following theorem explains how the value of & can be chosen so that the
expected stopping time of Kennedy’s algorithm is minimized.

Theorem 2.1, For any given (0, [ € ®, 0 = A = 1, and ky = min{k : k € K(a. 1)},

E[N(K)] = E[N(ky)] for all k € K(x, p). (5)

Theorem 2.1 shows that, by choosing the minimal possible value of k.,
Kennedy’s algorithm achieves the fastest mean convergence rate of L (k) for any
given parameter choice and the tolerance level A. In addition, since at each stage
the algorithm requires the fewest random numbers and least computation for
sorting the generated values, the expected generation time can be minimized as
well. We refer to this optimized version of Kennedy's algorithm as “Kennedy's
Minimal-K™ algorithm (or simply “Kennedy’s MK"™ algorithm), and its steps are
summarized as follows,

Kennedy's MK Algorithm
Step 1. Solve for &y and the corresponding values of p, g, r.
Htl"P 2. lLetmn= ﬂ, k= kr_., .na-r_. = ﬂ, Hl:l = I., A= fir_..

Step 3. Generate k independent Uniferm(0, 1) variables and denote their sorted
values by Uy, ..., Ug.

Step 4. Generate a random number U.
If = P set "q.l'l+|. = L".[”, 'HJ|+|- = B.I':I'
lftp=U=p+qg.set A, =4, B, = Upy.

Otherwise, set A, = U,. B, = Uy,.

Step 5. If (B —Anp) = Ag, then x = (B, + A,4)/ 2, and stop.

If U= p, generate U from Uniform(A,, . By, ). sort U, Uy, ..., Uy and
denote the sorted values by U, ... Uy,

If p < U = p+ q, generate U’ from Uniform(A,, . B, ), sort U", Unys -+ Ugyy
and denote the sorted values by Uys - - - s Uy

Otherwise, generate independent U and U" from Uniform(A,,,, By, ) sort
U, U", Uy, ..., Ug_yy and denote the sorted values by Uy, ... Uy

Set n =n+ 1, and go to Step 4.

Performance Evaluation

In this section., we first sketch the possible values of the shape parameters for
the following well-known algorithms for beta generation: BN by Ahrens and
Dieter, simple rejection (SK), order statistics method (OS), Johnk’s method (JK).
general switching algorithm (GS) by Atkinson and Whittaker, Forsythe's method,
Cheng’s BA/BB/BC, Sakasegawa’s BOO/BO1/B11, B4PE by Schmeiser and Babu,
and BPRS by Zechner and Stadlober. We then evaluate Kennedy's MK algorithm
by comparing its performance with the state-of-the-art algorithms (from those listed



above) in terms of the following performance measures: (i) computer generation
time; (ii) program set-up time; (iii) goodness of fit; and (v) amount of random
number generation required. For practical purposes, in some comparisons we also
include the result of the default beta random number generators for three popular
statistical software packages R, SAS, and Matlab (the latest version). Note that
all performance measures were obtained based on a large number of simulation
trials that were executed on 2GHz Pentium 4 processors with [ GB of cache.
Computer programs were all written in Fortran, where a 32-bit linear congruential
random number generator, the Quicksort and insertion sort algorithms (for sorting
senerated values) were used.

Valid Choices of («, 3)

The possible values of (x. fi) for different beta generation algorithms are shown
in Fig. 2. In comparison with Fig. 1, we see that Kennedy's MK algorithm can
generate beta variates with a fairly wide range of («, f). But on the other hand,
Jéhnk’s method, general switching algorithm, Forsythe’s method, and Cheng's BA
method can generate beta variates for all =, = 0.

Computer Generation Time
From the simulation results of the computer generation time with the previous comparative

studies done by Sakasegawa (1983) and Zechner and Stadlober (1993), we present
the following guideline for choosing the beta algorithm with the fastest generation
speed:

e For o, f < 1, choose Kennedy's MK algorithm if x4+ f = 1.2; otherwise,
choose Sakasegawa’s BOO algorithm.
o Forx <1< forx=1= f choose Sakasegawa’s B0l algorithm.

¢ For z, f = |, choose Schmeiser and Babu’s B4PE algorithm if one parameter
is close to 1 and the other is large (say =4), otherwise, choose Zechner and
Stadlober’s BPES algorithm.

Goodness of Fit

Another way of evaluating different algorithms is to examine their generated
random points and see how close is the empirical distribution function to the
corresponding exact beta distribution. This can be done through the Kolmogorov—
Smirnov statistic

D= M:}ximlum |F,(x) — F(x)] (18)

where F,(x) denotes the empirical distribution function computed from the
generated random points X,.....X,. viz., Ff{x}zﬁEL] X, = x}. and F(x)

denotes the true beta distribution function. Note that the smaller the quantity D
is, the better the underlying generating mechanism is in terms of goodness of fit.

The simulation results show that, none of the algorithms discussed seem to perform
poorly in terms of goodness of fit.
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Figure 2.  The possible range of (. f) (grey part) for different beta algorithms. Note that
the values on the dash lines are not possible.

Amount of Random Number Generation Required

In this section. we compare all the algorithms (not including the statistical software
packages) through their amounts of random numbers required for each generation
of beta variate. Intuitively, the fewer random numbers required for each generation,
the more likely the algorithm can produce consecutively “independent” beta



variates.
Based on the simulation results, we present the following guideline for choosing the beta
generation algorithm that minimizes the amount of random number generation required:

o For o, f <1, choose Johnk's method if a4 f < 1; otherwise, choose
Sakasegawa’s BOD algorithm.

s Fora<=1 < fforx= 1= [ choose Sakasegawa’s BOI algorithm.

o For o, f = 1, choose Zechner and Stadlober’s BPRS algorithm.

=) RS

The findings of this work can be divided into two parts. In the first part, we
identified all parameter choices of beta variables that can possibly be generated by
Kennedy’s algorithm. We have further shown that an optimal parameter setting
in Kennedy's algorithm, referred to as Kennedy's MK algorithm, can achieve the
fastest speed of generation for any given valid parameter choice. In the second
part, we have evaluated a class of well-known beta algorithms by means of various
performance measures. The empirical study carried out shows that: (i) the proposed
Kennedy's MK algorithm is faster than all existing algorithms for generating beta
variates when x = 1, f= 1, and 1.2 = 24 f = 2; (ii) none of the beta algorithms
considered in this study perform poorly in terms of goodness of fit; and (iii) the
amount of random number generation required is in line with the algorithm’s
computer time, especially for algorithms based on rejection methods. From the
numerical results, we present three guidelines for choosing the best suited beta
algorithm. We believe that these guidelines will be quite useful for anyone requiring
to perform a large beta random number generation. For example, the second
ruideline can be utilized to generate the Dirichlet random vectors, where all elements
can be obtained by consecutively generating independent beta variates with different
shape parameters (see algorithm DIR-3 by Narayvanan., 1990). We are currently
examining this approach and we hope to report the findings in a future paper.

The result of this study has been published in Communications in Statistics —
Simulation and Computation, 38: pp.750-770, 2009.
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