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On Robust Estimation of the Heteroscedasticity
Covariance Matrix

Tsung-Chi Cheng∗

1 Introduction

In a normal regression model, the assumption of homogenous variance is not always

appropriate. When the disturbance process in a regression model entails heteroscedas-

ticity, the standard inference procedure becomes invalid because of the inappropriate

estimation of the standard error. A conventional way to overcome this problem in

statistical and econometric literature is to specify the model with an assumed error

structure and apply maximum likelihood estimation, generalized squares, or other ap-

proaches, such as residual maximum likelihood (Verbyla 1993). In addition, Bianco,

Boente, and di Rienzo (2000) and Hallina and Mizera (2001) consider the robust

estimator when outliers exit in a heteroscedastic regression model. However, these

approaches require a specific function of the error variance. There is usually little or

no guidance regarding the form of heteroscedasticity though.

Robust estimations and diagnostics for linear regression models with the assump-

tion of constant errors have been widely discussed (see Atkinson (1985); Rousseeuw

and Leroy (1987); Atkinson and Riani (2000)). Swamping (i.e. when inliers appear

as outlying) and masking (i.e. when outliers appear as inlying) effects due to multiple

outliers can be avoided by robust diagnostics. Both outliers and heteroscedasticity

in the data also can lead to the inflation of the estimate of scale and deteriorate

both the swamping and masking effects. For a successful analysis with regard to out-

liers and leverage points, a robust estimation is required, preferably one with a high
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breakdown point. The (finite) sample breakdown point of an estimator is the smallest

proportion of observations that, when altered, can cause the value of the estimator

to become arbitrarily large or small. Therefore, one of the desirable properties for a

robust estimator is a high breakdown point that can handle multiple outliers.

The approach proposed in this article employs the weighted least absolute de-

viation (WLAD) estimator suggested by Hubert and Rousseeuw (1997) and Giloni,

Simonoff, and Sengupta (2006) to deal simultaneously with outliers and heteroscedas-

ticity in the linear regression model without specifying the variance function. The

difficulty is differentiating those observations that inflate the variation and belong

to outlying points from those attributable to the (natural) heteroscedastic structure

of the data. A jigsaw plot that uses the simulated envelopes of Atkinson (1985) for

the absolute standardized residuals can represent both characteristics for each case

in the dataset. Furthermore, plugging the resulting residuals into the estimation of

the heteroscedasticity consistent covariance matrix (HCCM) yields a robust quasi-t

test for the estimated coefficients.

2 Weighted least absolute deviation estimator

Consider the linear model

y = Xβ + ε, (1)

where y is an n×1 vector of the response variable, β = (β0, · · · , βp) denotes (p+1)×1

regression coefficients, X = (xT
1 , · · · ,xT

n ) is an n × (p + 1) design matrix, and ε is

the n × 1 vector of random errors. The random vector ε = {ε1, · · · , εn} is assumed

to be independent and follows MN(0,Ω), where Ω = diag(ω1, · · · , ωn). Given the

form of the variance function, ωi, the maximum likelihood estimation (MLE) for

model (1) has been discussed by Harvey (1976) and Aitkin (1987) and the residual

maximum likelihood (REML) estimation is presented by Patterson and Thompson

(1971), Harville (1974), and Cooper and Thompson (1977). However, outliers can

influence both MLE and REML (see Cheng (2010)). Without specifying the variance

function, the WLAD procedure for model (1) essentially follows both Hubert and

Rousseeuw (1997) and Giloni et al. (2006).
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Hubert and Rousseeuw (1997) propose the RDL1 estimator for robust regression

with both continuous and categorical predictors. The RDL1 consists of three stages:

identifying leverage points, downweighting the leverage points when estimating the

parameters, and estimating the residual scale. To adapt the RDL1 estimator for

model (1) with heteroscedastic errors, this study first computes the robust distance

of continuous regressors (if discrete regressors are included in X, they are excluded

at this stage, as in Hubert and Rousseeuw (1997)), as follows:

RD(xi) =
√

(xi − t)T C−1(xi − t), i = 1, · · · , n, (2)

where t and C are the robust location and scale estimates of the X matrix, re-

spectively. Hubert and Rousseeuw (1997) use the minimum volume ellipsoid (MVE)

estimator for t and C. These distances (2) can identify the leverage points for the

space of continuous regressors and serve as the weights for estimating the regression

coefficients by a weighted L1 procedure in the second stage. The current approach

applies the minimum covariance determinant (MCD) estimator to obtain the robust

location and scale estimates of the X matrix, and then obtains the distance (2) for the

weights. Both MVE and MCD estimators provide a high breakdown of the robust es-

timation of multivariate location and shape (Rousseeuw and Leroy 1987). Moreover,

Butler, Davies, and Jhun (1993) show that the MCD estimator has better theoretical

properties than the MVE. Woodruff and Rocke’s (1994) empirical results show that

the MCD is preferable to the MVE for their applications. Croux and Haesbroeck

(1999) discuss other statistical properties and the robustness of the MCD.

At the second stage, the parameters β of model (1) can be estimated by

min
β

n∑

i=1

wi|ri(β)|, (3)

where ri(β) = yi − xT
i β, and

wi = min

{
1,

p

(RD(xi))2

}
(4)

for i = 1, 2, · · · , n. The final stage requires calculating the estimate of the scale of the

residuals:

σ̂ = 1.4826mediani|ri|, (5)
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where the constant 1.4826 leads to a consistent estimator under a normality assump-

tion. The standardized residual for the ith case then can be defined as

ti =
ri

σ̂
. (6)

An observation is flagged as an outlier if its absolute value from equation (6) exceeds

2.5 with an assumption of constant errors. The breakdown property of RDL1 is

referred to Hubert and Rousseeuw (1997).

Maronna and Yohai (2000) suggest there must be some null residuals by a well-

known property of the weighted L1 estimate (3) lead to an underestimation of the

error variability. Instead of equation (5), they suggest using

σ̂∗ = 1.4826s∗, (7)

where s∗ is the median of absolute non-null residuals. The standardized residual (6)

then is replaced by σ̂∗, as follows:

t∗i =
ri

σ̂∗
. (8)

Maronna and Yohai’s suggestions are appropriate for the following discussion. Fur-

thermore, the entire computation is easy to conduct. Both MCD and L1 estimations

are built-in functions in R and other commercial statistical packages, such as SPLUS

and SAS.

Giloni et al. (2006) discuss some properties of the weighed L1 estimator and

suggest using the weight
√

minj(hjj)hii, where hij is the (i, j)th element of the hat

matrix, H = X(XT X)−1XT . This method enables them to match the results of

Ellis and Morgenthaler (1992), who argue that breakdown is related to distance rather

than squared distance.

2.1 Jigsaw plot

As mentioned in the previous section, the critical values that flag the possible outliers

for standardized residuals (6) and (8) are ±2.5 under constant errors for model (1).

However, these values may not fulfil the requirement when heteroscedasticity exists in

the data, and therefore, the estimation uses the unequal weights. To identify outlying
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cases with an approach based on the WLAD estimate, the proposed method uses the

half normal plot with envelopes (see Section 4.2 of Atkinson (1985)). The envelope

then determines the threshold for the identification of outliers.

To construct the envelopes, the matrix X is fixed, such that the weight (4) remains

the same throughout the simulation procedure. The response variable is generated

from a normal distribution with zero mean, and its variance appears in Cook and

Weisberg’s (1983) study as follows for the ith case:

σ2{(1− hii)wi +
∑

k 6=i

wihik/(1− hii)}. (9)

Suppose that on the mth simulation of the n observations, the absolute values of the

standardization residual is denoted by t∗mi, i = 1, · · · , n. The corresponding order is

given by t∗m(i). The simulation can be repeated a fixed number of times, such as 80

times, which roughly coincides with the previous cut point, 2.5, for the percentile

under normality. The simulated limits are given by

t∗l(i) = min
m

t∗m(i),

t∗u(i) = max
m

t∗m(i), (10)

where t∗l(i) and t∗l(i) form the lower and upper envelopes, respectively. The lower bound

may be (near) 0 for all i due to null residuals of the L1 estimate. This scenario results

in a jigsaw shape when plotting the lower and upper bounds from equation (10)

together.

There are two kind of estimates for σ in equation (9), which differentiate outliers

and heteroscedastic structures in the data. One is the estimated scale from equa-

tion (7), and the other is the standardized residual in equation (8) for case i. The

former provide a threshold for the test of outliers, whereas the latter reflects the het-

eroscedastic error for each case. The weighted hat matrix also might be used instead

of H , which may yield some different jigsaw plots according to the data structure.

Nevertheless, the conclusion does not vary in either case. The weighted hat matrix is

denoted by Hw = Xw(XT
wXw)−1XT

w, where Xw = WX, and W is a matrix with

wi for the ith diagonal element and zero’s for all off-diagonal elements.
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2.2 Types of outlying cases

Rousseeuw and van Zomeren (1990) propose a diagnostic plot of Studentised residuals

(based on the least median squares estimate) versus robust distances (using MVE)

of the X matrix, on the basis of which they classify the different types of outliers.

Rousseeuw and Van Driessen (1999) adapt it as a D-D plot for the standardized

residuals (using the least trimmed squares estimates) versus robust distances based

on MCD. Employing a similar idea, this subsection describes the data types for the

linear regression model with heteroscedastic error.

Part (a) of Figure 1 presents a scatter plot of 30 simulated data points, in which

they are classified according to regular point, good leverage point, vertical outlier, and

bad leverage point. Applying the proposed approach to this dataset results in Part

(b) of Figure 1, which shows the diagnostic plot based on the WLAD estimate and

locates all observations into their corresponding areas. The cutoff lines to separate

these areas are ±2.5 and
√

χ2
p,0.975 (here, p = 1) for horizontal and vertical lines,

respectively.

In Figure 1, Parts (c) and (d) are the jigsaw plots of the absolute values of the

standardized residuals (8), denoted by the symbol ×, together with the envelopes

generated by using (7) and (8) for the σ of equation (9), respectively. The former

reveals that cases 29 and 30 are outlying cases, whereas the latter indicates which

observations are attributable to the heteroscedastic structure in the data. Both plots

coincide with the data pattern in Part (a) in terms of outliers and heteroscedasticity.

The jigsaw shape in Part (c) provides the corresponding threshold for each observation

by identifying whether it is an outlier, which takes into account the unequal weight

property. Regular points with labeled case numbers yield larger values for the upper

bound of the envelope in Part (d), which indicates the source of heteroscedasticity.

2.3 Artificial data

This subsection identifies high leverage points for the heteroscedastic regression model

using simulated data. The following model is employed for good data

yi = 1 + 2xi + εi , i = 1, . . . , 38, (11)
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where xi is generated from a uniform distribution U(1, 7) and εi =
√

5xiη. Here,

η
iid∼ N(0, 0.52). For bad data, the following bivariate normal distribution applies:

(
yi

xi

)
∼ MN

((
3
20

)
,

(
0.5 0
0 0.5

))
, i = 39, . . . , 50.

Therefore, the data contain 24% outliers. Part (a) of Figure 2 shows the scatter plot

for this artificial dataset, which actually resulted from an adaption of the famous

synthetic data provided by Rousseeuw (1984).

The analysis of this data set begins by applying the MM estimator of Yohai

(1987). The function lmrob in the library robustbase provides the solution of an

MM -regression estimator. It uses a bi-square re-descending score function, and by

default, it returns a highly robust and highly efficient estimator. The computation

of the robust standard errors relies on the formulas provided by Croux, Dhaene, and

Hoorelbeke (2003). Part (b) in Figure 2 presents the resulting diagnostic plot, which

identifies 12 bad leverage cases as good leverage points and three good observations as

vertical outliers. Without taking into account heteroscedastic errors, the swamping

and masking effects exist even though the high breakdown estimator is used.

On the contrary, WLAD successfully identifies leverage points, as shown in the

standardized residual plot and jigsaw plot of Parts (c) and (d) of Figure 2, respec-

tively. The latter presents the heteroscedastic configuration as a dashed line as well

as the cutoff values for outliers, depicted by a doted line. These leverage points cause

heteroscedasticity in the data as well, which may partly explain the existence of the

masking and swamping effects when the MM estimate gets applied to these data.

3 Estimation of heteroscedasticity consistent co-

variance matrix

White (1980) proposes an estimator of the variance covariance matrix of the least

squares regression coefficient that is consistent in certain conditions, which is also

known as the HC0 estimator. Tests based on a heteroscedasticity-consistent covari-

ance matrix (HCCM) estimator are popular in application, because there is no need

to specify the structural form of heteroscedasticity, and it is easy to compute.
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Despite this popularity of White’s HC0 estimator, several critiques and improve-

ments have been proposed. Chesher and Jewitt (1987) show that the estimator ex-

hibits bias even for large samples under certain regression designs. MacKinnon and

White (1985) thus propose a close variant form of HC0 based on the unreplicated

“almost unbiased estimator” of Horn , Horn, and Duncan (1975). Long and Ervin

(2000) compare several HCCM estimators with Monte Carlo studies. Cribari-Neto

(2004) proposes a new estimator for HCCM that takes into account the leverage ef-

fect of the design matrix on associated quasi-t tests. For some additional alternatives,

readers should turn to Bera , Surprayitno. and Premaratne (2002).

Several authors also argue that the leverage points are more decisive for the finite

sample behavior than the degree of heteroscedasticity in the HCCM estimation (see

Chesher and Jewitt 1987; Kempthorne and Mendel 1990; Furno 1997; Cribari-Neto

and Zarkos 2001; and Cribari-Neto 2004). However, these approaches are based on

ordinary least squares (OLS) estimator, which is notoriously influenced by outliers.

Zhou and Portnoy (1998) provide inferential results derived from heteroscedastic mod-

els based on regression quantiles, where the median regression is a special case. The

variance function for weights is specified but may be estimated by regressing the local

estimates of standard errors on regression.

The most popular regression estimator for model (1) is the OLS estimate of β,

as given by β̂ = (XT X)−1XT y. It is unbiased, and the corresponding variance

covariance matrix V ar(β̂) = Ψ denoted by

Ψ = (XT X)−1XTΩX(XT X)−1. (12)

Under homoscedasticity, this equation simplifies to (XT X)−1σ̂2, where σ̂2 =
∑

e2
i /(n−

p) denotes the estimated variance of model (1). The OLS estimator for the regression

coefficients is consistent but inefficient in the general linear model with heteroscedastic

errors.

Various heteroscedasticity consistent (HC) estimators for Ψ have been suggested

and can be constructed by plugging an estimate of Ω̂ = diag(ω̂1, · · · , ω̂n) into equation

(12). These estimators differ in the choice of ω̂i, given as follows:

constant: ω̂i = σ̂2, (13)
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HC0: ω̂i = e2
i , (14)

HC1: ω̂i =
n

n− p
ê2

i , (15)

HC2: ω̂i =
e2

i

1− hii

, (16)

HC3: ω̂i =
e2

i

(1− hii)2
, (17)

HC4: ω̂i =
e2

i

(1− hii)δi
, (18)

where δi = min{4, hii/h̄}, and h̄ is the average of hii, i = 1, · · · , n.

Equation (13) yields the standard estimator Ψ̂ for homoscedastic errors; the other

all lead to different kinds of HC estimators. The estimators HC1, HC2, and HC3,

according to MacKinnon and White (1985), improve the performance in small sam-

ples. Long and Ervin (2000) conduct an extensive simulation study based on sample

samples and conclude that HC3 provides the best performance. Cribari-Neto (2004)

instead recommends the estimator HC4, which takes into account the leverage effect

of the design matrix. Zeileis (2004) provides an R package for all these HC estimates.

3.1 Robust HCCM estimator

It is well-established that HCCM is influenced by outliers, especially the leverage

points (e.g., Cribari-Neto (2004)). All the estimates in equations (13) to (18), based

on OLS, provide consistent results under heteroscedasticity, but this property may

vanish when outliers exist in the data. This subsection therefore contains the robust

estimation for (12) that avoids the influence of outliers, using the approach discussed

in Section 2.

With the WLAD estimate, it is possible to consider the choices of ω̂i, which are

analogous to those of classical HCCM as follows:

RHC0: ω̂i = r2
i , (19)

RHC1: ω̂i =
n

n− p− 1
r2
i , (20)

RHC2: ω̂i =
r2
i

1− hwii

, (21)
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RHC3: ω̂i =
r2
i

(1− hwii)2
. (22)

In these cases, ri is the ith residual based on the weighted L1 estimate in equation

(3), and hwii denotes the ith diagonal element of the weighted hat matrix Hw.

3.2 Simulation study

A examination of the capability of the proposed robust test procedure simulates model

(1) under heteroscedasticity. The data generation follows the method described in

Subsection 2.3, with a focus on the problem of bad leverage points. The good data

can be generated by the following model:

y = β0 + β1x1 + · · ·+ β4x4 + ε,

where the parameter β0 = 20, and all other β are 1. The values of x1 can be generated

from a uniform distribution with values between 0 and 10, and the other x variables

have values between 0 and 20. To simplify the study, only one explanatory variable,

x1, is related to the error function, namely, ε ∼ N(0, exp(σ2
i )), where σi = δ0 + δ1x1i.

The values of the parameters are set to δ0 = 0.001 and δ1 = 0.0, 0.3, 0.6, or 0.9

(these different values of δ1 are denoted by data types a, b, c, and d, respectively, in

the subsequent discussion). The differing values of δ1 produce a constant error and

a relatively moderate to very severe degree of heteroscedasticity. The “bad” data

derive from a multivariate distribution with the following form:
(

xT
i

yi

)
∼ MN

((
xT

m

ym − 20

)
, diag(0.252, · · · , 0.252)

)
,

where xm is the maximum value of good x2 plus 10, and ym denotes the smallest

values of good yi. The adjustment of xm and ym allows for more distinct distances

between bad and good data when heteroscedasticity is more severe in the data.

The sample sizes are 50, 100, 200, and 400, and each dataset contains 0%, 5%,

10%, 15%, and 20% outliers. One thousand replications compare the coverage of

β when the robust results from equations (19) to (22) help estimate equation (12).

The comparison of the ratio of the number of tests H0 : βj = β0j, j = 0, 1, · · · , 4,

successfully rejects the null hypothesis in 1000 simulated data sets. Figure 3 shows
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the average of the empirical p-values for tests of βj according to different approaches,

proportions of outliers, sample sizes, and the severity of the heteroscedasticity. All

classical HCCM using (14) to (18) are spoiled by outliers, though they may have

good properties without any single outlier in the data, as discussed in Long and

Ervin (2000). Therefore, only the results pertaining to HC3 are reported here.

The robust standard error of the MM estimator proposed by Croux et al. (2003)

provides reasonable results when the degree of heteroscedasticity is not severe and/or

the proportions of outliers are not too large in the data. The sample size is a factor

that influences the behavior of the test with regard to data types c and d with the

MM estimate. The different versions of the robust HCCM from equations (19) to

(22) supply similar results, regardless of the configurations of the data structure. All

empirical p-values are close to 0.05. These four robust HCCM yield almost the same

results for the same dataset, whereas the classical HCCM in equations (14) to (18)

produce quite varied outcomes. The quasi-t tests using the robust HCCM also can

resist bad leverage points.
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Profile monitoring

Profile monitoring is the use of control charts for cases in

which the quality of a process or product can be characterized

by a functional relationship between a response variable and

one or more explanatory variables.

Linear regression model: Kang and Albin (2000); Kim et al.

(2003); Mahmoud and Woodall (2004); Wang and Tsung

(2005); Gupta et al. (2006); Mahmoud et al. (2006)

Nonparametric regression model: Zhou et al. (2007)

Nonlinear mixed model: Jensen et al. (2008); Jensen and

Birch (2009)

General: Woodall et al. (2004); Woodall (2007)

A simple linear profile with AR(1) error: Noorossana et al.

(2008); Soleimani et al. (2009)
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Linear regression model with ARMA errors

Consider the linear regression model

yt = xT
t β + εt, t = 1, 2, · · · , T(1)

where yt is the response variable, xt is k × 1 vector of explanatory variables, and β is
a vector of unknown parameters.

The random error εt follows an ARMA process, which can be expressed as

Φ(B)εt = Θ(B)νt,(2)

where

Θ(B) = 1 + θ1B + . . . + θqBq

Φ(B) = 1 − ϕ1B − ϕ2B2 − . . . − ϕpBp

and νt ∼ WN(0, σ2).
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Maximum likelihood estimation

The computation for the estimates can be easily
implemented by means of converting models
(1) and (2) into the state space form and
applying the Kalman filter recursive approach.

See Harvey (1989); Durbin and Koopman
(2001).

arima function in R.
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Hotelling’s T 2 test for coefficients

To monitor the departure of coefficients, δ = {β0, β1, · · · , βk, φ1, · · · , φp, θ1, · · · , θq},
from the profile models (1) and (2) applied to m datasets, the analogous Hotelling’s
T 2 test is then

T 2
1i = (δ̂i − δ̄)T ∆−1(δ̂i − δ̄), i = 1, 2, · · · , m,

where δ̂i denotes the estimate of δ for the ith dataset, δ̄ entails the averages of all

δ̂i’s, and ∆ =
m∑

i=1

(δ̂i − δ̄)(δ̂i − δ̄)T /(m − 1) .

The 100(1 − α) percentile of the F distribution can be used to construct an upper
control limit (UCL) represented by

r(T−1)
(T−r)

Fα,r,T−r for phase I control chart

r(T+1)(T−1)
T (T−r)

Fα,r,T−r for phase II monitoring scheme

r = k + p + q + 1
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T 2 test based on residuals

If ei denotes the T × 1 residual vector for the ith dataset
and σ̂2

i is the corresponding estimate of σ2 for dataset i ,
then we check the stability of the variance, σ2, in the
profile using the following test statistic,

T 2
2i = (ei − 0)T Σ−1

e (ei − 0), i = 1, 2, · · · ,m,

where Σe = σ̄2I, σ̄2 is the average of all σ̂2
i ’s, and I is the

identity matrix.

The UCL for this test statistic is χ2
α,T−1, which denotes the

100(1 − α) percentile of the χ2 distribution with T − 1

degrees of freedom.
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Simulation study

Consider the following model

yt = β0 + β1x1t + β2x2t, t = 1, 2, · · · , T,

εt = φ1εt−1 + φ2εt−2 + φ3εt−3 + νt

where νt ∼ WN(0, σ2).

Given that β0 = β2 = 1, φ2 = 0.1 and φ3 = −0.1, we focus on evaluating the impact
of changes in β1, φ1, and σ2 on the monitoring profile.

There are 50000 replicates used for Phase II diagnostic monitoring, while 20000
replicates are carried out for Phase I control chart scheme.

For the latter, both values of β1 and σ2 are assigned to be 1, while the values of φ1

vary from -0.6 and 0.6 to avoid non-stationary series occurring in the data generating
process.

The sample size, T , is 150 and 300.
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In-control ARL

The combination of T 2

1
and T 2

2
control chart

schemes is considered to yield an overall
in-control average run length (ARL) of
approximately 185.

The overall in-control ARL can be calculated by
1/ARLoverall = 1 − (1 − α1)(1 − α2), where α1

and α2 denote the probability of committing
false alarms for T 2

1
and T 2

2
, respectively.
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The simulated ARL values under the change ofβ1 from 1

β1

φ1 1 1.02 1.04 1.06 1.08 1.10

T = 150 -0.6 145.349 19.231 1.588 1.007 1.000 1.000

-0.4 158.228 29.851 2.249 1.044 1.000 1.000

-0.2 178.571 46.685 3.618 1.194 1.004 1.000

0.0 175.439 66.225 7.198 1.663 1.053 1.001

0.2 171.233 79.872 13.221 2.685 1.257 1.022

0.4 190.114 107.527 25.253 5.247 1.882 1.164

0.6 170.068 125.313 40.783 10.156 3.181 1.573

T = 300 -0.6 177.305 4.224 1.011 1.000 1.000 1.000

-0.4 188.679 6.973 1.068 1.000 1.000 1.000

-0.2 177.936 11.743 1.249 1.001 1.000 1.000

0.0 188.679 20.309 1.750 1.016 1.000 1.000

0.2 187.266 34.916 2.962 1.116 1.001 1.000

0.4 194.553 54.171 5.503 1.468 1.031 1.000

0.6 181.159 68.213 9.750 2.190 1.152 1.010
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The simulated ARL values under the varying values ofφ1

φ1

T φ1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6

150 -0.6 1.000 1.001 1.024 1.283 3.089 19.216 147.929

-0.4 1.149 1.968 6.539 43.365 180.505 112.867 16.706

-0.2 10.301 60.976 159.236 108.225 20.938 3.544 1.305

300 -0.6 1.000 1.000 1.000 1.003 1.282 7.504 142.450

-0.4 1.000 1.056 2.058 17.094 177.936 39.777 2.302

-0.2 2.802 27.337 189.394 44.326 3.294 1.111 1.001

0 0.1 0.2 0.3 0.4 0.5 0.6

150 0.0 175.439 78.125 12.994 2.935 1.317 1.032 1.001

0.2 13.203 76.453 149.254 77.760 12.713 2.621 1.206

0.4 1.260 2.460 9.651 60.168 166.113 79.365 10.231

0.6 1.000 1.006 1.094 1.709 5.572 38.580 163.399

300 0.0 188.679 33.201 3.043 1.142 1.002 1.000 1.000

0.2 3.128 32.489 171.821 34.626 2.903 1.097 1.001

0.4 1.001 1.094 2.511 24.606 191.571 31.726 2.169

0.6 1.000 1.000 1.000 1.023 1.706 14.510 173.010
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The simulated ARL values under the shifts ofσ from 1

σ

φ1 1 1.1 1.2 1.3 1.4 1.5

T = 150 -0.6 145.349 5.677 1.415 1.034 1.001 1.000

-0.4 158.228 5.578 1.399 1.034 1.001 1.000

-0.2 178.571 5.648 1.410 1.033 1.002 1.000

0.0 175.439 5.752 1.411 1.033 1.002 1.000

0.2 171.233 5.633 1.407 1.032 1.001 1.000

0.4 190.114 5.476 1.399 1.032 1.001 1.000

0.6 170.068 5.725 1.412 1.033 1.001 1.000

T = 300 -0.6 177.305 2.619 1.040 1.000 1.000 1.000

-0.4 188.679 2.571 1.040 1.000 1.000 1.000

-0.2 177.936 2.588 1.040 1.000 1.000 1.000

0.0 188.679 2.614 1.041 1.000 1.000 1.000

0.2 187.266 2.605 1.040 1.000 1.000 1.000

0.4 194.553 2.582 1.041 1.000 1.000 1.000

0.6 181.159 2.618 1.041 1.000 1.000 1.000
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Conclusions from simulation

The test statistics are sensible to the alterations
of the coefficients, namely β1, φ1, and σ2.

The ARL value is more sensible for the
difference when T = 150 than that for T = 300.
The detection of the change in β1 may depend
on the values of φ1.

The pattern about how this differs may
depend on more factors, such as the
complexity of error function (2) and/or shifts
in different parameters simultaneously.
To verify this, more simulations should be
expected.
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Real data illustration
The “Babyfinder” is a device designed to detect if any event of concern occurs.

For example, it could be widely used in healthcare, warehouse, for baby sisters,
heart trouble patients, stolen bicycles, etc.

It includes transceiver and receiver.

Once there is a distance between transceiver and receiver, a signal strength is
generated.

The signal strength is called Received Signal Strength Indicator (RSSI), a
measurement of the power presents in a received radio signal (measured in
decibels, dBs), in wireless communication technology.

In wireless communication theory, the functional relationship between RSSI and
distance should be expressed by the model:

RSSI = a + b log (distance),
where a is the intercept and b is the slope.
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Phase I control chart
The study problem of Babyfinder is to analyze the behavior of the wireless signal
strength through various action models.

The occurring events would change the functional relationship of RSSI and
distance.

Hence, it is important to effectively detect if the functional relationship of RSSI
and distance has changed.

Suppose that the Babyfinder is developed to protect a bicycle from being stolen.

To collect the data of RSSI under specified distances, seventeen no-stolen
experiments (or in-control experiments) are designed, which result from different
situations and environments.

The following regression model is first applied to analyze these datasets:

yt = β0 + β1 log(xt) + εt, t = 1, 2, · · · , 147,

where yt is RSSI and xt is the distance between the bicycle and the owner.
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                                    (a)                                                      (b) 

Figure 1. Babyfinder: (a) Transceiver and (b) receiver 

 

 

 

 

               

                                                        (a)                                                        (b)     

                                               

(c)                            (d) 
 

Figure 2. The pictures of an experiment: (a) the receiver is in the owner’s bag; (b) the 
transceiver in on the bicycle; (c) the rope and the marked distances; (d) the owner leaves 
the bicycle and walks ahead. 
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Residuals of fitting a regression with constant errors
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Profile model

A candidate profile model is then developed to
analyze these datasets:

yt = β0 + β1 log(xt) + εt, t = 1, 2, · · · , 147,

εt = φ1εt−1 + φ2εt−2 + φ3εt−3 + νt

where νt ∼ WN(0, σ2).
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Residuals of fitting a regression with AR(3) errors
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Plots ofT 2 statistics
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Boxplots of residuals
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Phase II monitoring scheme

To evaluate the capability of the proposed
approaches, Eleven stolen experiments (or
out-of-control experiments) are designed by the
occurring special causes, such as moving
speed and methods of stealing.
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Plots ofT 2 statistics under out-of-control cases
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