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1 Introduction, literature review and objectives

Functional data analysis is concerned of the problem of analyzing a set of
random curves. Those curves are often functions of time, observed fre-
quently at different time points. In many applications, the observed curves
exhibit the same pattern, but vary in amplitude and in time progression.
For instance, for speech signal curves, different individuals may speak the
same words at different speeds and levels of loudness. More examples of
applications can be found in [8] and [9].

For the estimation of the common shape of the curves, it is known that
a usual estimator such as the cross-sectional mean is improper ([2]; [4]).
To deal with the time variation nature of individual curves, different curve
registration (warping) methods have been developed with the aim to align
individual curves to a given template.

One well-known registration method is landmark registration, which in-
volves selecting certain features (landmarks) and align the curves by iden-
tifying the timing of selected landmarks. Kneip and Gasser [4] described
landmark registration in a statistical setting using structral functionals. As
mentioned by various authors ([7]; [6]), to use the landmark registration
approach, curves need to exhibit common features. If some landmarks are
missing for certain curves, there can be a problem.

There are other approaches for curve registration. In shape invariant
modeling (SIM), individual curves are modeled using shift and scaling trans-
forms for the common shape function and for time transforms. This ap-
proach was first proposed by Lawton, Sylvestre and Maggio [5] and later
considered by Kneip and Gasser [3]. Silverman [13] proposed a functional
PCA model allowing for individual time-shift, where the shift effect was con-
sidered random. Ramsay and Li [7] proposed to estimate the time-warping
function by minimizing a penalized squared error criterion, with a penalty
term proportional to the relative curvature of the warping function. Wang
and Gasser [15] proposed to align one curve to a reference curve using dy-
namic time warping, a technique that had been developed in the engineer-
ing literature (see [12] for example), but with a new cost function involving
penalty for the roughness of the warping path and for mis-alignment. Rgnn
[10] considered a nonparametric maximum likelihood approach for a shape
invariant model allowing for individual random time-shift.

Recently, Telesca and Inoue [14] proposed an interesting Bayesian hier-
archical models for curve registration. To describe their model, let [0, 7]
be the time interval where the individual curves are defined. Let N be the
total number of curves. For i =1, ..., N, let Y;(t) denote the value of the
i-th individual curve at time ¢ for ¢t € [0,7] and let u; denote the warping
function for the i-th curve, which is assumed to be increasing. Let f be the



common shape function. Then their model is as follows:
Yi(t) =ci+aif(ui(t)) +€(t), t€[0,T] and i =1, ..., N, (1)

where the ¢; and a; are parameters for individual shift and scaling effects,
and the ¢;(t)’s are independent errors. The common shape function f and
the warping functions u;’s are modeled using B-splines. Priors are put on
the spline coefficients as well as other parameters in the model, and the
MCMC algorithm can be applied to sample from the posterior of the warping
functions and the common shape function.

The model in (1) looks appealing since it offers great flexibility. However,
identifiability is certainly a issue. First, the shift and scaling effects ¢;’s
and a;’s cannot be separated from f(u;(t)) since ¢; + ¢+ a - a; - g(ui(t)) =
cita;f(pi(t)) when c+ag(t) = f(t). Such a non-identifiability problem may
be solved by making an overall restriction like Zi]\il ¢; =0 and Zfil a; =N,
or by choosing one curve as the reference and making a restriction like ¢; = 0
and a1 = 1. However, even in the case where ¢; = 0 and a; = 1 for all 4, it is
still possible to have f(u;(t)) = f(f:(t)) for different warping functions p;(t)
and [i;(t), unless f satisfies some shape constraints such as being unimodal
or monotone. Therefore, a different type of non-identifiability may still exist.

Since the purpose for estimating the warping functions is to obtain a
reasonable estimator for the common shape function, the following question
is of interest.

e Question 1. Can the estimation of the common shape function be im-
proved by using a more flexible family to model the warping functions
than a simple family such as the location family?

Finding an aswer for the above question is the main objective of this project,
and it is inevitable to deal with the identifiability issue.

2 Approach

To address Question 1, simulation studies will be carried out. For simplicity,
the following simplified model is considered, which is obtained by setting
¢ =0 and a; = 1 in Model (1):

Yi(t) = f(ui(t)) + €(t), t€[0,T] and i =1, ..., N. (2)

Here p;’s are assumed to be IID random increasing functions such that
Eui(t) =t for t € [0,7]. Data curves will be generated according to (2)
with f being a smooth function and the u;’s are generated using B-splines
with random coefficients, where t € {t1,...,t,} C [0,T]. f and p;’s will



be estimated via maximum likelihood estimation assuming that the €;(t)’s
are normal. Both f and the pu;’s are approximated using B-splines. The
estimate for f can be then obtained when p;’s are modeled using (i) and
(ii) respectively, and then comparisons can be made to see if the estimation
of f is improved when (ii) is replaced by (i). The experimental details are
given in Section 3.

3 Experimental details and results

In this experiment, two curves Z1+ = f(t) + €14 t =1, ..., n, and Zo; =
f(u(t))+e2s: t =1, ..., nare generated, where the common shape function
f is given by

f(z) = —0.7Bs(z) + 0.6 B4(z) + 0.5B5(x),

where By, ..., Bs are B-spline basis of order 4 (degree 3) with internal knots
0.2, 0.8 and boundary knots 0, 1, arranged by the lower/upper bounds of
their supports. The graph of the common shape function f is shown below.
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The warping function for the second curve is

wu(t) = (1/15)Baa(t) + 0.2Bg3(t)
+0.4BQ’4(t) + 0.632,5(15) + 0.832,6 (t) + (14/15)32’7(15) + BQ’S(t),
where Ba 1, ..., By g are B-spline basis of order 4 (degree 3) with internal

knots 0.2, 0.4, 0.6, 0.8 and boundary knots 0, 1, arranged by the lower /upper
bounds of their supports. The graph of the warping function p is shown



below.
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The errors €14’s and €24’s are independent and normally distributed with
mean zero and standard deviations 0.03 and 0.01 respectively. The graphs
of the two generated curves are shown below.
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To estimate the warping function for the second curve, the first curve
is used as a reference curve. Then the two curves are aligned by first ap-
proximating the curves by spine functions and then matching their local
extremes. For spine approximation, B-spline functions of order 4 (degree
3) are used and the algorithm proposed by Zhou and Shen (2001) is used
to determine the knot locations. Using the spline approximations with the
first curve as the reference, the warping time for the second curve can be
estimated, and then the estimated warping function is approximated by a
spline function again. Then the common shape function is estimated again
treating the estimated warping function as the true warping function. Below
are the graphs for the estimated common shape function and the estimated
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(a) Estimated p(t) (b) Estimated f(t)

Figure 1: Estimated warping function and common shape function

warping function, where the red curves are the true common shape function
f(t) and the true warping function pu(t).

To see the estimation of the common shape function will be affected
when using a simpler model for estimating the warping function, the above
estimation procedure is repeated with the warping function replaced by a
linear function. Below are the graphs for the estimated common shape
function and the estimated warping function, where the red curves are the
true common shape function f(t) and the true warping function u(t).

1.0
04

0.8

mi
04
00
Il

02
-02
I

00 02 04 06 08 10 00 0.2 04 06 08 10

t t
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Figure 2: Estimated linear warping function and common shape function
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Discussion

From the result of the previous experiment, it is found that using a more
flexible family for the warping functions helps improve the estimation of the
common shape function. An additional interest finding is that, it seems that
some parameters involved may be nearly unidentifiable (different parame-
ters yields the same common shape function, the estimate of the common
shape function is stable. For future study, one might want to consider using
stability of quantities that can be determined by the common shape function
as an index for convergence.
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% distinguishing an unusual curve from unaligned curves with a common shape with
application to the babyfinder data.







