FREATPELRE gL uP TP E S a2

EEAAMERE R FE B 2 (1])

SRR RS AC RS

ELAE I |
H 7 H

K ow

%fb
R

s
(had

DO s A

: NSC 97-2118-M-004-001-
D97 E 082 0l p 2 98 & 072 31F
B i s R

R

PRy A liEe AR R



1 Introduction

In this paper, the problem of interest is testing the conditional independence
between two random vectors X and Y given a third random vector Z. The study
of the problem of testing conditional independence has a long history. However,
there are relatively few results on nonparametric tests when the vectors X, Y
and Z are continuous. Some examples of such tests can be found in Su and
White (2007, 2008), where they also proposed conditional independence tests
based on a weighted Hellinger distance between the conditional densities or the
difference between the conditional characteristic functions.

As mentioned in Daudin (1980), X and Y are conditionally independent
given Z means that for every f(X,Z) and g(Y,Z) such that Ef?(X,Z) and
Eg?(Y, Z) are finite,

E(f(X,2)9(Y, 2)|1Z2) = E(f(X, 2)|2)E(9(Y, Z)|Z).

Thus the problem of testing conditional independence, as the problem of test-
ing unconditional independence, is invariant when one-to-one transforms are
applied to the marginals X and Y respectively. Various authors have taken this
invariant property into consideration when constructing conditional or uncon-
ditional independence tests. For example, Su and White (2008) used Hellinger
distance in their test statistic for testing conditional independence, so that the
test statistic is invariant. Dauxois and Nkiet (1998) used measures of association
to construct independence tests, and the measures are invariant under the above
transforms. In this paper, to take invariance into account, the proposed test is
based on the maximal nonlinear conditional correlation, which can be viewed as
a measure of conditional association and satisfies the above invariance property.

To choose a reasonable measure of conditional association between X and
Y, the following properties are considered.

(P1) The measure can be defined for all types of random vectors, including
both discrete and continuous ones.

(P2) The measure is symmetric, i.e., it remains the same when (X,Y) is re-
placed by (Y, X).

(P3) The measure is invariant when one-to-one transforms are applied to X
and Y respectively.

(P4) The measure is between 0 and 1.
(P5) The measure is 0 if and only if conditional independence holds.

The above properties are adapted from some of the conditions for a good mea-
sure of association proposed by Rényi (1959). In Rényi (1959), the conditional
independence in (P5) is replaced by the unconditional independence. Note that
the symmetric property (P2) is not always required. For instance, Hsing, Liu,



Brun, and Dougherty (2005) proposed to use the coefficient of intrinsic depen-
dence as a measure of dependence, which does not satisfies (P2). Here (P2) is
considered.

Many measures of conditional association satisfying (P1) — (P5) can be con-
structed. Dauxois and Nkiet (2002) showed that a class of measures of associa-
tion between two Hilbertian subspaces can be obtained by properly combining
the canonical coefficients of the canonical analysis (CA) between the spaces.
In particular, take the two subspaces to be H, = {f(X,Z) — E(f(X,2)|Z) :
Ef*(X,Z) < oo} and Hy = {g(Y, Z) — E(g(Y, Z)|Z) : E¢*(Y, Z) < oo}, then a
class of measures of conditional association between X and Y given Z satisfying
Properties (P1) — (P5) can be obtained using the canonical coefficients. Denote
the canonical coefficients (arranged in descending order) by 5;(X,Y|Z): i = 1,
2, .... When X and Y are not functions of Z, the largest canonical coefficient
p1(X,Y|Z) is the maximal partial correlation defined by Romanovi¢ (1975),
which is

sup corr (f(X,2) - E(f(X,2)|2),9(Y, 2) - E(9(Y, 2)|2)),

according to a review by Mirzahmedov in MathSciNet (MR number: 0420757).

Another approach to construct measures of conditional association is to mod-
ify the CA between the spaces H; = {f(X) — Ef(X) : Ef*(X) < oo} and
Hy ={g(Y)—Eg(Y): Eg>(Y) < 0o} to obtain a conditional version of it. That
is, to find pairs of functions (f;,g;): ¢ = 0, 1, ..., such that for each 4, (f;,g;)
maximizes F (f(X, Z)g(Y, Z)|Z) subject to

B(f*(X, 2)|2)L0,00)(E(f*(X, 2)|12)) = L0,00)(E(f*(X, 2)|Z)), (1)

E(g*(Y, 2)|Z)1(0,00)(E(g* (Y. 2)|12)) = L0,00)(E(9*(Y, 2)| Z)), (2)

and
E(f(X,2)f;(X,2)|Z) = 0= E(g(Y, Z2)g;(Y, Z)|Z) for 0 < j <.

Here I4 denotes the indicator function on a set A, ie., Is(x) = 1ifxz € A
and I4(z) = 0 otherwise. If the above (f;,g;)’s exist, then one can define
pi(X,Y|Z) = E(fi(X,Z)g:(Y,Z)|Z) for each i and the p;(X,Y|Z)’s can serve
as a conditional version of canonical coefficients. A measure of conditional asso-
ciation satisfying (P1) — (P5) can be obtained by taking a proper combination of
the p;(X,Y|Z)’s, following the approach in Dauxois and Nkiet (2002). Examples
of such combinations include p;(X,Y|Z) and 1 — exp(—>_, p?(X,Y|Z)). The
measure of conditional association used in this paper is p1(X,Y|Z), which will
be called the maximal nonlinear conditional correlation of two random vectors
X and Y given Z from now on.

In the above definition of p;(X,Y|Z)’s, it is assumed that the (f;, g;)’s ex-
ist. However, it is not clear what conditions can guarantee the existence of
the (fi,9:)’s. To avoid the problem of finding such conditions, a more general
definition for p;(X,Y|Z) is given in Section 2. To construct a test based on



p1(X,Y|Z), it is assumed that Z has a Lebesgue probability density function
fz. Anestimator of Y, fz(2x)p3(X,Y|Z = z;) is then used as the test statistic,
where the z;’s are some points in the range of Z. To study the asymptotic be-
havior of the test statistic under the hypothesis that X and Y are conditionally
independent given Z, we follow the approach in Dauxois and Nkiet (1998) for
finding the asymptotic distribution of a statistic for testing the independence
between X and Y, which is based on estimators of the canonical coefficients from
the CA of Hy and Hs. To make their approach work for the conditional case,
some strong approximation results for kernel estimators of certain conditional
expectations are also established.

This paper is organized as follows. The new definition of p;(X,Y|Z) is given
in Section 2. Section 3 deals with the estimation of p;(X,Y|Z = z) and test
construction. An example is in Section 4 and proofs are given in Section 7.

2 Maximal nonlinear conditional correlation

In this section, a more general definition of the maximal nonlinear conditional
correlation p1(X,Y|Z) will be given. Note that in the defintion of p;(X,Y|Z)’s
in Section 1, one can take fo(X, Z) =1 = go(Y, Z), which gives that po(X,Y|Z) =
1, and then p1(X,Y|Z) can be defined as E(f1(X, Z)g:1(Y, Z)|Z) if there exists
(f1,91) € So such that

E(f(X,2)9(Y, 2)|Z) < E(f\(X, 2)91(Y, Z)|Z) for every (f,g) € So,

where Sy is the collection of pairs of functions (f, g)’s that satisfy (1), (2) and
E(f(X,2)|Z)=0= E(g(Y, Z)|Z). Without assuming the existence of (f1,g1),
it is reasonable to define p1(X,Y|Z) as

sup  E(f(X,Z)g(Y, Z)|Z), (3)
(f,9)€S0

if the supremum can be defined.

The above approach can be considered as a “pointwise” approach. Indeed,
when Z takes values in a countable set Z, for each z € Z, one may define
(X, Y|Z =2) as

sup  E(f(X,2)9(Y,2)|Z = 2), (4)
(f,9)€S0
then the p1(X,Y|Z) defined using (4) is a measurable function and can serve as
the supremum in (3). However, if Z is uncountable, then it is not clear whether
the p1(X,Y|Z) defined using (4) is measurable. Therefore, we use the following
fact to define the supremum in (3) so that it is well-defined and is a measure
function.

Fact 1 There exists a sequence {(aum, Bn)} in So such that
(i) The sequence {E(an(X,Z)8,(Y,Z)|Z)} is non-decreasing, and



(ii) for every (f,g) € So,
B(/(X, 2)9(Y.2)|2) < lmn E(an(X, 2)5.(Y,2)|2)

Furthermore, if (i) and (i) hold for {(cum, Bn)} = {(n.1,0n.1)} or {(n 2, 0n2)};
where {(an1,Bn.1)} and {(an2,Bn.2)} are sequences in Sy, then

lim E(an1(X,2)8,1(Y,Z)|Z) = lim E(an2(X,Z2)B,2(Y,2)|Z). (5)
n— oo n— oo

For the sake of brevity, from now on, some functions of (X, Z) or (Y, Z) may be

expressed without the arguments (X, Z) or (Y, Z). For distinguishing purpose,

functions of (X, Z) may have names starting with only « or f, and functions of

(Y, Z) may have names starting with only 3 or g.

Proof for Fact 1. We will first establish (5) if (i) and (ii) hold for {(ay, 8,)} =
{(an1,Bn1)} or {(an2,0n,2)}. Note that for each n, from (ii), we have that

E(on26n21Z) < lim E(ap18n,1|2)
n—oo

and
E(O‘n,lﬁn,ﬂz) S nh—>néo E(an,2ﬁn,2|z)-

Take the limits in these two inequalities as n — oo, and we have (5).

It remains to find a sequence {(ay, B,)} in Sy that satisfies (i) and (ii). Let
{(an.0,Bn,0)} be a sequence in Sy so that the sequence {E(an,008n,0)} is non-
decreasing and converges to sup (s geg, £(fg). We will construct {(as,8n)}
using {(aun,0,0n,0)} as follows. For n = 1, define (a1, 81) = (a1,0,01,0). For
n > 2, define

(an(X, Z2), Bn(Y, Z))

{ (an,O(Xv Z)v ﬁn,O(}/’ Z)) if E(an,Oﬂn,O‘Z) > E(anflﬁnfﬂZ);
(an-1(X,Z),Bn-1(Y,Z)) otherwise.

Then {(aw, Bn)} is a sequence in Sy that satisfies (i), and the sequence { Ea, 5y }
converges to sup s oes, £(fg) since E(anfB,|Z) > E(an,08n,0|Z). To see that
{(awn, Brn)} also satisfies (ii), for (a, 8) in Sp, define

« oy | (. f) it E(af|Z) > limy—00 E(anfnlZ);
(an: Br) = { (an, Bn)  otherwise.

Then {(a,B%)} is a sequence in Sy such that
lim E(a’8%]Z) = max{E(ozB|Z), lim E(an5n|Z)}. (6)
n—oo n—oo

From the monotone convergence theorem, we have

E lim E(a’8:|Z) = lim B(a’8) (7)
n— 00

n—oo



and
E lim E(anB,|2) = lim E(omfB), (8)
n— 00 n— 00

so (6) implies that

sup  E(fg) > lim E(a,f;) > lim E(a,8,) = sup E(fg),
(f,9)€So n—reo n—reo (f,9)€S0

which gives
lim E(a)f;) = li_)m E(anbn). 9)

n—oo
If E(aB|Z) > limy, oo E(anB,|Z) with positive probability, then (6), (7) and
(8) together implies that lim, oo F(akS%) > limy, o0 E(anBr), which contra-
dicts (9). Thus (ii) holds. The proof of Fact 1 is complete.

With Fact 1, the maximal nonlinear conditional correlation p;(X,Y|Z) can
be re-defined as follows:

Definition 1.  p1(X,Y|Z) = sup(; g)es, E(f(X, Z)g(Y, Z)|Z), which is de-
fined as lim, o E(an (X, Z2)8,(Y, Z)|Z), where {(ay, 8n)} is a sequence in Sy
that satisfies (i) and (ii) in Fact 1.

Below are some remarks for the p;(X,Y|Z).

1. If there exists (f1, g1) in Sy such that E(f1g1|2) > E(fg|Z) for all (f,g) €
So, then p1(X,Y|Z) = E(f191|Z) using Definition 1. To see this, let
{(cwn, Bn)} be a sequence in Sy that satisfies (i) and (ii) in Fact 1. Then
(X, YZ) = limy o0 E(anfnlZ), so E(fi191172) < p1(X,Y|Z) by (ii).
Also, E(f1911Z) > E(anfn|Z) for every n, so E(fig1|Z) > p1(X,Y|Z).
Therefore, p1(X,Y|Z) = E(f191|Z) and Definition 1 can be viewed as a
generalized version of the definition of p;(X,Y|Z) given in Section 1.

2. p1(X,Y|Z) satisfies Properties (P1)—(P5).

3. When X is a function of Y and Z or Y is a function of X and Z, it is
not necessary that p;(X,Y|Z) = 1. For instance, suppose that X and Z
are independent standard normal random variables and Y = X I )(Z),
then pl(X7Y|Z) = I(O,oo)(Z)

4. Let p1(X,Y) be the largest canonical coefficient from the CA between
Hy = {f(X) - Ef(X) : Ef*(X) < oo} and Hy = {g(¥) — Eg(Y) :
Eg*(Y) < oo}. Then pi(X,Y|Z) = p1(X,Y) if (X,Y) and Z are inde-
pendent.

5. Let p1(X,Y) be as defined in 4. Tt is stated in Dauxois and Nkiet (1998)
that when the joint distribution of X and Y is bivariate normal

“((5)0 1)



p1(X,Y) = |p|. This result implies that, when the joint distribution for
X, Y and Z is multivariate normal and X and Y are both univariate,

E((X - B(X|12))(Y - BE(Y|2))|2)

(E(X — B(X|2))2|2)"? (E(Y - BE(Y|2))2|2))"*
E(X - B(X|2))(Y - E(Y]2)))

(E(X — B(X|2))2)"* (B(Y - BE(Y|2))%)"*

p(X.Y|Z) =

bl

which also equals the absolute value of the usual partial correlation coef-
ficient.

3 A test of conditional independence

Testing conditional independence is equivalent to testing Hy : p1(X,Y|Z) = 0,
which involves testing Hy . : p1(X,Y|Z = z) = 0 for different z’s in the range of
Z. Let Z be the range of Z. In this section, an estimator p(z) is proposed for
estimating p1(X,Y|Z = z) for each z € Z, and for distinct points 21, ..., zn,
in Z, the asymptotic joint distribution of p(z1), ..., p(zn,) under Hy is derived
to construct a test for testing Hy.

3.1 Estimation of p,(X,Y|Z = 2)

To estimate
p(X,Y|Z) = sup E(fg|Z),
(f,9)€S0

for (f,g) € So, f and g are approximated using basis functions. Suppose that
there exist Ay, Ao and Ag: subsets of the set of all positive integers and three
sets of functions {¢p; : 1 < ¢ < p,p € M}, {Wg; : 1 <j <gq,q€ Ay} and
{0,k :1 <k <r ke As} such that for a(X,Z) and (Y, Z) with finite second
moments,

2
lim inf Eo(X,2)— Y ali,k)ép(X)0k(Z2) | =0  (10)
P10 a(ik) 1<i<p,1<k<r
and
2
lim inf E | B(Y,Z) — b(j, )by, (Y)6rk(Z) | =0. (11
i inf E | (Y, 2) Do bR (Y)0rk(2) (11)

>4, 1SR

Also, suppose that for each (p, ¢), there exist coefficients ay, ¢ ;’s and by ¢ ;’s such

that
Z ap,0,iPp,i(z) =1= Z b4.0,i%4.5(Y) (12)

1<i<p 1<j<q



for every x in the range of X and every y in the range of Y.

Let S; be the collection of all (f,g)’s with finite second momenets and let
S1,p,q be the collection of all (f, g)’s in Sy such that f(X,2) = Y77 | api(Z)dp,i(X)
for some a,,;(Z)’s, and g(Y, Z) = Z]: 0.5 (Z)q.;(Y) for some b, ;(Z)’s. Then
(10) and (11) together implies that S; can be approximated by 51, , for large
p and g. Since Sy C Si, Sy can be approximated by S; , 4 as well. With the
additional the condition (12), Sy can be easily approximated using the sub-
space So,p.q = So N S1,p,e. Note that (10), (11) and (12) hold for certain basis
functions, for example, the tensor product splines in Schumaker (1981).

Assuming (10), (11) and (12), it is reasonable to define

sup  E(fg|Z)
(£.9)€S0,p.4

and use it to approximate p1(X,Y|Z). To define sup(s gyes, , , £(f9Z), one
may follow the same approach for defining sup(; ,es, £(f9|Z), or simply note
that there exists (f1,¢1) € So,p,q such that

E(f191|12) = E(fg|Z) for all (f,9) € Sop.4 (13)

and define sup (s gycs, . E(f9lZ) = E(f1911Z). The pair (f1,91) can be ob-
tained as follows. Let

Bop(Z) = (E(0p,i(X)0p,;(X)|Z) = E(6p,i(X)|Z)E(6p,j(X)Z)) s
Ep,q(Z) = (E(q,i(Y)he,;(Y)|Z) = E(vq,i(Y)|Z)E(1bq,;(Y)|Z)) g -
and
Eopa(Z) = (E(0p,i(X)q,;(Y)|Z) = E(pi(X)Z)E(g,;(Y)Z)) sy -
Consider the following two cases:
(i) $p.,(Z) and Xy 4(Z) are not zero matrices, and

(ii) At least one of 3y ,(Z) and Xy 4(Z) is a zero matrix.

In Case (i), let a1 = (a1.1(2),...,a1,(2))T and by = (b11(Z),...,b1,4(Z))" be
such that (aq,b;) is the pair of (a,b) that maximizes

aTZaﬁ,w,p,q(Z)b

subject to
a'Syp(Z)a=1=0b"%y ,(Z)b,

and then take

Za“ )(6pi(X) — E(6,.4(X)]2))



and

=3 " b1 (2) (e (V) — (g ;(Y)|2)).

j=
In Case (ii), take f1(X,Z) = 0 = ¢1(Y,Z). Then (f1,91) € Sopq and (13)

holds. Denote sup(s g\es, . £(f9|Z) by ppqe(Z).
The following fact states that p;(X,Y|Z) can be reasonably approximated
by pp.q(Z) if p and ¢ are large:

Fact 2 Suppose that (10), (11) and (12) hold and {p,} and {q,} are sequences
of positive integers that tend to co as n — oo. Then

T E(|pu(X,Y12) = pp, . (7)) = 0.

Proof of Fact 2. Since p1(X,Y|Z) > pp, q.(Z) for every n, Fact 2 holds if for
every ¢ > 0, there exists Ny such that for n > N,

p1(X,Y|2) < pp,.g.(Z) + Dy (14)

for some A such that E|A| < . To find such a Ay, we will first look for a pair
(fm>gm) € So such that E(fmgm|Z) =~ p1(X,Y|Z), and then find (f7,gF) €
S0.pn.qn such that (£, g%) = (fm, gm). Take

A1 = E(fmgm|Z) = E(fn9312) + p1(X,Y|2) = E(fmgm|Z), (15)

then (14) holds and E|A;| can be made small if m and n are large enough.

To find (fmagm) € SO such that E(fmgm‘Z) ~ pl(Xa Y|Z)7 let {(fn,gn)}zozl
be a sequence in Sy such that {E(fn,gn|Z)} is an increasing sequence and
lim, 00 E(frgn|Z) = p1(X,Y|Z). Let Ao, = p1(X,Y|Z) — E(fngnl|Z), then
lim,, 00 E|A2 | = 0, which implies that for every ¢ > 0, there exists m such
that

E|Ag | < 6. (16)

To find (£}, 95) € So,p.q, such that (f,¢%) = (fm, gm), note that it follows
from (10) and (11) that for n > Ny, there exists some (fy. 1, gn,1) € S1,p,.q, Such

that
VE(fi — fn1)? <6 and \/ E(gm — gn.1)? < 0. (17)

Let fn,2(Xa Z) = fn,l(Xa Z) - E(fn,l‘Z)a gn,Q(K Z) = gn,l(Ya Z) - E(gn,l‘Z)a

fx,z) = &8 o2 ,2),
E(f2,/2)
and v 7
g (v,z) = 220 2) 1o B(2,)2),

E(g%72|Z)



then it follows from (12) that (f),¢:) € Sop..q.- To see that (fr,g%) ~
(fm,9m), let Ag = fr, — f and Ay = g, — ¢, then it can be shown that

EA32 <166% + 86 (18)

and
EA? <1662 + 86. (19)

Below we will verify (18) only since the verification for (19) is similar. Write
Az = fom — fa2 + fa2 — [y, then by (17),

E(fm — fn2)? <46° (20)
since E(fm - fn,2)2 < 2(E( m fn,1)2 + E(fn,l - fn,2)2) and (fn,l - fn,2)2 =
(E((fm = fa)lZ))? < E((fm = fn1)?12). Also,

2
E((fi—fa2)12) = (1= \E(2212)) Tomo)(B(f212))
11— E(fr|2)|
‘E ((fm - fn,2)2|Z) —2E (fm(fm - fn,Q)‘Z)’
E (= f02)*12) + 2/ E (= J2)*|2),

IN

IN

SO

E(fn2 = 13)° < E(fm — fn2)? + 2y E(fm — fn2)? @ 45 410, (21)

Therefore, (18) follows from (20), (21) and the inequality EA3 < 2(E(f, —
fn,2)2 + E(fn,Q - f;:)z)

Finally, the Aq in (15) is E(fiA4|2) + E(9As3|Z) + E(A3A4|Z) + Az 1y, SO
it follows from (18), (19), (16) and the Cauchy inequality that

E|A1] < 3v/166% + 85 + 0.

For € > 0, one can choose § so that 3v/1662 + 85 + § < ¢, then E|A| < € as
required. The proof of Fact 2 is complete.

Based on Fact 2, it is reasonable to estimate p1(X,Y|Z) using an estimator
for pp.q(Z), where p and ¢ are large. To estimate p, 4(Z), some assumptions are
made:

(A1) There exists a version of the conditional distribution of (X,Y") given Z
such that for every bounded function ¢(X,Y), E(g(X,Y)|Z) calculated
using that version is a continuous function of Z.

e For each (p,q), 1 <i<p,1<j<q,|ppi| <1and |)pg;| <1

From now on, we will use the version of conditional distribution in (A1) to
obtain E(g(X,Y)|Z = z) for every bounded g and every z in the range of Z.
As a result, each element in X, ,(2), Xy 4(2) and X4 4 4(2) is a continuous



function of z, and pp4(2) is max,p a’ Sg 4 p 4 (2)b, where the maximum is taken
over all vectors a and b such that

a4 p(2)a=1=>b"%, ,(2)b.

To estimate py, (), we consider the estimator p, ,(2) = maxa p 73y p p.4(2)D,
where the maximum is taken over all vectors a and b such that

aTild,yp(z)a =1= beld,,q(z)b,

and 34 ,(2), $g.p.p.q(2) and 3y 4(2) are obtained by replacing the conditional
expectations in X4 ,(2), Xg .y pqe(z) and 3y 4(2) by their kernel estimators.
Specifically, each element in Xy ,(2), Xy p.q(2) and Xy 4(2) is of the form
E(UV|Z = z)—(E(U|Z = 2))(E(V|Z = z)), where U and V are functions of
X orY, so each of E(UV|Z = z), E(U|Z = z) and E(V|Z = z) is of the form
E(g9(X,Y)|Z = z), which is estimated by

B(g(x.v)|z =2« Z_f(ij()k—h (;)_ 2

where kj,(2) = h=%(z/h) and ko is a kernel function on R? satisfying certain
conditions which will be specified later. For each z € Z, to make p, 4(2) a
reasonable estimator for p1(X,Y|Z = z), we will take p = p,, ¢ = ¢, and
h = h,, where p, — o0, ¢, — o0 and h,, — 0 as n — oco. The estimator
Ppn.qn (2) Will be abbreviated as p(z) for each z € Z.

The estimator p(z) can be expressed in a different form that is easier to
analyze. Let X, and Y, be random vectors of length p, and g, respectively
such that given the data (X1,Y1,21), ..., (Xn, Yn, Zn),

(va Y*T) = ((bpml(X@)v s 7¢pn,pn (Xg), qu,l(n)a s 7'(/)qn,qn (}/f))

with probability kx(z — Z¢)/ S0, kn(z — Z;) for 1 < £ < n. Then g 4 pq(2) =
EX. YT - EX.EYT, %4 ,(2) = EX.XI — EX.EXT and %, 4(2) = EY.Y.] —
EY,EYT where the expectations are conditional expectations given the data.
Therefore, the estimator p(z) is the largest canonical coefficient from the cen-
tered canonical analysis between X, and Y,. Note that it follows from (12)
that

(22)

az;,*X* =1= bi*Y;, (23)
where
e = (Ap, 0,15+ apn,prn)T and by, .« = (bg,.0,15-- - bqn,O,qn)Ta

so p(z) can also be obtained from the non-centered canonical analysis between
X, and Y,. Let

Via(2) = (B, (X0, s (NZ = 2)), -

V1,2(Z) = (E(Cbpn,i(X)d)qn,j(Y”Z = Z))anQn

10



Va,2(2) = (E(Yq, i(Y) g, ;(Y)|Z = 2)), . and Vai(2) = Via(2)",

for 1 <id,5 <2, let V”(z) be the estimator of V; ;(z) obtained by replacing the
conditional expectations in V; ;(z) by their kernel estimators as in (22). Then
Vii(z) = EX.XT Via(z) = EX. YT, Vao(z) = EY.YT, so p(2) is the square
root of the largest eigenvalue of the matrix

Via(2)Vis (2)Van(2)V1a(2) 7 = Via(2)an «al .
Also, pp, g, (%) is the square root of the largest eigenvalue of the matrix
Vi2(2)Vay (2)Va1(2)Via(2) ™! = Via(2)ansay, ..

To simplify the above matrix expressions, some notations are introduced as
follows. For a (p, + gn) X (pn + ¢n) matrix U, express U as

U1 Uip
Usqx Usp )’
where the dimension of Uy 1 is pn, X pp. For 1 <14, 5 <2, let g; ; be the mapping

that maps U to U, ;. For a p, x 1 vector a and a (pn + ¢») X (pn + gn) matrix
U, define

9(U,a) = g12(U)g2,2(U) g2.1(U)g11(U) " — g1,1(U)aa”

if g22(U) and g1,1(U) are invertible. Let

_( Via(z) Via(z)
ver- (1 )

and

oo (Vi) Via(z)
”Z)‘(Vz,l(z) wz))’

then j(z) is the square root of the largest eigenvalue of g(V'(2), an,«) and pp,, 4,.(2)
is the square root of the largest eigenvalue of g(V'(z), an +)-

The matrix g(V(2), an,«) can be replaced by a different matrix if basis change
is performed. That is, suppose that

¢ = (¢pn,1a cee ¢pn,pn)T and ¢ = (¢qn,,17 e 7qu,qn)T

are replaced by ¢* = P1¢ and ¥* = @11 respectively, and V(z) becomes V*(z)
after such a change is made. Then j(z) is also the square root of the largest
eigenvalue of the matrix g(V*(2),a*), where a* = (P; ") ay, . is a vector such
that (a*)T¢* = 1. To make the expression for g(V*(z), a*) simple, the matrices
P; and @y are chosen so that

¢ =1=191, (24)

11



911(V*(2)) and g¢22(V*(2)) are identity matrices, and for 1 < i < p,, and
1<) <qn,
E(6;(X)9;(V)|Z = 2) = 6i 5V My (25)

where ¢ and ¢7 denote the i-th element in ¢* and the j-th element in ¢*
respectively, 6; ; denotes the Kronecker symbol and the A;’s are the eigenvalues
of g(V*(2),a*). Note that (a*)T = (1,0,...,0) with the above choice of P; and
Q1.

3.2 Asymptotic properties and a test of conditional inde-
pendence

In this section, we will give asymptotic properties of the estimators p(z):
1 < k < ngz, where the z,’s are distinct points in Z. First, we will estab-
lish the consistency of the estimators, which relies on the fact that for each
k, the two matrices g(V*(z1), @) and g(V*(z;), a*) are close, and their largest
eigenvalues are p?(z;) and p2 . (z;). The difference between g(V*(z),a*) and
g(V*(z1,), a*) depends on the difference of V*(z;,) and V*(z;), and the differ-
ence between some conditional expectation E(g(X,Y, Z)|Z = z) and its kernel
estimator E(g9(X,Y,2)|Z = z) = Y1 wo,i(2)9(X;, Yi, 2)/ > iy wo.i(2), where
woi(2) = ko(h, (2 — Z;)). To make it easier to derive the asymptotic proper-
ties of E(g(X,Y,Z)|Z = z), some regularity conditions on the distribution of
(X,Y, Z) are imposed as follows.

(R1) There exists a o-finite measure p such that for every z € Z, the conditional
distribution of (X,Y) given Z = z has a pdf f(-|z) with respect to u. Also,
Z has a Lebesgue pdf fz, and f(x,y|z) and fz(z) are twice differentiable
with respect to z.

(R2) There exists a function h on X x ) such that

2

azi (92:]‘

0
92 (z,y]2)

f(z,yl2)

)

sup s (| (2.12)] . oo

< h(z,y)

, max
1<i,j<d

and [ h(z,y)du(z,y) < co.
(R3) There exist constants ¢y and ¢; such that

82

0
EX azzazj fZ(Z)’) S 0

82'7;

fz(2)

sup max (Ifz(2)|7 nax,

, max
1<ié,j<d
and 1/fz(z) < ¢ for z € Z.

Note that (R2) implies Condition (A1) in Section 3.1 . For the kernel function
ko, Conditions (K1) and (K2) are assumed. The notation || - || denotes the
Euclidean norm for a vector or the Frobenius norm for a matrix.

12



(K1) ko > 0, sup, ko(u) < oo, [ ko(u)du =1, [uko(u)du =0, 08 = [ ||u]®*ko(u)du <
oo and [ ||ul|kd (u)du < oo.

(K2) There exists positive constants v2 and 73 that does not depend on d such
that ,
ko(a) < (v2)%e™8lel™ for every a € RY.

Remark. If kg is a product kernel of the form kq(z1, ..., z4) = koo(21) - - - koo(za),
and
koo(z) < ’)/26_’Y3‘T2 for every = € R,
then Condition (K2) holds.
Assume the above conditions, then it is possible to control the difference
between V*(z;,) and V*(z) using the following result.

Lemma 1 Suppose that Conditions (R1)-(R3) and (K1)-(K2) hold. Suppose
that fn1, -.., fnk, are functions defined on X x Y x Z, where X, Y and Z
are the ranges of X, Y and Z respectively. Let fy be the pdf of Z, fz(z) =
(nh)=LN"  ko(hy (2 — Z)) for z € Z and cx = 1/ [ k3(s)ds. For z € Z, let
wi(z) =n" h; Mwo i (2)/f2(2) for 1 <i<n and

W,j(2) = \/nhick fz(2) ((Z wz‘(z)fn,j(XiJ’i,Z)) — E(fn;j(X,Y,2)|Z = z)>
i=1

for1 < j < k,. Suppose that {h,}52, and {,}52, are sequences of positive
numbers such that
cgan”“ < hy, <czan”®

for some positive constants cs1 and c3 2 and 1/(d+4) < a < 1/d, and hy, /e, =
O(n=P) for some B> 0. Let

Z(en)={z€Z:{F€R": | — 2| <en} C 2} (26)
and suppose that z1, ..., zn, are points in Z(gy,) such that
llzi — zi+|| = hp for 1 <k, k* <ngz and k # k* (27)

for large n and

max sup | fn(z,y, 2)| < C, for some C,, > 1. (28)
1sksnz (@y)exxy
Suppose that k,nzC, = O((Inn)/*6). Then there exist Wik and Wiy o5
1< 5 <k, 1 <k <ng such that the joint distribution of Wy 1 . +Whn 2,5k ’s 15
the same as the joint distribution of W, ;(zx) s, 2521 W2y W2 o i1 = Op(exp(—(In n)1/9)),
and Wy 1,55 ’s are jointly normal with EW,, 1 = 0 and for 1 < j,€ <k, and
1 <k,k* <ng,

Cov(W 1,5,k Wht,0,k+)

_ Cov(fnj(X,Y, 2k), foo(X, Y, 26)|Z = 21)  if k= k™
0 otherwise.

13



The Proof of Lemma 1 is given in Section 7.1.

The differences between V*(z;)’s and V*(z;)’s can be controlled by apply-
ing Lemma 1 and taking the f, ;(X,Y,2)’s to be the functions ¢} (X)e} (X),
oy (X)), (V) and o, (Y)k (YY), where 1 < £ <{¢ <p,and 1 <m <m/ <g,.
In such case, (28) holds under the following conditions.

B1) For each (p,q), |¢pr| < 1and |th e <1for 1 <k<pand1</{<gq.
D, q,

(B2) There exists {d,}: a sequence of positive numbers such that for 1 <
k < nz, the smallest eigenvalues of the matrices V; 1(z;) and Va2(2) are
greater than or equal to §,.

Under the above conditions, the p(zx)’s are consistent, as stated in Theorem
3.1.

Theorem 3.1 Suppose that (10), (11), (12), Conditions (R1)-(R3), (K1)-(K2)
and (B1)-(B2) hold. Suppose that {h,}2, and {e,}52 are sequences of posi-
tive numbers such that

ezan” < h, <cegan™®

for some positive constants cs1 and c3 2 and 1/(d+4) < a < 1/d, and h, /e, =
O(n=") for some B > 0. Suppose that z1, ..., zn, are points in Z(e,) (defined
in (26)) such that (27) holds and

’ﬂz(pn + qn)2 max{l, 5;1(1771 + qn)} = O((ln n)l/lﬁ)' (29)
Then .
S (7*(z) = 02, 40 (21)° = Op((nhd) ™ (Inn)'/4) (30)
k=1
and

ng nz 2 07)3/16
( z<zk>ﬁ2<zk>—Zfzm)pﬁn,qn(zk)) —or (). )

k=1 k=1

The proof of Theorem 3.1 is given in Section 7.2. .
The next result deals with the asymptotic distribution of Y2, fz(zx)p*(z1)
when X and Y are conditionally independent given Z:

Theorem 3.2 Suppose that the conditions in Theorem 3.1 hold and X and Y
are conditionally independent given Z. Then there exist random variables fy,
p*(2k) and Az 1 < k < ng such that Y12, fup?(2x) has the same distribution

as Y371 f2(20)p? (1) and

nhien Y et (z) = 3 A = Op(exp(~0.5(Inn)/?) (nn)/*2),
k=1 k=1

where the \i’s are independent and each A\ has the same distribution as the
largest eigenvalue of a matriz CCT, where C is a (p, — 1) x (g, — 1) matriz
whose elements are IID N(0,1).

14



The proof of Theorem 3.2 is given in Section 7.3. The result in Theorem 3.2
is similar to that in Lemma 7.2 in Dauxois and Nkiet (1998). The difference is
that the asymptotic result here is derived as the sample size n, p, and ¢, all
tend to oo, while in Dauxois and Nkiet (1998), the result is derived as n tends
to oo, but p, and g, are held fixed.

Theorem 3.2 suggests the test that rejects the conditional independence hy-
pothesis at approximate level a if

nhfbc;{ Z fz(zk)ﬁQ(Zk) > Fn_lep’q(l —a), (32)
k=1

where F,, , 4 is the cumulative distribution function of Y77, Ag.

One can estimate F), !, (1 —a) in (32) using simulated data, but it is also
possible to use a normal approximation. Since the Ay’s are IID, the central limit
theorem suggesets the asymptotic normality of Y17, Ay and >3 7, fz(2x)p%(2k)-
The following corollary gives the conditions that guarantee the asymptotic nor-

mality of 3212, fz(z)p%(21).

Corollary 1 Suppose that the conditions in Theorem 3.1 hold,

. Poa
n—oo \/Mz(max(py, g,))/3

=0, (33)

and (i) or (ii) holds:

(1) qn = h(pn), where h is an increasing function such that lim,_,. h(p)/p
exists and is greater than or equal to 1.

(i1) pn = h(gn), where h is an increasing function such that limg_.. h(q)/q
exists and is greater than or equal to 1.

Let pip, 4., and agmqn be the mean and variance of the largest eigenvalue of the

matriz CCT in Theorem 3.2 respectively and let the A\ ’s be as in Theorem 3.2,
then

1/6
(max(pn, 4) 7 _ 4y (34)
Opn,gn
and nz
2 k21 Mk = N2l a0 z N(0,1) as n — oo. (35)
nzagnﬂn

If X and Y are conditionally independent given Z, then

nhiex 02, f7(20) P (21) — Nzt .

[ 2
NZ0pan

gN(O,l) as n — 0. (36)
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The proof of Corollary 1 is given in Section 7.4. Corollary 1 gives the test that
rejects the conditional independence hypothesis if
nhiex Yoty f2(20)P* (2k) = nzbipngn < a1

2
NZ0p. qn

1—a), (37)

where ® is the cumulative distribution function for the standard normal distri-
bution. Here p,, 4, and Uzmqn can be approximated by the sample mean and
variance of a random sample from the distribution of the largest eigenvalue of
the matrix COT.

To distinguish the two tests mentioned above, we will refer the test with
rejection region in (37) as Test 1N and the test with rejection region in (32) as
Test 1. Note that under the conditions in Corollary 1, Test 1 does not differ
from Test 1N much since the rejection region for Test 1 can be written as

nhlew S02 fz ()% (2n)

[ 2
NZ0pan

I = ngl,p,q(]' - a‘) —Nzlp,,qn

/ 2
NZ0p,,4n

by (35). Therefore, both Test 1 and Test 1N are of asymptotic significance level
a. Below we will discuss the consistency and asymptotic power of Test 1N only
since the same properties of Test 1 can be established similarly using (38).

Suppose all the conditions in Theorem 3.1 hold, then Test 1N is also consis-
tent if the zj’s are chosen in a way such that there exist a constant c3 > 0 and
a sequence {n1, 52, such that n;, > 0 for every n, lim, oo 71, = 0 and

—Nzlp,,q, Z I+®71(1 - a,),

where

— 711 —a)=0(1) (38)

1 &
e > f2(20)0%, g0 () — e3Ep2 4 (Z) = 0p(n1n). (39)
k=1

To see that Test IN is consistent, note that 0 < pu,. ., < Etr(CCT) and
02 0 < E(tr(CCT))?, where CCT is as in Theorem 3.2. Therefore, 1y, 4, =

O(pngn) and 07 . = O(p2qz). Then it follows from (31), (39) and Fact 2 that

ny' SnZ f2(2)p% (2) —cs Ept (X, Y| Z) = Op((nn)** fng/nhi) +op (m,n)+
C3Ep12)n,qn(Z) - C3Ep%(XaY‘Z) = OP(1)7 S0

nhch ZZil fZ(Zk)ﬁz(Zk) —Nzlp, q,

/ 2
nZUPn sdn

vz (nhiex (3 Epi (X, Y]Z) + op(1)) + O(pngn))
€2,1PnGn ’

>

where ¢31 > 0 is a constant. Thus the left-hand side in (37) tends to oo as
n — oo when Ep?(X,Y|Z) > 0, which implies that the probability that (37)
holds tends to 1 if X and Y are not conditionally independent given Z.
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Test 1N can also reject an alternative where E,of,mqn (Z) is small under the
conditions in Theorem 3.1. Indeed, for {n ,,}>2, such that 7, > 0 for every
n, lim, 0o 1., = 0 and (39) holds, if

(In n)5/32
max 7']177“ nZW
Ep]%nﬂn (Z)

then the probability that (37) holds tends to 1 since

=o(1), (40)

nhiex 02 fz(z20) P2 (21) — nzitp, g

/ 2
nZGPn sdn

nn)3/32
Vnz (nhch (CsEﬂf»n,qn(Z) +Op (W) + 0P(Ulm)> + O(ann)>
- Z

- )

C2,1Pnqn

where pngn/(nhEEp2 , (Z)) = O((Inn)/1%/(nznhlEp? . (Z))) = o(1) by
(29) and (40), and pnqn/(,/nznhﬁEpimqn(Z)) = 0(1). In summary, Test 1N
can reject an alternative where E pf)mqn (Z) tends to zero at a rate that is slower

than max(n; ,, (Inn)%/32/(nz+/nhd)), where 7, ,, is determined by (39). An

example that satisfies (39) and the conditions in Corollary 1 will be given in

Section 4. In that example, 1y, = p}lln;/d.

4 An example

In this section, an example is given to illustrate the verification of the conditions
in Corollary 1, assuming (R1)-(R3) and the condition that there exists a positive
constant c¢; 1 such that

Ixz(x]z) > 11 and fyz(y|z) > c11 for all (z,y,2) € X x Y x Z, (41)

where fx|z(-|z) and fyz(-|2) are conditional probability densities of X and Y’
respectively given Z = z, with respect to Lebesgue measures.

Example 1. Suppose that X, Y and Z are random vectors that take values in
[0,1]4= [0,1]% and [0,1]? respectively. Suppose that (R1)-(R3), and (41) hold.
Choose the basis functions as follows. Let A be the set of all positive integers
and A(k) = {mF : m € A} for k € A. For k, iy, ..., ir € A and hg > 0, let

k
Rk by sigsoig (T1, -, Tp) = H T4, 1y (@) for (z1,... 2x) €0, 1]%,
j=1

where

A _ (hO(ij — 1),h0’ij] if ij > 1;
tsho = [hO(ij - 1),h0ij] if ij =1.

17



For p, q, r € A, let
{bpi:1<i <py="{hg, pr/ae iy iy 1 <1, ia, <pY%Y,

Wagil<i<ar =Ahg, gy iy 21 <0000 0da, < g},

and
{Gr,k 01 < k ST‘} = {hd_’,r\fl/d i iq - 1 Sil,...,id Srl/d}.

321500y

Take kg to be the product kernel function such that

ko(z1,...,24) = koo(z1) - - - koo(za),

where kg is the probability density function for the standard normal distribu-
tion. Let h, = n~%, where 1/(d +4) < a < 1/d. Let n% to be the largest
number in A(d) such that n}, < (Inn)'/32, and let

%1 id . . .
{zkzlgkgnz}:{((n*z)l/d,...,(n*z)l/d> :1§21,...,zd<(nz)1/d}7

song = ((n})? —1)%. Suppose that {p,} is a sequence in A(d,) N A(d,) such
that lim,, o pn = 00 and ¢, = p,. If

p}? < nz, (42)

then all the conditions in Corollary 1 hold. If

pi2 <n}f", (43)

then (39) holds with 7 ,, = p}}n;/d.

Proof. We will first show that all the conditions in Corollary 1 hold assuming
(42). Tt is clear that Equations (10), (11) and (12), and Conditions (B1), (K1)
and (K2) hold.

To find the ¢,, in Condition (B2), note that for z € Z, the smallest eigenvalue
of V1,1(2) is the minimum of {E(¢,, :(X)|Z = z) : 1 < i < p,}, which is the
minimum of {E(hd po Ve X)NZ=2):1<i1,...,0q, < p}/d’”}. Under
(41), form € A and 1 < iy,...,iq, <m,

E1(hdan,1/m7i17~--,idm (X)|Z = Z)

i1/m id, /m C11
- / / fxiz(@n, .. aa,|2)deg, - doy > —.
( (

i1—1)/m iq, —1)/m mTe

Take m = p}b dz, and we have that the smallest eigenvalue of V1 1(z) is at least
€1,1/Pn. Similarly, ¢;1.1/py, is also a lower bound for the smallest eigenvalue of
Va,2(2) and (B2) holds with 6,, = ¢1,1/pn. Furthermore, (29) holds since

nz(Pn + @n)?> max{1,6, " (pn + ¢u)} = O(nzp,) = O(nZ).
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Finally, the z;’s are in Z(e,,) with e, = (n})~"/¢ and h,, /e, = O(n~?) for

0<pB<a Forl<kk*<ng and k #k*, ||zx — 21| > ()4 >n" so
(27) holds. Also, (33) holds since

piqz _p71/3 ﬁ — 0(1)
Vnz(max(pn,qn))t/3 " nz '

Therefore, all the conditions in Corollary 1 hold for this example

The verification of (39) is based on the fact that there exist positive constants
ca,1 and 7o such that

10700 (2) = 050 (Z)] < canpptllz —

SNEpile - <mo.  (44)

Below we will first check (39) assuming that (44) holds and then prove (44)
Suppose that (43) holds. Let g.(2) = fz(2)p, 4. (2)

. . Since fz is Lipschitz
continuous, (44) implies that there exists a constant c4 2 > 0 such that

|9n(2) = g0 ()] < caopy' |2 = 2| i pi |2 = 2| <o

Let {#14ny,---2n3 } be the set

) id .
{((n*zil/d""’(n})l/d>:1§“"' yig < (nj )1/d}ﬁ{zk 1<k<nz}

then

¥
Ny

Z In(21)

1 d 1\ e
—77 | — | gn(2)dz| < 204,2;011\/& < " )
k=1 <(nz)1/d) /Z ! " nz

if p2 (%) =14 < no Since |g,(2)| < co by (R3) and there exists a postive constant
4,3 depending on d such that

. < *\1/d if d > 2;
ny —ng { ca3(ny) if i

we have

- d
nElZfZ(Zk)p;%n,qn(Zk) Iz fz2(2)p3, . (2)dz

Pt Jz1dz
% 12z nz (2 *
ny 72 /gn(z)dz _ kfieng 9n(3) (nz _1>/gn(z)dz
Nz \ Ny P z nz nz z

ol 11
Zgn k) / n(2)dz| + co (1+/ 1dz> (”Z ”Z) < G4aPn
TLZ TLZk 1 = "

1/d
U
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for some constant cq4 > 0 if p3(n)~1/¢ < ny. Since pL? < nIZ/d, p%n}l/d

o(1), so
nz 11
1 2 Jz f2(2)p}, 4, (2)dz _ Dn
nZ Zfz(zk)ppn»q",(z ) f ].dZ OP nlz/d

and pllny "/ = o(1). Take n1.,, = piln,"/? and c5 = ([51dz)~! =1, then (39)
holds.

It remains to prove (44). Recall that for z € Z, p2  (2) is the largest eigen-
value of g(V(z), an,«), as mentioned in Section 3.1. Thus |pgn 0 (2) — pémqn ()|
is bounded by [g(V (2),,.) —g(V('), )| Note that |pE. . (z) = pt. o (=)
is bounded by For 1 < i,j < 2, let g7, be as defined in (55) and let A; ; =
9;;(V(2'))—g; ;(V(2)) for 1 <1i,j <2, then from the fact that [[AB|| < || Al Bl
for two matrices A and B, we have

lg(V(2), an+) = g(V(z'), an.)|
< HH gz ; (VNI +12351) = TTTT ot (V=)

+Hlgr1(V(=)) = 911 (V (2)) Ml an,|I*. (45)

The bounds for the [|g; ;(V(2))|’s are derived as follows. Since the elements
in V(z) are bounded by 1 and the smallest eigenvalue of g; ;(V(2)) is at least
c11/pn for 1 <i <2, we have

max([|g72(V(2))ll; |92, (VD) < pn,
* 2 pgl — pfn
oA (VI < B =

and

* P
22 (V) < —*=.
1,1

To find bounds for ||g1,1(V(2")) —g1,1(V(2))| and ||A; ;|’s, note that from (R3),
each element in g; ;(V(2')) — g:.;(V(2)) is bounded by Vd [ h(z,y)du(x,y) ||z —
2|, so

max([|Ar2]), 1Azl lr (V) — g2 (VD))
< pVd / Wz, y)du(z, vz — 1.

For 1 <i <2, by Fact 4,

gz s (V (2D IPllgii(V () — gi.i(V(2))]

|
1Al < 7= gz (V D g2, (V () = gia(V ()]
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if [lg7: (V)9 (V () = gi.s(V (2D < 1, s0

2V/dp3
[ nepdute s - 2|
1,1

A,

| <

if
Vdp? 1
S [ e y)duta, )z - 2 < 5 (10
C1,1 2
To give a bound for ||a, .||, note that the smallest eigenvalue of g1 1(V (2)) is at
least ¢1.1/py and at most

ap 1.1V (2))an, 1

Tt o

lamall < /2.
C1,1

From (45) and the above bounds for [|ay,, ||, the [|g; ;(V(2))|'s and [|A; ;]|’s, we
have

>

SO

lg(V (2), an ) = 9(V (), an,)| < canpy' |2 = 2|
for some constant ¢y 7 if (46) holds. Therefore, (44) holds and the proof for the
results in Example 1 is complete.

5 Simulation studies

In this section, results of several simulation experiments are presented. Those
experiments are designed to demonstrate the performance of Test 1 introduced
in Section 3.2.

In Section 3.2, Test 1N is also introduced, but no simulation studies are done
for it in this section. The reason is as follows. Test 1N is constructed based on
the normal approximation for >, 7, Ax. Using the parameter set-up in Table 2,
the selected nyz is only 4 or 5 and the normal approximation for Y7, Ay is not
expected to work well.

For simplicity, in all the simulation experiments here, X, Y, Z are one
dimensional and only the following distributions for (X,Y, Z) are considered.

M1) (X,Y) = (®(Zer), P(Zea)), where €1, €2 and Z are independent, Z fol-
lows the uniform distribution on [0, 1], and ¢; follows the standard normal
distribution for i = 1, 2.

(M2) Z follows the standard normal distribution, and the conditional distribu-
tion of (X,Y) given Z = z is bivariate normal with mean p and covariance
matrix X, where

Q) (L) w

and the p(z) in (47) is taken to be a(|1 — 2®(z)|) with a € {0,0.1,0.3}.
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(M3) (X,Y,Z2) = (2(Xo),®(Yo),®(Zp)), where Zy follows the t-distribution
with degree of freedom 1, and the conditional distribution of (X, Yp)
given Z = z is bivariate normal with mean p and covariance matrix 3,
where p and 3 are as in (47) and the p(z) in (47) is taken to be a(|1 —2z|)
with a € {0,0.1,0.3}.

Here (M1) is used for parameter selection and (M2) and (M3) are used for
checking the performance of Test 1. The details of parameter selection and
experimental results are given in Sections 5.1 and 5.2 respectively.

5.1 Parameter selection

To apply Test 1, certain parameters need to be chosen, including the kernel
function ko, the kernel bandwidth h,,, the basis functions ¢, ;’s and g, ;’s
and the evaluation points z;’s, which are chosen as follows.

(S1) ko and the basis functions ¢, ;’s and v, ;’s are chosen as in Example 1 in
Section 4 with p, = g, = 2. Since the basis functions are supported on
[0,1],if X, Y and Z do not take values in [0, 1] (such as in (M2)), then the
data {(X;,Y;, Z;)}, will be transformed to {(®(X;),®(Y:), ®(Z;))}1,
before applying Test 1. The bandwidth h,, is chosen to be the h that

minimizes
1-0.143p0-121 ) 2
/ E(fz(z)—l) dz
0.143h0-121

over (0,0.5], where f2 is the kernel density estimator based on a sample of
size n from the uniform distribution on [0, 1] with kernel ky and bandwidth
h. Below are the h,,’s used for different n’s.

n 10000 5000 1000 500
hy, | 0.05935281 | 0.06525282 | 0.08533451 | 0.0983018

Table 1: Selected h,,’s for different n’s

The z;’s are points in I, = [0.143h%-121 1 — 0.143h0-121] such that z;, =
kho,n, where hg 5 is a given positive number in I,,.

With the parameter set-up in (S1), it remains to choose hg,. The hg, is
chosen to be the smallest multiple of 0.01 such that the distribution for the Test
1 statistic nhdck > 37, frp?(z1) based on 1000 samples of size n from (M1) is
similar to the distribution of 3,7, Ay (x? with nz degrees of freedom), as stated
in Theorem 3.2. The one-sample Kolmogorov test is used to determine whether
the two distributions are similar. Below are the hg,’s used for n = 10000 and
n = 5000.

For the above procedure for selecting hg ., when n = 500 or n = 1000, it
seems that the distribution of nhdcyk > 12, fep®(zk) cannot be approximated
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n_ ] 10000 | 5000
hom | 0.16 | 0.2

Table 2: hg,,’s for different n’s

well by the distribution of Y7, Ag, regardless what hy , is used. To overcome
this problem, one may use local bootstrap to determine the rejection region.

The idea of using local bootstrap is to draw samples { (X, Y;*, ZF)}_, from

3

the distribtion of (X*,Y™*  Z*), where Z*’s distribution is close to the distribu-
tion of Z and the conditional distributions of X* given Z* = z and Y™ given
Z* = z are close to the conditional distributions of X given Z = z and Y given
Z = z, yet X* and Y* are conditionally independent given Z*. Therefore, if
X and Y are conditionally independent given Z, then the local bootstrap re-
samples {(X/,Y;*, Z)}_, should behave like a random sample from (X,Y, Z).
One can then compute the Test 1 statistic nhdcx > 12, frp?(z1) for the original
sample and for each local bootstrap resample. If the statistic computed based
on the original sample is larger than (1 — a)% of the statistics computed based
on the local bootstrap resamples, then the conditional independence hypothesis
is rejected at level a.

The local bootstrap procedure used here is the same as the one proposed
by Paparoditis and Polits (2000) except that here the Z;’s are not lagged
variables. For a given sample {(X;,Y;,Z;)}",, a local bootstrap resample
{(X7, Y, ZF)}, is generated as follows.

3

e Step 1. Draw a random sample (Z7, ..., Z}) from the empirical cumulative
distribution function Fz, where

. 1 <&
Fy(e) =~ > Is,z)(2).
1=1

e Step 2. For 1 < ¢ < n, for each Z; from Step 1, draw X and Y;* indepen-
dently from the empirical conditional cumulative distribution functions
Fx|z—z» and Fy|z—z~ respectively, where

P (x) _ Z?:l kO((Z; - Zi)/b)j(_oqxi](x)
X|Z=Z} - Z;z:l kfo((Zl* — Zl)/b)

and "
FY yer(y) = > i1 ko((Z] — Zi)/b)l(—oo,m](y)
= S ko((Z5 = Zi) /)
The parameters for Test 1 with local bootstrap are chosen as follows. the

bandwidth b is taken to be h%4, p, = ¢, = 2 and hg_, = 0.4, where h,, is
as in Table 1.
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5.2 Experiments

The objective of the first experiment is to compare the power of Test 1 with that
of the test proposed by Su and White (referred as Test 2 hereafter), which is
based on Hellinger distance between the conditional and unconditional densities.
Both tests are based on 1000 random samples of size n, where the distribution
of (X,Y,Z) is as in (M2) or (M3). Under (M2), Test 1 is applied to transformed
data, as mentioned in Section 5.1. To apply Test 2, the bandwidth parameter
in the kernel estimators in the test statistic is taken to be n=1/8% as in Su and
White (2008). The power estimates based on data from (M2) and (M3) with
n = 10* are given in Table 3. The asymptotic significance level is 0.05. It is
shown in Table 3 that power estimates for Test 1 when ¢ = 0 and a = 0.1 are
larger that those for Test 2.

a=20 a=0.1 a=0.3
Test 1 | Test 2 | Test 1 | Test 2 | Test 1 | Test 2
(M2) | 0.049 | 0.028 0.65 0.076 1 0.95
(M3) | 0.041 | 0.029 | 0.572 | 0.119 1 1

Table 3: Power comparison between Test 1 and Test 2

To investigate the performance of Test 1 when the sample size is smaller, in
the second experiment, power estimates for Test 1 are computed based on 1000
random samples of size n = 5000 from (M2) and (M3). The results are given in
Table 4. The results for n = 10* from the first experiment are also included for
comparison. The asymptotic significance level is 0.05 as before. Table 4 shows
that Test 1 is more powerful when n is larger.

a=0 a=0.1 a=0.3
(M2) [ (M3) | (M2) [ (M3) | (M2) [ (M3)
n = 5000 | 0.052 | 0.039 | 0.373 | 0.321 | 0.998 1
n=10% | 0.049 [ 0.041 | 0.65 | 0.572 1 1

Table 4: Test 1 power estimates for n = 5000 and n = 10*

Finally, for smaller sample size such as n = 500 or n = 1000, since the
approximation in Theorem 3.2 does not work well, the local bootstrap version
of Test 1 is considered. Here 1000 samples of size n from (M2) are used, and for
each sample, 1000 local bootstrap resamples are used to determine the rejection
region. The level is 0.05. The power estimates for the test are given in Table 5.
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a=0]a=01|a=03
n =500 | 0.041 0.071 0.309
n = 1000 | 0.033 0.099 0.531

Table 5: Power estimates for Test 1 with local bootstrap

Concluding remarks

A test statistic for testing conditional independence based on maximal nonlin-
ear conditional correlation is proposed. Two tests, Test 1 and Test 1N, are
constructed using the test statistic. Both tests are consistent and have similar
asymptotic properties, as discussed in Section 3.2. Some simulation experiments
are carried out to check the performance of Test 1. It seems that when the sam-
ple size n = 10, the power of Test 1 is comparable with that of Test 2, the test
proposed by Su and White (2008).
Below are a few remarks.

1.

(29) requires that p,, ¢, and nz grow slowly comparing to n. The pa-
rameter selection result in Table 2 in Section 5 seems to agree with such
a requirement. With n = 104, nz is only 5 and p, = ¢, = 2. When
DPn = @n = 3, even with hg, = 0.4 (this corresponds to the smallest nz
for n = 10%), the distribution of the test statistic cannot be approximated
well by the distribution of >~7Z, Ay.

The parameter selection criteria given in Section 5 needs to be studied to
see whether the asymptotic propoerties of Test 1 still hold using such a
criteria.

When the distribution of the test statistic cannot be approximated well by
the distribution of ZZZ 1 Ak, it is possible to use local bootstrap version of
Test 1. However, it takes a lot of time to obtain the bootstrap resamples,
so this approach is recommended when the sample size n is small.

. In all theorems proved in this paper, it is assumed that the (X;,Y;, Z;)’s

are IID. It is also expected that Test 1 works for some stationary weakly
dependent data such as the vector ARMA processes, where the central
limit theorem for the IID case still applies. However, to carry out the
details in the proofs, one needs the strong approximation result in Lemma
2, which is more than the central theorem and requires a version of Lemma
5 that works for dependent data.

Test 1 can be modified to work for discrete Z. Modification is necessary
since the rate of convergence for each p(zy) is faster in the discrete case.
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7 Proofs

7.1 Proof of Lemma 1
Recall that for 1 < j < k,,

Wn,j(z) \/ nthKfZ ((sz fnj X“Y;;Z)> _E(fn,j(X,Y; Z)‘Z = Z)> .

To prove the asymptotic normality of W, ;(zx)’s, we will approximate Wn i(2)
using sums of IID random variables. For 1 < i < n, let wp;(2) = ko(h,'(z —

Z;))and let fz(z) =n"th d Yo wo,i(2). Then w;(z) = n~th- dwo,l( )/fZ( ).
For 1 <j <k,, let

W j(2) = (nhi f2(2)) " (c 1/22 (w0,i(2) fn,j(Xi, Yi, 2) — Bwo i(2) fn,;(Xi, Vi, 2))

and Wy 1. 11(2) = \/nhdex (f2(2))"Y2(fz(2) — Efz(2)), then

W i(z) = ZZ; Wi i (2) + \/nhiek f2(2)E(f (X, Y, 2)|Z = 2) (ZZ; B 1)
TII}?CZ({Z@ (hr_LdE(wO,l(Z)fn,j(XhYl,Z)) - E(fn,j()(7 Y, Z)|Z = Z)fz(z))
z\z

4
= Wai(2)+ Y Renj(2)
=1

where Wn](z) =W, ;(z) — VNVH,knJrl(z)E(fnJ(X7 Y, 2)|Z = 2),

i\z) = fZ(Z) — Vi i z
Rl,n,]( ) <fz(z) 1) Wn,j( ),

nhdc 2
Ry j(2) = h}}Z(KZ{Z( ) (hey "B (w01 (2) faj (X1, Y1, 2)) — E(fu; (X, Y, 2)|Z = 2) f2(2)) ,
Ryni(2) = \/TMTKE(fn,j(X:Y, )NZ =2)(fz(2) — fz(z))2
" F2(T2 ()
and

Vnhic .
Runste) =~ B (X, 212 = 2) (B(2) - 12(2)).

We will complete the proof by showing that the following results hold for T,, =
exp(—(Inn)/9).
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4 2
(C1) S5, 02 (S B (1)) = Op(Th).

(C2) There exist random variables Nijrand erjp: 1 < j <k, 1 <k <
nz such that the joint distribution of (N ;i + €1,56)j,5 is the same as
that of (Wy ;(2x))jk, N1, K 's are jointly normal with ENU r = 0 and
Cov(N1 j i, N1o ) = Cov( nJ(zk) Wi.o(z+)), and ZJ > 1617]7
0, (T,).

(C3) There exist random variables Ny ;i and g jx: 1 < j < k,, 1 <k <ng
such that the joint distribution of (N2 jx + €2,j%),k 1S the same as that
of (N1 jk)j.k, Naji’s are jointly normal with ENs ;, = 0 and

CO/U(NQ’]‘JC, NZ,l,k*)

_ Cov(fn (X, Y, z1), froo(X, Y, 26)|Z = 2z1)  if k = k*;
0 otherwise.

and Z] 1Zk 152’Jk Op(Ty).

Note that Lemma 1 follows from (C1)-(C3) since one can construct random
variables No ; i, €25k, 1,5,k and Rs ik 1 < j < k,, 1 <k <nyz on the same
probability space such that the joint distribution of (Ng,j’k, €2,5,k)j,k is the same
as that of (Naj k,€2.4.k)5.k, the joint distribution of (£ j x, Noj x+E2.5.k)j.k is the
same as that of (€1, N1,j.x)j.5, and the joint distribution of (R57n,j7k,N2,j7k +
€94k + €1,5k);k is the same as that of (Z?Zl Rg,n’j(zk),Wn,j(zk))jﬁk. Take
Waijk = Ng,j’k and Wy, 2 i1 = €2k + €15k + Rsnjk, then we have Lemma
1.

To establish (C1)-(C3), we need certain expectations and covariances, which
are computed below. Under (R1)-(R3) and the conditions that [ uk(u)du =0
and o2 = [ [Jul|*ko(u)du < oo, for z € Z(g,,), we have

(h&) ™ E (wo,1(2) fn (X1, Y1, 2))
= B(fni(X,Y,2)|Z = 2)f2(2) + 10 j1(2)Cnhi, (48)

where
Tnj1(2) = co / Wz, y)du(z,y) (2dod0n,j1 + Onj2hn 2 (2 + ho)vd exp (—5e2h,2))

05115 0n,5.2] <1, and v4 and 75 are positive constants that depend on 7, and
3 only. Also, for k # k*, zy, 2 € Z(en), we have
(hi)"*Cov (wo 1 (2k) fo, j(X1, Y1, 2k), wo,1 (2~ ) fn,e(X1, Y1, 25+))
= G0 kp(h) "2 (72)" exp(—0.573h;, %[l z1 — 21+ [I*) O

—fz(2) fz (21 ) E(fr (X, Y, 20)| Z = 2k) E(fro(X, Y, 20| Z = 2+)
—F2(z1)E(fu (X, Y, 26)|Z = 2) 701 (252 ) Cnh2

— 2k ) E(f (X, Y, 262 )|Z = 23 )7 j1 (25)Crh2

—Tn 31 (26)Tn,e1 (2 )C’nhfl, (49)
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where [0 0% k-| < 1. Finally, for z € Z(e,,),
(h) = Cov (wo,1(2) f,j (X1, Y1, 2), w0,1(2) f,e(X1, Y1, 2))
= [z()E(fn; (XY, 2) fn (X, Y, 2)|Z = Z)/k?)(u)du + 7 g,2(2) O
—hdfé( VE(fn (XY, 2)|Z = 2) E(fne(X,Y,2)|Z = 2)

( |
P20, 51(2) 2 E(fut(X.Y,2)|Z = 2)
hd+ Cornpn(2)f2(2)E(fus (X.Y,2)|Z = 2)
RO, 51 () (2) (50)
and
By (wo. (=) fu g (X1,Y1,2))° < Ceg / K3 (u)du, (51)
where

e < 200 [ hednto) (VA [ fulida + tage et
for some positive constants 75 and ;7 that depend on 5 and 73 only. Below we
will prove (C1)-(C3).

e Proof of (C1). Let S, = Y ;2 (fz(zk) fz(z))? and A, = {V/S, <
min{1, (2¢;)~'}}. From (48) and (50), ES, = O(nz(ht + (nhd)~1)) =
O(nz(nhd)=1) and 1/fz(z1) < ¢ for all k, P(AS) — 0 as n — oco. From
(48), on A,

35 (S ttent)

j=1k=1

kn nz
< ( Z y ) + knnzC2 (nhd4) + k, C2nhds2)

and it follows from (50) that

kn nz
EY Y W72 (z) | = O(knnzCy).
j=1k=1
Take 2 2
kn,
Ty = 2220 4 ko C2nkdt,
nhd

then (C1) holds with T;, = exp(—(Inn)'/?) since Ty ,, = O(T5,).

e The proof of (C2) is based on the following lemma, which deals with the
normal approximation of sum of IID random vectors.
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Lemma 2 Suppose that X1, ..., X,, are IID random vectors in R“ with
mean 0 and variance Y. Suppose that there exist positive constants C,
as and as such that 1 < ay < az < C, || X1]| < C and E|| X,||F < aﬁ for
k=2,8 Then forT > 1, there exist random vectors S andY on the same
probability space such that S is distributed as (X1 + -+ + Xp)/v/n, Y is
multivariate normal with mean 0 and variance ¥ and for n > (25/(16a3)+
25d; /12)C*T* exp(3T2/16),

PS-Y[[>a)<a

3
a> 33.75&3 (12)d1e(d1+3)T2/8 + (48)d1€—3T2/(32‘1§).
vn
The proof of Lemma 2 is given in Section 7.1.1. To prove (C2), note that
Wi (ze) = 31 (9njk (Xiy Yis Zi) — Egn jx (X3, Y5, Z;)) //n, where
In.jk(Xi, Vi, Z;)
VCK (Zk — Zz)
= k n,i (X, Y, zi) — E(fn, i (X,Y, 21)|Z = 21)) .
=\ (fns( k) — E(fn;( k)l k)

From (48) - (51), we have

1/2
k:n nz
1
SO g (X Vi Z0) — B (X0, Vi, 22| < QWCnvunz.
Vi

j=1k=1
A 1/2
SN E(gniw(Xi Vi, Zi) — Egn jn(X, Vi, Z;))’ <O0()Cp\knnz
j=1 k=1
and
1/3
A 3/2
> (gnik(XiYi, Zi) = Bg (X0, i, Z:))?
j=1k=1

< Coknnzh;750(1)
Note that for every constant M > 0, the condition
2
S % + 25/€nnz MCn\/ I{Znnz T4 3T32 /16
=\ 16 12 N 3:n®

holds for large n with T3, = (In n)l/ 8. so Lemma 2 is applicable. From
Lemma 2, (C2) holds with any T;, such that T ,, = O(T,), where

2
(Cn /knnZ)6122anZe(knnz+3)T3’n/4+(48)2knnze*’yng‘n/(Cn\/W)z
nhd ’

T2,n =
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v > 0 is a constant. Since T3, = O(exp(—71 (In n)l/S)) for some constant
71 > 0, (C2) holds with T, = exp(—(Inn)'/?).

The proof of (C3) is based on the following result.

Fact 3 Suppose that A and B are di X di nonnegative definite matrices.
Then
IVA-VB| <d/]A- Bl

The proof of Fact 3 is given at the end of the proof of (C3). Note that Fact
3 implies the following: suppose that Xy and Y, are two d; x 1 normal
vectors of mean (0 and covariance matrices A and B respectively. Let Z
be a d; x 1 normal vector whose elements are ITD N(0,1). Then VAZ is
distributed as Xo and v/BZ is distributed as Yy and

IVAZ—VBZ|* < |VA-VB|?||Z))* < di"*| A= B||| Z|]* = O,(dy"*|| A~ B|).
Therefore, (C3) holds if Cov(W,,;(2k), Wa.e(2x+)) is close to
Cov(fnj(X,Y, 21), fre(X,Y, 26)|Z = 2k) 0k e+,

where 0y -+ is 1 if k = k* and is 0 otherwise. From (48) - (51), we have

2
Z (COU i (20)s Wase(21)) — Cov(fa i (X, Y, 20), fro(X. Y, 21)|Z = Zk)5k,k*)
s

= hnC2(kynz)?0(1),

s0 (C3) holds with T}, = exp(—(Inn)'/?) since (knnz)%?\/hnC2(k,nz)? =
O(exp(—(Inn)'/?)).

Below is the proof of Fact 3. Consider first the case where A is diagonal.
Let D be a diagonal matrix such that B = QTDQ for some @ such
that QQT = I. Let D = diag()\1,...,A\q,), 4 = diag(ay,...,aq),
Q = (g;;) and E =B — A= (e; ;). Let ¢; be the i-th column of @), then
¢’ Dg; = «;0;j + e;j, where §;; = 1 for i = j and §; ; = 0 otherwise.
Write Dqy, = E;j (¢ Dg;)qj, then

d
IVDai = Vara® = > (VAia56 — Varg;x)?
j=1

dy 2 dy
> <\/>\j|quk| - \/Oéqug',kl) a5kl <IN 1a5k] = lgjkll 1]
j=1 j=1

0 2o 1/2 4 1/2

1
D (N — akgyr)? > g = Deks
j=1 j=1

Jj=1

IN
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and

di di

IVQTDQ - VA1 =33" (a VD, — af vara,)

i=1 j=1
dy dy dy [ dy 1/2
< SN IWDg - vl <diy (Z )
i=1 j=1 j=1 \¢=1

1/2
di di /

< (d1)3/2 Z Z 6?,5 )

j=1¢=1

so the result in Fact 3 holds if A (or B) is diagonal. For general A and
B, write A = PTAyP and B = QT DQ, where Ay and D are diagonal and
PTP=QTQ =1. Let By = PQTDQPT, then we have

IVA-VB| = |PTVAP-Q"VDQ)|
= W4 - PQTVDQPT|| < d¥*\/[ Ay — Bo||
— &/ /IPTAP — PTBP| = ¥ /TA= BI.

The proofs of Fact 3 and Lemma 1 are complete.

7.1.1 Proof of Lemma 2

The proof Lemma 2 is based on several facts, which are taken directly or adapted
from some existing results and are stated/proved below in Lemmas 3 - 5.

In the statements of Lemmas 3 and 4, (Sp, dp) is a metric space, B denotes
the collection of Borel sets in (Sp, dg), and for two measures pq and pg defined
on B, po(1,p2) denotes the Prohorov distance of puq and pg, which is defined
as

po(t1, p2) =inf{e > 0: pu1(A) < p2(A°) + ¢, for all A € BY,
where A€ = {z : d*(z, A) < €} and d*(z, A) = inf{do(x,y) : y € A}. Here are
Lemmas 3 - 5.

Lemma 3 (Lemma 2.1 in Berkes and Philipp (1979)). Suppose that Py and
P, are two measures defined on B and po(P1,P2) < «. Then there exists a
probability measure QQ on the Borel sets of Sg x Sy with marginals P, and P
such that

Q{(z,y) : do(z,y) > o} < a.

Lemma 4 (Adapted from Lemma 2.2 in Berkes and Philipp (1979)). Suppose
that F and G are two distributions on R with characteristic functions f and g
respectively. Then for o € (0,1] and T > 0, the Prohorov distance po(F,G) < a,
where

a= UT+3(2d1)6_33T22+<Z)d1 / 1 () =g () e~ =5 dut F <{x | > g}) .
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Proof of Lemma 4. Let H be the N(0,02I) distribution on R% , where I is the
identity matrix and o > 0. Let F; be the convolution of F' and H and G; be
the convolution of G and H. Then

po(F,G) < po(F1,Gr) + 2max{r, H{z : ||z|| > r})} for every r > 0. (52)

Let f1, g1 and h be the characteristic functions of Fy, G1 and H respectively
and let v and vg be the densities of F; and G respectively. Then

/é%“%ﬁuofmm»m
(2m)~ /u w)l|h(w) du,

which implies that for every borel set B in R,

Fi(B) — G1(B)
BNz lz| =T} —GuBN{z: |z <TH + Fi({z: |z =T})

<
< / ve(x) —va(2)lde + F({z : [|of| = T/2}) + H({z : ||zl = T/2})
{z:ll=z<T}

r(z) = (@) = (2n)~ "

IN

IN

dy
() [ 1570 = gtalipldu+ F(Go sl > 7/2)) + H(fo ol 2 T/2)).

11

Note that IT is an upper bound for the Prohorov distance po(Fi,G1), so for
r < T/2, it follows from (52) that

po(F,G) < II+2r+2H({z: |[zf| = r})

dy
( ) /u’ W)l[h(w)ldu+ F({z: 2] > T/2}) + 2
PO > (r/o)?).
Since h(u) = e~ Iul*/2 and

IN

P(x*(dy) > A) < et A B’ () e 3A/8(241) for every A >0,  (53)

t=3/8
Lemma 4 holds if » = ¢T/2 and o € (0,1].

Lemma 5 (Adapted from Theorem 1(a) in P.204-208 in Gnedenko and Kol-
mogorov (1968)). Suppose that X1, ..., X, are IID random vectors with mean
0 and wvariance . Suppose that C and a are positive constants such that
1X1]| € C, a < C and E|Xy||F < a* for k = 2, 8. Let f, be the charac-
teristic function of (X1 +---+ X,,)/v/n. Then

1 0.25|ul|?a®
ﬁxu)—exp(—QuTZu) < 020ul’a

n

if |Jull < (0.4v/n)/C

32



Proof of Lemma 5. Consider first the case where X; is univariate. Let U =

fi(u/y/n) — 1, then
o BiEX? (u>2

2 \\n
and ) 5
g o BXE (T OEXGP (u )\
2 \Vn 31 NG

where |0F| <1 and |61] < 1. Suppose that |u] < (0.4y/n)/C, then |U| < 0.1 and
log(1+U) = U + 0.620,U2,

where 05| < 1. Let V = log f,,(u) + B(X?)u?/2 = BE(X?)u?/2 + nlog(1 + U),
then

2
nf1E| X1 |3u? EX? (iu\® 6EXiP [ u\®
V = ——— 0.62)n6 — — | —=
smare (0620 | =5 Jn) T3 vn
_ )\1|u|3a3+0.62 )\ga4u4+/\3a5|u|5+)\4a61;6
6+/n 4n 6(y/n)3 36n

_ lul2a® A +0.62 Aoalul n Aza’u? n Aga®|ul?
vn o\ 6 ' 4/n 6n 36(vn)3 /) )’

where [A;| <1 for k=1, 2, 3, 4. Since alu|/+/n < 0.4,
_ 63(0.25)[ula®

Vv
VI
where |03] < 1. Since eV =1+ 94|V|e|v‘, where |04] <1,
E X2 2
ftw) = e (<25 ) (s ey

E(X2)u? 0.25/u/?a®
— e <_(21)“> Lo (\%“) IVI-B(X /2,

where |05] < 1. To find an upper bound for |V| — E(X%)u?/2, note that
E(X?)u? 01| E| X1)2|u)®?  CEXZul®  (0.4)u?E(X?)
— < < :
2 6vn - 6vn o 6
n|U| = |05 |u?E(X?)/2 < w?E(X?)/2 and

nU +

n(log(1 + U) — U)| = 0.62n|02U| < 0.62(0.1) (E();W)

since |U| < 0.1. Therefore,

2E X2 E X2 2 2E X2
|V|—%(1) = (21)u+nU+n(log(1+U)—U)‘—u(1)
< (0.4)u26E(X12) N 0.062E2(X12)u2 B ugEéXf) <0
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and Lemma 5 holds for the univariate case. The result for the general case can
be obtained by applying the univariate result with u and X; replaced by ||lu]|
and Y; = uT X, /|ul].

Now we are ready to prove Lemma 2. Let f,, be the characteristic function
of (X + -+ X,)/+/n and g be the characteristic function of G, the N(0,X)
distribution. From Lemmas 3 - 5, there exist random vectors S and Y on the
same probability space such that S is distributed as (X1 +--- + X,,)/v/n, Y is
multivariate normal with mean 0 and variance 3 and

P(IS =Y = a1) < ay,

where
- 0.25¢3 (2\4/? Td
ar = oT +3(2%)e 3T /324-7\/53 (W) 70d1+3E(X2(d1))3/2
d1/2 md 2
2 T 0.16no
w2(2) 7 Top (lan = B 55 ) + PN ©.5)] 2 72

From the facts that E(x?(d1))%/? < (E(x*(d1))?)%/* and P(||N(0,%)|| > T/2) <
P(x2(dy) > T?/(4a3)), equation (53) and the condition that as > 1, we have

o < 0T+4(2d1)e—3T2’/(32a§)+
™

0.25a3 [ 2\ /2 Tdi
i (2)1 I iy

O'd1+3
di1/2 prd
2 ™ dyy,—0.06n02/(C?)

Set 0 = T~1e=37°/32 then 0 < o < 1, T/o < 12¢7°/8 and 1/o < 3¢T°/8, which,
together with the fact that (2/7)%/2(2d; + d3)3/* < 5, gives that

3
oy < (1 +4(2d1))673T2/(32a§) + 33'\;§a3(12)d1€(d1+3)T2/8
n

+2(1915)d1 ed1T2/86—0.067l0'2/(C2)

w(m)dle(dlﬁ)wm + (48)he 3T/ (3203) < ¢

< NG <
if 0.06n0%/(C?) > d1T?/8+3T?/(32a3), which corresponds to n > (25/(16a3)+
25d; /12)C%T* exp(37T?/16) and we have Lemma 2.

7.2 Proof of Theorem 3.1

To prove Theorem 3.1, we apply Lemma 1 by taking the f,, ;(X,Y, z)’s to be the
functions ¢ (X )¢}, (X), ¢5 (X)), (Y) and ¥ (Y)r ,(Y), where 1 < ¢ < ' < p,

and 1 < m < m' < ¢,. In such case, (28) holds under Conditions (B1) and
(B2). To see this, for each 1 <k <nz and 1 < j < p,, let (b:’j’k be the j-th
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component of ¢* when z = z;. Then b W) = >0 an i kon,i(x) for some
, W -
Qni k'S and

1=F ((¢Z,j,k(X))2|Z = Zk)

Pn 2 Pn
o (zan,i,j,m,m) Z=n) 20,300
=1

i=1

so ¢y, k()] < \/ b ai7i,j7k\/2f;1 @2 () < \/pn/dy. Similarly, for each
1<k<nzandl<j<gy,letyy ;, bethe j-th component of ¥* when z = zy,
then |17 . ()] < \/qn/0n. Thus (28) holds with C,, = max{1, (pn + qn)/0n}
and it follows from Lemma 1 that Y 32, [V*(2x) — V*(2)]|* has the same
distribution as Y .2, (nhlck f7(2k)) "Wk + Wa2kl?, where the W, 1 1’s
and W, 2 1’s are random matrices such that each element in W), ;  is normal

with mean zero and variance bounded by C? = (max{1, (p, + ¢»)/dn})?, and
22 IWa2k]? = Op(exp(—(Inn)'/?)). Therefore,

nz

DIV (k) = V()P = Op((nhi) ™ (Inn) /). (54)
k=1

To control the difference between g(V*(z),*) and g(V*(zx),a*) for 1 <
k<ngz, for a (p, + qn) X (pn + gn) matrix U, let

. 9i,;(U) if (4,5) = (1,2) or (
9:5(U) = { g (U) i (i,)) = (1,1) or (2,2).

For 1<k <ng,let A i = gjj(f/*(zk)) =97 ,;(V*(z)) for 1 <4, j < 2. Then
from the fact that ||AB|| < ||A||||B]| for two matrices A and B, we have

lg(V* (21), @) = g(V* (z0), @)

2 2 2 2
< TITI (lgs; (v Gonli+ Iaizel) = TTTT loi (v ()l

i=1j=1 i=1j=1
Hllgra(V* (1)) = 91,1V (2l (@) 7. (56)

To control the Aj 1, and Ag o in (56), the following result is needed:

(55)

Fact 4 Suppose that A is a pxp matriz and A = A—1I,. Then [|[A~'—I,+A| <
A=Y = L|[|A]l and
- 1Al
AT = Ll < — o i lAl < 1.
e I

Proof of Fact 4. Let B=A"1—1I,. ThenB = —A—BA,so |[B+A| = ||BA| <
IBI[[|A]l. Also,

IBII < A1+ [[BI)- (57)
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Apply (57) recursively and we have

[A]l

1Bl < —
1—[|A]

if |A]l < 1.

Since [|o*|| =1 and for 1 <k <ngz, g11(V*(2k)) = I, 92.2(V*(2x)) = I,
and |lg12(V*(zi)|? = llg2a(V*(ze)|I? < (pn + qn), from (56) and Fact 4, we
have

D llg(V*(zi) ) = g(V* (z), @) 12
k=1
= Op((nhy) ™ (lnn)"®n% (pn + g.)°) = Op((nhi}) ™" (lnn)'/*),

which gives (30) since |/32(Zk)—,0,2,mq"(2’k)\ < ||g(V*(zk),a*)—g(V*(zk), a*)|| for
1 <k <ngz. (31) follows from (30) and the fact that > 2, (fz(zx) — fz(2x))?
is Op(nz(nh)~1).The proof of Theorem 3.1 is complete.

7.3 Proofs of Theorem 3.2

From Lemma 1, the joint distribution of V*(zk) 1 < k < nyz is the same as
that of V*(Zk) + (nthKfz(Zk))il/Q(Wn,Lk + Wn,2,k)f 1 <k <ng, where

Y IWazkll® = Op(exp(—(lnn)'/?)) (58)

k=1

and Wy, 1 i’s are independent symmetric normal matrices of mean zero. To de-
scribe the covariance structure of each Wy, 11, let ¢* = (¢7,.. .,qb*")T, P* =
(W1, ...,¢; )T and let Vg be the (pn+¢n) X (Pn+¢n) symmetric matrix such that
911 (Vo) = ¢*(X)¢*(X)T, g12(Vo) = ¢*(X)¥* (YV)" and g2,2(Vo) = ¥*(YV)v* (Y)".
For 1<k <ngzand1l<m,f<p,+qn, let Ugmye and Vp, ¢ be the (m,£)-th
elements of W, 1 and Vj respectively, then

Cov(Uk,m. e Ukmr o) = Cov(Vo mos Vome | Z = 2)

for (m,£), (m',0') € {(4,7) : 1 < i < j < (pn+qn)}. For 1 <k < ng, let
Vi = V*(z1) + (nhlex fz(21)) 72 (Wi1k + Wa2,k) and

Ai(2) = 9(Vi, @) g1.1 (Vi)
= 912Vi)(92.2(Vi) " Lg2.1 (Vi) — g1.1 (Vi) (@) 911 (Vi),

and let 52(z;) be the largest eigenvalue of Aj(z;)(g1.1(Vi))~!, then the joint
distribution of p?(zx): 1 < k < nyz is the same as that of g3(z): 1 < k < nz.
For 1 <i,j<2and 1 <k <ng, let A;jr = gi; (Vi) — gij(V*(2x)), then from
(54),

2

D 1Akl = Op((nh) ™! (lnn)'/®) (59)

nz 2
k=1i=1 j=1
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and

A1(ze) = g12(V* (21)) (922 (Vi) 1921 (V* (21)) — 91,1 (Vi)™ (@) T g1 (Vi)
+912(V* (%)) A2k + A1 25921 (V7 (28)) + A1,2.6021 &
—g1,2(V*(21)) D22k B2 1k — A1288221921(V*(21)) + Rink, (60)

where
Ring = A12k(922(Vi) ™t = I, ) Az 1k

912V (21))(g2,.2(Vie) ™ = I, + Do) A1
+A104(g22(Vi) ™t — I, + Aoor)gar(V*(21)).

To simplify the expression for A;(z;) in (60), we will make use of the following
properties.

(C4) The elements of the matrix g1 2(V*(zr)) are zero’s except that the (1, 1)-th
element is 1.

(C5) For (i,7) € {(1,2),(2,1)}, g5,;(V*(2x))’s first row (or first column) is either
the first row or the first column of g/ ;(V*(zy)) for (¢, j') # (4, 5)-

(C6) The (1,1)-th element in ga2(V*(2x)) is 1.

Here (C4) follows from the conditional independence assumption and (25), and
(C5) and (C6) follow from (24). From (C6), g2,2(V%) can be expressed as

~ 1 BT
g2,2(Vi) = ( B, D’Z >

for some matrices By, and Dy, so the (1,1)-th element of goo(V3)™ ! is (1 +
Bl (Dy — BBF)™'By). Let J = a*(a*)T, then by (C4) and (C5), we have

912V (20)) (92,2 (Vi) 92,1 (V*(2)) = (1 + B{ (D — Bx Bl )" By)J,

912(V*(21)) D21k = JA11 1k and Bl BrJ = g12(V*(21))(D2,2.%)2 92,1 (V*(21)),
so the expression for A;(zx) in (60) becomes

Bi (D, — BrBi )™ — I, —1)Bid + g1.2(V*(21)) (D2,2,6) 92,1 (V* (21))
—A11,691,2(V*(26)) 92,1 (V* (21) A1 1k + A1 26021 &
—g12(V*(2k)) Az 2. 5 D21k — A1 26022 £92.1(V*(2)) + Rin k-

Let

As(zr) = g12(V*(21)(922(Wink)) 92,1 (V* (21))

—g1,2
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and

Ry = BE((Dk - BkB/z)71 - an—l)BkJ
—(nhpex fz(21)) " Aa(zk) + 91,2(V* (20)) (D2,2,8) g2, (V7 (21))
—A11.91,2(V(21)) 92, (V* (21) Ar1 ke + A1 2121k
—91,2(V*(2k)) D22 kA2 1k — D21 kD22 1g2.1 (V" (21)),

then Ay()
A _ 2( 2k N N 1
1(zk) o P + Rink + Ron ks (61)
where
o exp(—(Inn)Y/?)(Inn)'/8
> (1Rl + [ aal?) = 0p (SXEBDJOZY - (ap

k=1

from Fact 4, (58) and (59), and a simple expression for As(z)) can be obtained
as stated below in (C7), which follows from (C4) and (C5).

(C7) For 1 <k <ng, As(zi) = CkC,?, where CY, is the p, X ¢, matrix obtained
by replacing elements in the first row and first column of gy 2(W1 1) with
Zero’s.

Note that from (C7), we have that
> 142(z)[” = Op(nz(pa —1)*(g — 1)) = Op((lnn)'/®),
k=1

which, together with (61) and (62), implies that

nz

D IR = Op((nhg) " (Inn) /), (63)

k=1

and then it follows from (63), Fact 4 and (59) that

D 1A () (g1 (Vi) ™h = Av(z) I = Op((nhi) (un) /%), (64)
k=1

For 1 < k < ngz, let Ao be the largest eigenvalue of As(z;) and recall that
p2(21,) is the largest eigenvalue of A;(zy)(g1.1(Vi))~'. Then by (61), (62) and
(64),

nz

S (nhiher f2 () 7() — o) = Op (exp(~(nm) *)(nn)/*) . (63)
k=1

Let fk, p(zr) and A\g: 1 < k < nz be random variables such that the joint
distribution of (fx,p(zk)): 1 < k < nyz is the same as that of (fz(zx), p(zx)):
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1 < k < ng, and the joint distribution of (p(zx), Ax): 1 < k < nyz is the same
as that of (po(zk), Aok): 1 <k <nz. Note that from (65) and the fact that

> Az (z0)1? = Op(nz(pn — 1)*(gn — 1)),
k=1

we have that

Znh CKfZ Zk Zk \/Op nZ (Qn — 1)2) — Op((lnn)1/16)7

so nhd 372 (4(21,))? = Op((Inn)/16),

nhchZfz 2)(p(21))? — nh CKZfZ 2)( ))2|

nz

sy ) 1/2
< nhch< fZ(Zk)) ) Z(ﬁ(zk))z

k=1
= Op((m)"/"®) (Op(nz(nhf) ™))" = Op((nh) /2 (mm)*/2),

and

nzg nz
nhger Y fe(p(zr)* =D A
k=1 k=1

Op((nhy) 2 (Inn)*/*2) +

IN

nhchZfZ 2i)( Z/\k

(by (65)) < Op((nh)2(nn)*/*) + iz (Or (exp<—<1nn>1/9><1nn)1/8))
= Op (exp(—0.5(lnn)l/g)(lnn)3/32) .

1/2

The proof of Theorem 3.2 is complete.

7.4 Proof of Corollary 1

To prove Corollary 1, it is sufficient to establish (34) and (35). To see this, let
fr, p*(z1) and \y: 1 < k < ngz be as in Theorem 3.2, then

nhch ZZil fz(21)p* (21) — NZHpn,qn

/ 2
NZ0p,,qn

nh;lzCK 2251 fkﬁQ<Z ) — NZHp,,qn
\/ nzagn an
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has the same distribution as




nhch ZZi1 fkﬁQ(zk) - Z,Zil Ak + ZZil Ak — Nz lp, g

/ 2 / 2
nZUanQn nZUanQn

I 11

Suppose that (34) holds, then I — 0 almost surely by (33) and Theorem 3.2.
Also, (35) says that II converges to N(0,1) in distribution. Therefore, (36)
holds if (34) and (35) hold.

To establish (35), we will verify the Lyapounov’s condition:

nz 3
. BN — tpn,q.]
lim Y S Pemanl (66)
oo ; (nZO—g’VL‘,q"r)B/z

and then apply Lindeberg’s central limit theorem. Let A be the largest eigen-
value of CCT. Then A\ < tr(CCT), where tr(CCT) is the trace of CCT, which
follows the x? distribution with degrees of freedom m1, = (p, — 1)(g, — 1).
Therefore,

EX3 < E(tr(CCT))® = my p(min + 2)(ma, +4),

which implies that E|A1 — pp, 4.1° = O(p3q2), so (66) follows from (34) and
(35) holds.
It remains to prove (34). Consider first the case where (i) holds. By Theorem
1.1 in Johnstone (2001),
AL —

" converges in distribution as n — oo, (67)
On

where

fin = (V@ —2+ \/pn — 1)
and

Gn—2 pn—1
Here the limiting distribution is the Tracy-Widom law of order 1. Let F' denote
its cumulative distribution function. Suppose that €, ¢; and t5 are real numbers
such that t; < t; + € < to — ¢, which implies that F(t3) > F(ta — €) and
F(t1 +€) > F(t1). From (67),

0n=(\/qn—2+\/pn—1)( SR >1/3-

P (Al >y + (tz — G)O'n) >1-— F(tg)
and
P (M < pn+ (L +€)on) > F(t1)
if n is large enough. For such n, we have

2 > min(F(tl), 1— F(tQ))(tQ - tl — 26)20—721

Upn sdn — 4 ’

which gives (34). The proof of (34) for the case where (ii) holds can be done by
reversing the roles of p,, and ¢,. The proof of Corollary 1 is complete.
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