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Abstract

Most species diversity indices are
designed to measure the species diversity of
one population or two populations. For
example, the Shannon and Simpson indices are
for one population and the Jaccard index is for
two populations. There are only a few for the
similarity among three or more populations. In
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this study, we propose a class of similarity
indices for multiple populations, to measure
the ratio of between-population characteristics
and within-population characteristics.

The focus of the study is to review the
similarity indices and propose a similarity
index for measuring 3 or more populations.
The proposed index will adapt the idea of
Analysis of Variance in measuring treatment
effect. We will use the Maximum likelihood
estimation to find the estimator and study its
asymptotic properties.

Keywords: Similarity index; Species diversity;
Jaccard Index; Simpson index; Shannon Index;
Maximum likelihood estimator
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Similarity index originally was studied in
ecology, biology, and biogeography, to
measure the species diversity between two
populations, or the change of a population over
time. It receives more attentions and
applications in recent years due to the growing
needs of analyzing large data sets. Search
engine on the web is a famous application of
using the similarity index. Most search engines
require users typing keywords and a similarity
index value of each web page is calculated
based on these keywords. Then the closeness
of web page with respect to the keywords is
sorted according to the similarity values.

To compute the similarity index for each
population and then judge the closeness of any
two populations is one way to decide if two
populations are similar. This is more efficient



and more convenient for the web search.
Another way to decide if two populations are
similar is to compute the similarity indices of
two populations. Similarity indices for two
populations include the Jaccard index, Morisita
index, Smith’s index (Smith et al., 1996), and
Yue’s index (Yue and Clayton, 2005).
Although the between-population similarity
indices are likely to be underestimated, they
are preferred to the similarity indices of each
population.

Although the demands of measuring
similarity among three populations and more
are growing, most studies still focus on
measuring the similarity of one or two
populations and only a few discuss the
extension to more than two populations. Lande
(1996) perhaps is the only work talking about
the extension of measuring the similarity of
two populations to that of three populations
and more. He used the notion analogical to the
analysis of variance (ANOVA) and separate
total species diversity into between and within
species diversity.  The species diversity
considered needs to satisfy the concavity
property in order to be extended to measure the
similarity of three populations.

ESNE 2 Sk LLRZERE &

In this section, we shall use the Simpson
index to demonstrate the proposed similarity
index. The Simpson index is the probability of
obtaining same species if two observations are
sampled. The Morisita index and Yue’s index
(Yue and Clayton, 2005) can be treated as the
two-population Simpson index. For example,

the  Morisita  index is defined as
S
ZZ Pid;
6,, L , Where S is the number of

=5 s
z pi2 +Zqi2
i1 i1

species in two populations,0 < p;,q; <1, and

p;, & q, are the proportions of the ith species

in populations 1 and 2, respectively. The
numerator (i.e., between effect) of the Morisita
index is the probability of obtaining same

species if one observation is taken from each
population. The denominator (i.e., within
effect) of the Morisita index is the probability
of obtaining same species if two observations
are taken from one of two populations. If these
two populations are similar with respect to
species proportions, 6,, will be close to 1,

since sampling from two identical populations
is equivalent to sampling from any one of the
populations.

Therefore, the Morisita index is the ratio of the
between Simpson index to the within Simpson
index. To further extend the Lande’s notion of
similarity index being the ratio of between and
within characteristics, we define a generalized
Simpson index for three populations and more

as
. Z 3 /}) )

- Zlza)/[)

where pjj is the species proportion of species i

S
for population j, > p, =1 forj=1,2, ..., m,
i=1

and S is the total number of species in
Populations 1 to m. It is obvious that the
Morisita index is a special case of (1) with m =

2. Also, 0<d; <1 can be shown by the fact
that pi? + pii > 2, Py -

Note that this index is the ratio between
two Simpson indices. The index on the
numerator is the probability that, randomly
selecting two populations and randomly
sampling an observation from each population,
these two observations are of the same species.
The denominator is the probability that,
randomly selecting one population and
randomly sampling two observations from this
population, these two observations are of the
same species. In other words, the numerator is
the “average” between Simpson index and the
denominator is the *“average” within Simpson
index.
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The maximum likelihood estimator can be



used for the similarity index in (1), similar to

S
that in Yue and Clayton. Let a; =» p; and
i=1

S
d, = z p; Py - Thus, the similarity index in (1)
i=1
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number of occurrences for the ith species from

is the

n; observations taken from the jth population.

Then, we can use
LAES
0; i<k ~ as the estimate
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of 6 (NPMLE). As Min{n,,n,,....n.} — o,

A

we can show that éj —>ajand djk —>djk in

probability, which implies that &, — 6; in
probability according to Slutsky’s lemma.
The asymptotic variance of é; can be

derived via Cramer’s delta method and

approximately
- 2 Y[Dr - 1 A 2D~ on
Var(6;) = (m—l) {A“Var(A) +?Var(D) —FCOV(A, D)
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Theta vs. Sample size (s=10)

Var vs. Sample size (s=10)
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Figure 1. Similarity index vs. number of
populations (uniform dist.)

Example 1. Suppose there are some identical
populations, with the number of species being
10, and the species proportions follow uniform
distribution. Figure 1 shows the results of
similarity index values vs. the number of
populations (1,000 simulation runs). We can see
that the mean value of the index is not
influenced by the number of populations.
However, as noted in Chao et al. (2006), the
similarity index based on the number of
occurrences (like the proposed 6) is usually
under-biased in uniform distribution.  Also, the
variance of the index depends on the sample
size and the number of populations. We can also
see that the variance is also a function of the
number of populations and decreases faster than
the speed of sample size.

To further investigate the relationship of
sample size and variance, we plot the graphs of
sample size vs. nxvariance and sample size vs.
nxs.e. (Figure 2). It is interesting to see that the

variance of @ looks like a constant, no matter
what the number of populations is. The reason
for much faster convergence could be that

S ~
> pi-al=0 in Var(A) for a uniform
i=1l

distribution. We shall check the case of other
distributions.
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In this study, we propose a probabilistic

approach

to measure multiple-community

similarity. In particular, the similarity index
can be computed recursively and is adapted
from the set theory, which is used in Yue et al.

(2001) and Yue and Clayton (2005).

The

proposed similarity index can be separated into
measuring various order of similarity, and thus
can provide more thorough information of
shared species. If we are to sampling species,
the proposed similarity index can be treated as
a generalization of the Jaccard index and the
index by Smith et al. (1996). If one observation
is taken from each community, then the
proposed approach can be generalized to
indices similar to the Morisita index.

Note that Lande (1996) also proposed a
similarity index for multiple communities, but
there are two main differences between our

and his approaches.

The similarity indices by

Lande are based on the species diversity of one
population and are different to our similarity
indices, where ours are extension of frequently
used two-population indices and our goal is to
measure real similarity between 2 populations.
Thus, our similarity indices have probability

interpretation.

Still, there are limitations in applying the
proposed similarity index. For example, the
leave-one-out method can be used to verify

whether  there

are

any

communities

significantly different to others. Nonetheless,
there are no suggestions for picking up these
different communities.
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Abstract

Life expectancies of the male and female in many countries have been increasing significantly
since the middle of 20" century. The elderly is expected to live longer after retirement and the
mortality rates of the elderly receive more attentions recently. However, since there were not
enough elderly data before 1990, it is still unknown if searching for a reliable mortality law can
solve the longevity risk in insurance business. In this study, we adapt the idea of regular discount
sequence in Bandit Problem. We will try to interpret the life expectancy using the idea of regular
discount sequence, and develop a model for the survival probabilities. Mortality data from many

countries will be used to verify the assumption and model proposed in this study.



1. Introduction

The life expectancy of human beings has been experiencing significant and steady increases
since the turn of 20" century, and the life expectancies of most developed countries for the male and
female are doubled over the past 100 years. Because of the prolonging life, the population aging
becomes a common phenomenon. For example, the proportions of the elderly (aged 65 and over) in
Japan and Italy were around 10% about 30 years ago, quickly reached 20% in 2005, and are
expected to pass 30% mark in 40 years. The rapidness of population aging is far beyond the
expectation. As a result, the governments (and the social insurance systems) will no longer be
able to support the elderly, and individuals need to save enough money while they can for their lives
after retirement.

The prolonging life has made the annuity and health insurance products popular (accounting
for more than 75% of insurance premiums of the U.S. in 2003) and this puts the pressure to the
insurance companies for accurate estimates of the elderly mortality (i.e., longevity risk). But the
elderly in many countries experienced a big mortality improvement, larger than expected and than
those of younger populations, and it is not clear whether the mortality improvement will slow down,
continue, or speed up. Under- or over-estimate of the true mortality rates would create problems
to the insurance companies.

Over the past two decades, many conjectures have been proposed to describe (or even to
predict) the mortality improvements and life expectancy. For example, the concept of mortality
compression is theory for assuming that the exogenous causes of death eventually will be
eliminated and only the genetic factors remain. Thus, the majority of deaths will concentrate at a
short range of ages. Under the mortality compression assumption, the shape of survival curve is
close to a rectangle, which is also known as rectangularization (Wilmoth and Horiuchi, 1999).
Although empirical studies (Kannisto, 2000; Cheung et al., 2006) favor the concept of mortality
compression, there are still no concrete evidences for supporting the theory.

In this study, instead of evaluating available mortality models and theory, we propose using

the idea of discount sequence in Bandit Problem (Berry and Fristedt, 1985), originally from a



gambling problem for maximizing payoff given a number of rounds. In particular, we shall check
if the mortality rates and life expectancies follow the pattern of the discount sequence. We shall
give a brief introduction of discount sequence in the next section, following by evaluating if
frequently used mortality models satisfying the assumption of discount sequence in Section 3. The

empirical analysis of the mortality data are given in Section 4.

2. Discount Sequence

In Bandit Problem, the number of observations N (namely, “Horizon) can be treated as the

survival time T. Define a,=P(N>n) and ,=> ¢ . A sequence of (a,a,,...) or

i=n

(71, 75, ---) IS regular if for every positive integer n,
Ay Qs < (an+1)2 or Vn 7 ne2 < (7/n+1)2 : (l)

In Bandit Problem, the regular discount sequences can often reduce the computation complexity

and posses good properties.

If the survival function S(x) = P(T > x) s treated as¢, , then (1) is the same as

O A @
n+l

where | the number of survivors at age n in the setting of life tables. Or equivalently,
eo:kao:Zak:71' 3)

since the curtate (discrete) life expectancy at age x satisfiese, = ) . p,. In other words, the

k=1
regularity conditions in (1) can be regulated using the survival probability or using the life
expectancy.

To apply the inequality in (2), the data need to be formatted as the form in life tables, i.e.,
computing the values of |, given the radix |, (which is usually 100,000). Note that the

inequality of the life expectancy in (1) only regulates the life expectancy at age 0. To generalize

the idea of regularity for the life expectancy, we can also check if, similar to the form in (2),



0o 0o

€n:En+2

o o 0 )
€n-Eni2 < (en+l) or 5 ;
(9n+1)

<1, (4)

Following the same idea of generalizing the discount sequence, we can also check if the numbers of

deaths (i.e., d,:the number of deaths at age x) satisfy

d, -d
d.-d., </ ) or —n_—nt2 <1, 5
n n+2 ( n+1) (dn+1)2 ( )
and check if the mortality rates at age x (i.e., q,) satisfy
< O P
Oy - O < (qn+ )2 or <1. (6)
? ' (qn+l)2

We shall verify the regularity conditions in (2), (4), (5), and (6), for the frequently used
mortality models and empirical data from varies countries, and then evaluate which regularity
condition has the best fit. We shall first check the frequently used mortality models in the next

section, following by checking the empirical data in Section 4.

3. Mortality Assumption and the Discount Sequence
Since the mortality rates of the elderly have the largest reduction in recent years, the focus of
this section shall be on the elderly related mortality models. The Gompertz law is one of the famous

models for the elderly, assuming that
i, =BCX, B>0,C>1, (7)

where x is age and g is the force of mortality or instaneous mortality rate. Using the survival

probability, the Gompertz law implies that

P =P > X +t|T > x) =exp(- 1,..05) = exp(—%(ct _1),

BC*
log(C)

or, log(,p,) =— (C' 1) . Therefore, the Gompertz law is equivalent to

Iog(px+l) — C ] (8)
log(p,)



If we use the central death rate m, as an approximate to «, , then k., = log(m

X+ =

/m,)=1og(C) isa

X+1

constant.

Given u =BC” , it can be shown that an:npozexp(—ﬁ(cn—l)) and thus

GO _ gyp(~BC(C?-2C +1)) = exp(——=

. (C-1)%) <1 since C > 1. This indicates that
() log(C) log(C)

if the mortality rates follow the Gompertz law, then the regularity condition (2) is always true.

Similarly, suppose that the mortality rates follow the Makeham law, i.e., g, = A+ BC*. Then the

regularity condition (2) is also satisfied.
Coale-Kisker (CK) model (Coale and Kisker, 1990) is another famous example of the elderly
mortality models. The CK model assumes that

m, = Mg -exp(->_k,), x=66,67,..., (9)

y=66

and can be treated as an extension of the Gompertz law, where k., is not necessary to be constant.

X+1

Brown (1997) introduced a model similar to CK model, for constructing U.S. 1989-91 life tables.

For people aged 94 or higher, the mortality ratio % = 1.05 (male) or 1.06 (female) is used to

X

extrapolate mortality rates at higher ages, which indicates that g, -q.,, = (q,,,)*, or the regularity

condition (6) is always true.
Other than the elderly mortality models, we shall also check three frequently used mortality

models: uniform distribution of death (UDD), constant force (CF), and hyperbolic assumption.

Under the UDD assumption, for 0 <t <m, it is believed that I ., =m_—t.| +l~l . Then the
m

n n+m
m

. . i . I,/
regularity condition (2) is equivalent to "2 <1 or p,,,<p,. Except for the ages between

n+l1" 'n

15 and 25, the inequality p,, < p, isexpected to be true for the adult. In other words, the UDD

assumption satisfies the regularity condition (2).

If the mortality force is always constant, i.e., x = for all age x, then  p, =™ =20

X

n



I I ef(2n+2),u
and n_'n+2 _

2 —(2n+2)
(In+l) € “

=1. This is equivalent to saying that the CF assumption satisfies the

. . . L m m-t t
regularity condition (2). The hyperbolic assumption is to assume that — = +— for
In+t In In+m
o<t<m,or I -l.,,=1.;" : +2|”*2 . Similar to the case in the UDD assumption, it is believed
that | ., > I“ +2|”*2 for the adult.  Therefore the hyperbolic assumption satisfies that

% <(l,,,)?, i.e., the regularity condition (2) holds.

In this section, we have seen that the three frequently used mortality assumption and the

Gompertz law (and its variant Makeham law) all satisfy the regularity condition that % <1 or

n+1

P,.. < p, for the adult. This would put restrictions on the mortality improvement for all ages.
For example, Lee-Carter (LC) model (Lee and Carter, 1992) is a popular mortality model, assuming

that
Iog(mx,t) = ax +ﬂx 'Kt +gx,t ! (10)

where X is age, t is time, and «,, £

X!

Kk, are parameters. Because x, is usually a linear function
of time, the Lee-Carter model is like fitting regression analysis with time for the mortality rates at
every age. If the mortality improvement of age x (i.e., £,) is smaller than that of age x+1, then
eventually p,,, < p,will fail.  This implies that, given that the decreasing trend «, is same for all
age, the mortality improvement rate £, can not be constant, if the regularity condition is true. In
varies empirical studies, it has been shown that the parameter g is a constant of time.

Other than the common consensus that p,., < p, for the adult, we need extra information to
search for the mortality patterns for the elderly. In the next section, we will use empirical data to
verify the regularity condition in (4), (5), and (6), and see which inequality can provide more

information about the mortality rates for the elderly.

4. Empirical Study



In this section, we shall check the empirical data to explore possible connection between the
regular discount sequences and the mortality rates. The mortality data considered include Japan,
U.S., England & Welsh, Sweden, France, and Taiwan. These data mainly are from Human
Mortality Database (HMD) at University of Berkeley, and Taiwan data will be from Ministry of
the Interior, the Executive Yuan of the Republic of China (Taiwan). The life expectancies of
these countries in 2000 are in Table 1.

We shall first verify the regularity condition (4), and we use the ratio of life expectances in

0o o
€n-Cn+2

(en+l)2

. Figure 1 shows the boxplots for the

Taiwan as a demonstration for checking the ratio

ratios of life expectancies in 1960-2005. The ratios are almost always smaller than 1, except for
higher ages with fewer observations (and so larger fluctuations). Also, it seems that the ratios are
a decreasing function of age and become level at higher ages. The ratios in U.S. show similar

patterns.

Table 1. Life Expectancies of 6 Countries in 2000

Japan | Sweden | France England u.S. Taiwan
& Welsh
Male 77 77 75 74 74 74
Female 84 82 82 80 79 80
Both Sex 81 79 78 77 77 76
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Figure 1. The Ratios of Life Expectancies in Taiwan

We shall first evaluate the ratios of numbers of survivors, using the inequality (2). Because

the logarithms of mortality rates for the adult, except for the young adult, behave like a linear and

increasing function of age, the inequality % <1lis equivalent to p,,; < p, , which shall be true.

n+1

However, it should be noted that the mortality laws (e.g., the Gompertz law) are applied to calculate
the mortality rates of very high ages in life tables. Thus, the ratios of numbers of survivors would

rely on the methods of life construction and the inequality should be applied carefully. For

example, if the Gimpertz law is used, then a”'—a”fzexp(—i(c ~-1)%) is a decreasing
(1) log(C)

function of age and is always smaller than 1.

The ratios of life expectancies in Japan show different patterns (Figure 2). The ratios are
very close to 1 for all adults except for the groups of ages 95 and over (smaller sample sizes). The
ratios of life expectancies in Sweden, France, England & Welsh, and U.S. are between those in
Taiwan and those in Japan. Among the six countries, Taiwan has the smallest life expectancies
and Japan has the largest. This indicates that the life expectancy and the ratio of the life
expectancies have some sort of connections. The ratios are close to 1 for countries with longer life

expectancies. In the future, we shall collect data from countries with lower life expectancies and see



if the ratios are significantly smaller than 1.
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Figure 4. The Ratios of Mortality Rates in Taiwan

Next, we shall check the inequalities in (5) and (6). Figures 3 and 4 are the ratios of numbers
of deaths and the ratios of the mortality rates in Taiwan. The ratios of numbers of deaths in Taiwan
are very close to 1 as well, and they also decrease as the age increases. However, the ratios are not
always smaller than 1, and they fluctuate around the value 1 and have larger ranges than those of
the life expectancies. Similar patterns appear in the ratios of mortality rates (Figure 4). It should
be noted that the mortality rates of ages 75 and over are derived via the Gompertz law and thus the
ratios of mortality rates have very small ranges.

To double check the results, we also check the ratios of numbers of deaths and mortality rates
in Japan. Figure 5 lists the ratios of numbers of deaths and mortality rates for the Japan male.
The ratios also fluctuate around the value 1 and have larger variances, comparing to those of life
expectancies in Figure 2.  Similar results appear in the case of Japan female, as well as in Sweden,
France, England & Welsh, and U.S. In other words, the ratios of life expectancies are close to 1 and

also have smaller variances than those of numbers of deaths and those of mortality rates.
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Figure 5. The Ratios of Numbers of Deaths Mortality Rates in Japan (Male)

Based on the empirical results, we found that the ratios of life expectancies satisfy the
inequality (4) and that the ratios are closer to the value 1 for countries with higher life expectancies
(such as Japan and Sweden). This indicates that the inequality (4) can serve as a possible
constraint for regulating the mortality rates for the elderly. The ratios of numbers of deaths and
mortality rates are also very close to 1 but have larger variances. However, the inequalities (5) and

(6) are not always satisfied.

5. Discussions and Conclusions

In this study, we consider the discount sequence and introduce the concept into modeling the
mortality rates of the elderly. We found that the frequently used mortality model (UDD, constant
force, and hyperbolic assumption) and the Gompertz law all satisfy the regularity condition (2).
But applying solely the condition (2) can only guarantee that p,, < p, for the adult. This of
course can provide that some sorts of constraints to mortality rates. For example, in the LC model,
the annual mortality improvement «, is usually a linear function of time, say, increasing function

of time. If p,,<p,is to be satisfied, then the improvement rate of age x S, should be a



non-increasing function of age.

Since the inequality (2) provides a loose constraint for the mortality rates, we consider the
inequalities (4), (5), and (6) to analyze empirical data from Taiwan, Japan, Sweden, France,
England & Welsh, and U.S. Based on the life tables from these six countries, we found that the
ratios of life expectancies are always smaller than 1 and countries with higher life expectancies
have larger ratios. For both the male and female, Japan and Sweden have ratios of life
expectancies almost equal 1. It seems that the ratios of life expectancies can serve a possible
constraint for regulating the mortality rates. The ratios of numbers of deaths and ratios of
mortality rates have similar behaviors but have larger variances. We suggest using the ratios of
life expectancies to regulating mortality rates, instead of using those of numbers of deaths and ratios

of mortality rates.

0] 0] (0]
Although we found that the ratio of life expectancy ex-ex.2 < (ex:1)’can serve as a possible

constraint for smoothing mortality rates, there are some limitations in apply this inequality. First,
the inequality can not be applied to modify mortality rates directly. The values of stationary
populations (i.e., L,and T,) are needed in computing the life expectancy. In other words, it is
required to build a connection between the mortality rates and life expectancy. The other limit is
that our empirical results depending on the life tables from six countries in this study. Different
graduation and life table construction methods might give different results, although the UDD is
I, +1

1
usually assumed to compute the stationary population (i.e., L, = JO [, dt ==2—*L)

Other than the six countries, we will consider other countries to make sure the result

(0] [0} o
ex-exs2 < (ex:1)?.  If our conjecture is correct, countries with shorter life expectancies than Taiwan

0o 0o

x- €

and U.S. would have smaller ratio eo—”z, and countries with longer life expectancies than Taiwan
(ex+l)2

(0] o 0]
and U.S. would have ratio close to 1. Also, the inequality ex-ex.2 < (ex1)® can not be applied

directly in modifying mortality rates. \We shall consider other possible approaches to regulate the

mortality rates, without relying too much on the life table construction methods. For example, the



0] (0]
regular condition is also equivalent to ¢, -em1<q,-ei for i<m. We can try to modify this

inequality and verify if this is the case empirically.



References

Berry, D.A. and Fristedt, B. (1985). Bandit Problems, Chapman & Hall.

Brown, R.L. (1997). Introduction to the Mathematics of Demography, Society of Actuaries.
Cheung, S.L.K., Robine, J., Tu, E.J., and Caselli, G. (2006). Three dimensions of the survival
curve: horizontalization, verticalization, and longevity extension, Demography, 42(2),
243-258.

Coale, AJ. and Kisker, E.E. (1990). Defects in data on old-age mortality in the United States:
new procedures for calculating mortality schedules and life tables at the highest ages, Asian
and Pacific Population Forum, 4(1), 1-31.

Kannisto, V. (1994). Development of Oldest-Old Mortality, 1950-1990: Evidence from 28
Developed Countries, Odense University.

Kannisto, V. (2000). Measuring the compression of mortality, Demographic Research, vol. 3,
Article 6.

Lee, R.D. and Carter, L.R. (1992). Modelling and forecasting U.S. mortality. Journal of the
American Statistical Association, 87, 659-671.

Olshansky, S.J. and Carnes, B.A. (1997). Ever since Gompertz, Demography, 34(1), 1-15.
Wilmoth, J. (1995). Are mortality rates falling at extremely high ages? An investigation based
on a model proposed by Coale and Kisker, Population studies, 49: 281-295.

Wilmoth, J. and Horiuchi, S. (1999). Rectangularization revisited: variability of age at death
within human populations, Demography, 36: 475-495.

Yue, C.J. (2002). Oldest-Old mortality rates and the Gompertz law: A theoretical and empirical

study based on four countries, Journal of Population Studies, 24, 33-57.



