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一、中文摘要 
 

物種相似性為兩個族群中有物種的相

似程度測量值，可用於比較兩個地區生態環

境的相似程度，或是評估某族群在不同時間

的變遷。過去，生態學家曾使用物種重複評

估諸如珊瑚、水鳥等生物族群間的相似性及

其變遷；近年來也應用於網際網路搜尋引

擎，查詢比對資料的相似性。較為常用的相

似指數為 Jaccard 指數，其定義為相同品種

個數的比例，並未將品種在族群中佔有的比

例及可能遷移的特性列入考慮，無法反映各

品種間的生態競爭問題，參考 Yue 等人

(2001, 2005)的討論。 
本研究以探討多重社群的相似指數為

目的，首先研究回顧現有的兩兩社群間的相

似指數，並將其延伸至多重社群。本文除了

探討如何將變異數分析延伸至多重社群的

相似指數，並以最大概似估計求取相似指數

的估計量，以理論及電腦模擬研究估計量的

在大樣本及小樣本的特性。 
 

關鍵詞：相似指數、生物多樣性、Jaccard 指數、

Simpson 指數、Shannon 指數、最大概似估計 
 
Abstract 
 

Most species diversity indices are 
designed to measure the species diversity of 
one population or two populations. For 
example, the Shannon and Simpson indices are 
for one population and the Jaccard index is for 
two populations. There are only a few for the 
similarity among three or more populations. In 

this study, we propose a class of similarity 
indices for multiple populations, to measure 
the ratio of between-population characteristics 
and within-population characteristics.  

The focus of the study is to review the 
similarity indices and propose a similarity 
index for measuring 3 or more populations. 
The proposed index will adapt the idea of 
Analysis of Variance in measuring treatment 
effect. We will use the Maximum likelihood 
estimation to find the estimator and study its 
asymptotic properties.  

 
Keywords: Similarity index; Species diversity; 
Jaccard Index; Simpson index; Shannon Index; 
Maximum likelihood estimator 
 
二、緣由與目的 
 

Similarity index originally was studied in 
ecology, biology, and biogeography, to 
measure the species diversity between two 
populations, or the change of a population over 
time. It receives more attentions and 
applications in recent years due to the growing 
needs of analyzing large data sets. Search 
engine on the web is a famous application of 
using the similarity index. Most search engines 
require users typing keywords and a similarity 
index value of each web page is calculated 
based on these keywords. Then the closeness 
of web page with respect to the keywords is 
sorted according to the similarity values.  

To compute the similarity index for each 
population and then judge the closeness of any 
two populations is one way to decide if two 
populations are similar. This is more efficient 



and more convenient for the web search. 
Another way to decide if two populations are 
similar is to compute the similarity indices of 
two populations. Similarity indices for two 
populations include the Jaccard index, Morisita 
index, Smith’s index (Smith et al., 1996), and 
Yue’s index (Yue and Clayton, 2005).  
Although the between-population similarity 
indices are likely to be underestimated, they 
are preferred to the similarity indices of each 
population.  

Although the demands of measuring 
similarity among three populations and more 
are growing, most studies still focus on 
measuring the similarity of one or two 
populations and only a few discuss the 
extension to more than two populations. Lande 
(1996) perhaps is the only work talking about 
the extension of measuring the similarity of 
two populations to that of three populations 
and more. He used the notion analogical to the 
analysis of variance (ANOVA) and separate 
total species diversity into between and within 
species diversity.  The species diversity 
considered needs to satisfy the concavity 
property in order to be extended to measure the 
similarity of three populations.  

 
三、多重母體相似指數 
 

In this section, we shall use the Simpson 
index to demonstrate the proposed similarity 
index. The Simpson index is the probability of 
obtaining same species if two observations are 
sampled. The Morisita index and Yue’s index 
(Yue and Clayton, 2005) can be treated as the 
two-population Simpson index. For example, 
the Morisita index is defined as 
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 are the proportions of the ith species 
in populations 1 and 2, respectively. The 
numerator (i.e., between effect) of the Morisita 
index is the probability of obtaining same 

species if one observation is taken from each 
population. The denominator (i.e., within 
effect) of the Morisita index is the probability 
of obtaining same species if two observations 
are taken from one of two populations. If these 
two populations are similar with respect to 
species proportions, 
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Mθ will be close to 1, 
since sampling from two identical populations 
is equivalent to sampling from any one of the 
populations. 
Therefore, the Morisita index is the ratio of the 
between Simpson index to the within Simpson 
index. To further extend the Lande’s notion of 
similarity index being the ratio of between and 
within characteristics, we define a generalized 
Simpson index for three populations and more 
as  
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where pij is the species proportion of species i 

for population j,  for j = 1, 2, …, m, 

and S is the total number of species in 
Populations 1 to m. It is obvious that the 
Morisita index is a special case of (1) with m = 
2. Also,  can be shown by the fact 

that . 
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Note that this index is the ratio between 
two Simpson indices. The index on the 
numerator is the probability that, randomly 
selecting two populations and randomly 
sampling an observation from each population, 
these two observations are of the same species. 
The denominator is the probability that, 
randomly selecting one population and 
randomly sampling two observations from this 
population, these two observations are of the 
same species. In other words, the numerator is 
the “average” between Simpson index and the 
denominator is the “average” within Simpson 
index. 

 
四、最大概似估計 
 

The maximum likelihood estimator can be 
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used for the similarity index in (1), similar to 

that in Yue and Clayton. Let  and 

. Thus, the similarity index in (1) 

is equivalent to 
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Figure 1. Similarity index vs. number of 

populations (uniform dist.) 
Example 1. Suppose there are some identical 
populations, with the number of species being 
10, and the species proportions follow uniform 
distribution. Figure 1 shows the results of 
similarity index values vs. the number of 
populations (1,000 simulation runs). We can see 
that the mean value of the index is not 
influenced by the number of populations. 
However, as noted in Chao et al. (2006), the 
similarity index based on the number of 
occurrences (like the proposed θ) is usually 
under-biased in uniform distribution.  Also, the 
variance of the index depends on the sample 
size and the number of populations. We can also 
see that the variance is also a function of the 
number of populations and decreases faster than 
the speed of sample size. 
 To further investigate the relationship of 
sample size and variance, we plot the graphs of 
sample size vs. n×variance and sample size vs. 
n×s.e. (Figure 2). It is interesting to see that the 
variance of  looks like a constant, no matter 
what the number of populations is. The reason 
for much faster convergence could be that 

 in  for a uniform 

distribution. We shall check the case of other 
distributions. 
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六、結論與建議 
 

In this study, we propose a probabilistic 
approach to measure multiple-community 
similarity. In particular, the similarity index 
can be computed recursively and is adapted 
from the set theory, which is used in Yue et al. 
(2001) and Yue and Clayton (2005).  The 
proposed similarity index can be separated into 
measuring various order of similarity, and thus 
can provide more thorough information of 
shared species. If we are to sampling species, 
the proposed similarity index can be treated as 
a generalization of the Jaccard index and the 
index by Smith et al. (1996). If one observation 
is taken from each community, then the 
proposed approach can be generalized to 
indices similar to the Morisita index. 

 Lande, R. (1996). Statistics and 
Partitioning of Species Diversity, and 
Similarity among Multiple Communities. 
OIKOS 76:5-13. 

 Yue, J. C., Clayton, M. K., Lin, F. (2001). 
A Nonparametric Estimator of Species 
Overlap. Biometrics 57:743-749. 

 Yue, J. C., Clayton, M. K. (2005). An 
Overlap Measure based on Species 
Proportions. Comm. Statist. Theory 
Methods 34:2123-2131. 

Note that Lande (1996) also proposed a 
similarity index for multiple communities, but 
there are two main differences between our 
and his approaches.  The similarity indices by 
Lande are based on the species diversity of one 
population and are different to our similarity 
indices, where ours are extension of frequently 
used two-population indices and our goal is to 
measure real similarity between 2 populations.  
Thus, our similarity indices have probability 
interpretation. 

Still, there are limitations in applying the 
proposed similarity index. For example, the 
leave-one-out method can be used to verify 
whether there are any communities 
significantly different to others. Nonetheless, 
there are no suggestions for picking up these 
different communities. 
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Abstract 

 Life expectancies of the male and female in many countries have been increasing significantly 

since the middle of 20th century.  The elderly is expected to live longer after retirement and the 

mortality rates of the elderly receive more attentions recently.  However, since there were not 

enough elderly data before 1990, it is still unknown if searching for a reliable mortality law can 

solve the longevity risk in insurance business.  In this study, we adapt the idea of regular discount 

sequence in Bandit Problem. We will try to interpret the life expectancy using the idea of regular 

discount sequence, and develop a model for the survival probabilities.  Mortality data from many 

countries will be used to verify the assumption and model proposed in this study. 

 



1. Introduction 

The life expectancy of human beings has been experiencing significant and steady increases 

since the turn of 20th century, and the life expectancies of most developed countries for the male and 

female are doubled over the past 100 years.  Because of the prolonging life, the population aging 

becomes a common phenomenon. For example, the proportions of the elderly (aged 65 and over) in 

Japan and Italy were around 10% about 30 years ago, quickly reached 20% in 2005, and are 

expected to pass 30% mark in 40 years.  The rapidness of population aging is far beyond the 

expectation.  As a result, the governments (and the social insurance systems) will no longer be 

able to support the elderly, and individuals need to save enough money while they can for their lives 

after retirement.   

The prolonging life has made the annuity and health insurance products popular (accounting 

for more than 75% of insurance premiums of the U.S. in 2003) and this puts the pressure to the 

insurance companies for accurate estimates of the elderly mortality (i.e., longevity risk).  But the 

elderly in many countries experienced a big mortality improvement, larger than expected and than 

those of younger populations, and it is not clear whether the mortality improvement will slow down, 

continue, or speed up.  Under- or over-estimate of the true mortality rates would create problems 

to the insurance companies.   

Over the past two decades, many conjectures have been proposed to describe (or even to 

predict) the mortality improvements and life expectancy.  For example, the concept of mortality 

compression is theory for assuming that the exogenous causes of death eventually will be 

eliminated and only the genetic factors remain.  Thus, the majority of deaths will concentrate at a 

short range of ages.  Under the mortality compression assumption, the shape of survival curve is 

close to a rectangle, which is also known as rectangularization (Wilmoth and Horiuchi, 1999).  

Although empirical studies (Kannisto, 2000; Cheung et al., 2006) favor the concept of mortality 

compression, there are still no concrete evidences for supporting the theory. 

In this study, instead of evaluating available mortality models and theory, we propose using 

the idea of discount sequence in Bandit Problem (Berry and Fristedt, 1985), originally from a 



gambling problem for maximizing payoff given a number of rounds.  In particular, we shall check 

if the mortality rates and life expectancies follow the pattern of the discount sequence.  We shall 

give a brief introduction of discount sequence in the next section, following by evaluating if 

frequently used mortality models satisfying the assumption of discount sequence in Section 3.  The 

empirical analysis of the mortality data are given in Section 4.  

 

2. Discount Sequence 

In Bandit Problem, the number of observations N (namely, “Horizon”) can be treated as the 

survival time T.  Define )( nNPn ≥=α  and .  A sequence of ∑
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regularity conditions in (1) can be regulated using the survival probability or using the life 
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To apply the inequality in (2), the data need to be formatted as the form in life tables, i.e., 

computing the values of  given the radix (which is usually 100,000).  Note that the 

inequality of the life expectancy in (1) only regulates the life expectancy at age 0.  To generalize 

the idea of regularity for the life expectancy, we can also check if, similar to the form in (2),   
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Following the same idea of generalizing the discount sequence, we can also check if the numbers of 

deaths (i.e., : the number of deaths at age x) satisfy xd
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 We shall verify the regularity conditions in (2), (4), (5), and (6), for the frequently used 

mortality models and empirical data from varies countries, and then evaluate which regularity 

condition has the best fit.  We shall first check the frequently used mortality models in the next 

section, following by checking the empirical data in Section 4.  

 

3. Mortality Assumption and the Discount Sequence 

 Since the mortality rates of the elderly have the largest reduction in recent years, the focus of 

this section shall be on the elderly related mortality models. The Gompertz law is one of the famous 

models for the elderly, assuming that  

,1,0, >>= CBBC x
xμ       (7) 

where x is age and μx is the force of mortality or instaneous mortality rate. Using the survival 

probability, the Gompertz law implies that 
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If we use the central death rate as an approximate toxm xμ , then )log()/log( 11 Cmmk xxx =≡ ++  is a 
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if the mortality rates follow the Gompertz law, then the regularity condition (2) is always true.  

Similarly, suppose that the mortality rates follow the Makeham law, i.e., . Then the 

regularity condition (2) is also satisfied.  

x
x BCA +=μ

Coale-Kisker (CK) model (Coale and Kisker, 1990) is another famous example of the elderly 

mortality models.  The CK model assumes that  
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and can be treated as an extension of the Gompertz law, where  is not necessary to be constant.  

Brown (1997) introduced a model similar to CK model, for constructing U.S. 1989-91 life tables.  

For people aged 94 or higher, the mortality ratio 

1+xk

x

x

q
q 1+  = 1.05 (male) or 1.06 (female) is used to 

extrapolate mortality rates at higher ages, which indicates that , or the regularity 

condition (6) is always true.   

2
12 )( ++ =⋅ nnn qqq

Other than the elderly mortality models, we shall also check three frequently used mortality 

models: uniform distribution of death (UDD), constant force (CF), and hyperbolic assumption.  

Under the UDD assumption, for mt ≤≤0 , it is believed that mnntn l
m
tl

m
tml ++ ⋅+⋅

−
= .  Then the 

regularity condition (2) is equivalent to 1
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ll , or nn pp ≤+1 .  Except for the ages between 

15 and 25, the inequality  is expected to be true for the adult.  In other words, the UDD 

assumption satisfies the regularity condition (2). 
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If the mortality force is always constant, i.e., μμ =x  for all age x, then 
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ll . This is equivalent to saying that the CF assumption satisfies the 

regularity condition (2).  The hyperbolic assumption is to assume that 
mnntn l

t
l

tm
l
m

++

+
−

=  for 

, or mt ≤≤0
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lllll .  Similar to the case in the UDD assumption, it is believed 

that 
2

2
1

+
+

+
≥ nn

n
lll  for the adult.  Therefore the hyperbolic assumption satisfies that 
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nnn llllll , i.e., the regularity condition (2) holds.  

In this section, we have seen that the three frequently used mortality assumption and the 

Gompertz law (and its variant Makeham law) all satisfy the regularity condition that 1
)( 2

1

2 ≤
⋅

+

+

n

nn

l
ll  or 

 for the adult.  This would put restrictions on the mortality improvement for all ages.  

For example, Lee-Carter (LC) model (Lee and Carter, 1992) is a popular mortality model, assuming 

that  

nn pp ≤+1

txtxxtxm ,, )log( εκβα +⋅+= ,      (10) 

where x is age, t is time, and xα , xβ , tκ are parameters. Because tκ  is usually a linear function 

of time, the Lee-Carter model is like fitting regression analysis with time for the mortality rates at 

every age.  If the mortality improvement of age x (i.e., xβ ) is smaller than that of age x+1, then 

eventually will fail.  This implies that, given that the decreasing trend xx pp ≤+1 tκ  is same for all 

age, the mortality improvement rate xβ  can not be constant, if the regularity condition is true. In 

varies empirical studies, it has been shown that the parameter xβ  is a constant of time.  

Other than the common consensus that nn pp ≤+1  for the adult, we need extra information to 

search for the mortality patterns for the elderly.  In the next section, we will use empirical data to 

verify the regularity condition in (4), (5), and (6), and see which inequality can provide more 

information about the mortality rates for the elderly.  

 

4. Empirical Study  



In this section, we shall check the empirical data to explore possible connection between the 

regular discount sequences and the mortality rates.  The mortality data considered include Japan, 

U.S., England & Welsh, Sweden, France, and Taiwan.  These data mainly are from Human 

Mortality Database (HMD) at University of Berkeley, and Taiwan data will be from Ministry of 

the Interior, the Executive Yuan of the Republic of China (Taiwan).  The life expectancies of 

these countries in 2000 are in Table 1. 

We shall first verify the regularity condition (4), and we use the ratio of life expectances in 

Taiwan as a demonstration for checking the ratio 
2
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+⋅

n
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e

ee . Figure 1 shows the boxplots for the 

ratios of life expectancies in 1960-2005.  The ratios are almost always smaller than 1, except for 

higher ages with fewer observations (and so larger fluctuations).  Also, it seems that the ratios are 

a decreasing function of age and become level at higher ages.  The ratios in U.S. show similar 

patterns.  

 

Table 1. Life Expectancies of 6 Countries in 2000  

 Japan Sweden France 
England 
& Welsh

U.S.  Taiwan 

Male 77 77 75 74 74 74 
Female 84 82 82 80 79 80 

Both Sex 81 79 78 77 77 76 

 



 

Figure 1. The Ratios of Life Expectancies in Taiwan  

 

We shall first evaluate the ratios of numbers of survivors, using the inequality (2).  Because 

the logarithms of mortality rates for the adult, except for the young adult, behave like a linear and 

increasing function of age, the inequality 1
)( 2
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2 ≤
⋅
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+
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l
ll is equivalent to xn pp ≤+1 , which shall be true.  

However, it should be noted that the mortality laws (e.g., the Gompertz law) are applied to calculate 

the mortality rates of very high ages in life tables.  Thus, the ratios of numbers of survivors would 

rely on the methods of life construction and the inequality should be applied carefully.  For 

example, if the Gimpertz law is used, then ))1(
)log(

exp(
)(

2
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⋅
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function of age and is always smaller than 1.  

The ratios of life expectancies in Japan show different patterns (Figure 2).  The ratios are 

very close to 1 for all adults except for the groups of ages 95 and over (smaller sample sizes).  The 

ratios of life expectancies in Sweden, France, England & Welsh, and U.S. are between those in 

Taiwan and those in Japan.  Among the six countries, Taiwan has the smallest life expectancies 

and Japan has the largest.  This indicates that the life expectancy and the ratio of the life 

expectancies have some sort of connections.  The ratios are close to 1 for countries with longer life 

expectancies. In the future, we shall collect data from countries with lower life expectancies and see 



if the ratios are significantly smaller than 1. 

 

 
Figure 2. The Ratios of Life Expectancies in Japan  

 

 

Figure 3. The Ratios of Numbers of Deaths in Taiwan 
 



 
Figure 4. The Ratios of Mortality Rates in Taiwan 

 

Next, we shall check the inequalities in (5) and (6). Figures 3 and 4 are the ratios of numbers 

of deaths and the ratios of the mortality rates in Taiwan. The ratios of numbers of deaths in Taiwan 

are very close to 1 as well, and they also decrease as the age increases.  However, the ratios are not 

always smaller than 1, and they fluctuate around the value 1 and have larger ranges than those of 

the life expectancies.  Similar patterns appear in the ratios of mortality rates (Figure 4).  It should 

be noted that the mortality rates of ages 75 and over are derived via the Gompertz law and thus the 

ratios of mortality rates have very small ranges.  

To double check the results, we also check the ratios of numbers of deaths and mortality rates 

in Japan.  Figure 5 lists the ratios of numbers of deaths and mortality rates for the Japan male.  

The ratios also fluctuate around the value 1 and have larger variances, comparing to those of life 

expectancies in Figure 2.  Similar results appear in the case of Japan female, as well as in Sweden, 

France, England & Welsh, and U.S. In other words, the ratios of life expectancies are close to 1 and 

also have smaller variances than those of numbers of deaths and those of mortality rates.   

 



 

Figure 5. The Ratios of Numbers of Deaths Mortality Rates in Japan (Male) 

 

Based on the empirical results, we found that the ratios of life expectancies satisfy the 

inequality (4) and that the ratios are closer to the value 1 for countries with higher life expectancies 

(such as Japan and Sweden).  This indicates that the inequality (4) can serve as a possible 

constraint for regulating the mortality rates for the elderly.  The ratios of numbers of deaths and 

mortality rates are also very close to 1 but have larger variances. However, the inequalities (5) and 

(6) are not always satisfied.  

 

5. Discussions and Conclusions 

In this study, we consider the discount sequence and introduce the concept into modeling the 

mortality rates of the elderly.  We found that the frequently used mortality model (UDD, constant 

force, and hyperbolic assumption) and the Gompertz law all satisfy the regularity condition (2).  

But applying solely the condition (2) can only guarantee that xx pp ≤+1  for the adult.  This of 

course can provide that some sorts of constraints to mortality rates.  For example, in the LC model, 

the annual mortality improvement tκ  is usually a linear function of time, say, increasing function 

of time.  If is to be satisfied, then the improvement rate of age x xx pp ≤+1 xβ  should be a 



non-increasing function of age.  

Since the inequality (2) provides a loose constraint for the mortality rates, we consider the 

inequalities (4), (5), and (6) to analyze empirical data from Taiwan, Japan, Sweden, France, 

England & Welsh, and U.S.  Based on the life tables from these six countries, we found that the 

ratios of life expectancies are always smaller than 1 and countries with higher life expectancies 

have larger ratios.  For both the male and female, Japan and Sweden have ratios of life 

expectancies almost equal 1. It seems that the ratios of life expectancies can serve a possible 

constraint for regulating the mortality rates.  The ratios of numbers of deaths and ratios of 

mortality rates have similar behaviors but have larger variances.  We suggest using the ratios of 

life expectancies to regulating mortality rates, instead of using those of numbers of deaths and ratios 

of mortality rates.  

Although we found that the ratio of life expectancy can serve as a possible 

constraint for smoothing mortality rates, there are some limitations in apply this inequality.  First, 

the inequality can not be applied to modify mortality rates directly.  The values of stationary 

populations (i.e., and ) are needed in computing the life expectancy.  In other words, it is 

required to build a connection between the mortality rates and life expectancy.  The other limit is 

that our empirical results depending on the life tables from six countries in this study.  Different 

graduation and life table construction methods might give different results, although the UDD is 

usually assumed to compute the stationary population (i.e., 
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Other than the six countries, we will consider other countries to make sure the result 

.  If our conjecture is correct, countries with shorter life expectancies than Taiwan 

and U.S. would have smaller ratio 
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ee , and countries with longer life expectancies than Taiwan 

and U.S. would have ratio close to 1.  Also, the inequality  can not be applied 

directly in modifying mortality rates.  We shall consider other possible approaches to regulate the 

mortality rates, without relying too much on the life table construction methods. For example, the 
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regular condition is also equivalent to  for i

o

mm

o

i eqeq ⋅≤⋅ +1 mi ≤ . We can try to modify this 

inequality and verify if this is the case empirically.   
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