
行政院國家科學委員會專題研究計畫 成果報告 

 

多序類相關與多列相關之最大削減概似估計 

研究成果報告(精簡版) 

 
 
 
計 畫 類 別 ：個別型 

計 畫 編 號 ： NSC 96-2118-M-004-006- 

執 行 期 間 ： 96 年 08 月 01 日至 97 年 08 月 31 日 

執 行 單 位 ：國立政治大學統計學系 

  

計 畫主持人：鄭宗記 

  

計畫參與人員：碩士班研究生-兼任助理人員：任嘉珩 

 

  

  

報 告 附 件 ：出席國際會議研究心得報告及發表論文 

 

  

處 理 方 式 ：本計畫可公開查詢 
 
 
 

中 華 民 國   97 年 12 月 01 日 
 



Maximum Trimmed Likelihood Estimation of Polychoric
and Polyserial Correlations

Tsung-Chi Cheng∗

Abstract

In this project we apply the maximum trimmed likelihood (MTL) approach (Hadi
and Luceño 1997) to obtain the robust estimators of polychoric and polyserial corre-
lations. The breakdown property of the resulting estimator is discussed. The forward
search algorithm (Atkinson 1994) is adapted to compute the proposed MTL estimates.
A real dataset is also used to illustrate the method and results of the detection of the
outliers.

Keywords: Breakdown point, maximum trimmed likelihood estimator, polychoric cor-
relation, polyserial correlation.

1 Introduction

The detection of multiple outliers in multivariate data has been a particularly intractable

problem. There is a number of approaches for their identification, which essentially requires

a robust estimation of multivariate location and shape. A difficulty is that most estimation

procedures are known to break down when the fraction of contamination is greater than

1/(p + 1), where p is the dimension of the data. Both the minimum volume ellipsoid (MVE)

and the minimum covariance determinant (MCD) estimators provide a high breakdown of the

robust estimation of multivariate location and shape (Rousseeuw and Leroy 1987). Moreover,

Butler et al. (1993) show that the MCD estimator has better theoretical properties than

the MVE. Woodruff and Rocke (1994) give empirical results which show that the MCD is

preferred over the MVE in their applications. Croux and Haesbroeck (1999) discuss other

statistical properties of robustness about MCD.

Rather than directly trimming the data, Hadi and Luceño (1997) present the trimmed

likelihood estimator, which is based on trimming the likelihood function. They refer to this
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method as the maximum trimmed likelihood (MTL) method and the corresponding estimator

as the maximum trimmed likelihood estimator (MTLE). Müller and Neykov (2003) discuss

the relationships of the least trimmed squares (LTS) estimator and MTLE for a generalized

linear model. Cheng (2005) combines both robust and diagnostic approaches to obtain the

robust regression transformation, in which LTS and MTLE are also linked together.

Most robust estimations focus on the data only with continuous variables as discussed

above. There are relatively few works available about robustness and outliers under a cat-

egorical data analysis (e.g. Bartlett and Lewis (1994), Basu and Basu (1998), Shane and

Simonoff (2001)). In behavioral and psychological studies, data are often mixed with contin-

uous and polytomous (ordinal) variables. A simple approach to analyzing this kind of data

is to assign integral values to each category and proceed with the analysis as if the data have

been measured on an interval scale with the desired distribution. However, this may lead

to erroneous results (Song and Lee, 2001). Several approaches to dealing with this problem

have been explored and proposed in the last three decades (see Olsson (1979), Lee and Poon

(1986), Muthén (1987), Poon and Lee (1987) Lee, Poon and Bentler (1995), Song, J.-Q. and

Lee (2001), Song, X.-Y. and Lee (2003) and among others). Lee and Xu (2003) propose a

method to detect influential observation for a factor analysis with continuous and ordinal

variables.

Cheng and Biswas (2008) apply the MTL approach to obtain the robust estimators of

multivariate location and shape, especially for data mixed with continuous and categorical

variables. Their model is aspired from the general location model of Olkin and Tate (1961).

In this project we further apply the MTL approach to obtain the robust estimation of

polychoric and polyserial correlations. The forward search algorithm of Atkinson (1994) is

adapted to compute the proposed estimates.

2 Polychoric and polyserial correlations

Let x and y be continuous vectors of dimension p and q, respectively. It is assumed that

(xT ,yT ) is distributed a multivariate normal distribution, denoted by
(

x
y

)
∼ MN

((
µx

µy

)
,

[
Cxx Cxy

Cyx Ryy

])
,

where µx and µy are p× 1 and q × 1 mean vectors of x and y, Cxx is the p× p covariance

matrix of x, Cxy = CT
yx is p × q covariance matrix of (x,y), and Ryy is the correlation

matrix of y. It is noted that if Cxx is the correlation matrix of x, then Cxy will store the

correlation matrix of (x, y).
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Let {αi,1 = −∞, αi,2, · · · , αi,m(i), αi,m(i)+1 = ∞} be the thresholds corresponding to the

ith variable, i = 1, · · · , p, the relations of the observable polytomous vector z with the latent

continuous vector y are given by

Zi = k(i), if αi,k(i) ≤ Yi < αi,k(i)+1

for i = 1, 2, · · · , p, k(i) = 1, 2, · · · ,m(i).

Note that ρij = ρji, i, j = 1, 2, · · · , n, i < j are off diagonal elements of Ryy. The esti-

mates of elements in Cxy based on random observations of x and z are called the polyserial

correlations and the estimates of ρij are called the polychoric correlations.

2.1 Maximum likelihood estimation

Poon and Lee (1987) show the MLE of the polyserial and polychoric correlations. Fol-

lowing their presentation, let p(x) and p(x,z) be the probability density function of X

and (X,Z), respectively. Moreover, the conditional distribution of Y given X = x is

MN(CyxC
−1
xx (x − µx),Cyy.x) with Cyy.x = Ryy − CyxC

−1
xx Cxy. let cT

i be the ith row

of Cyx, and let [diag(Cyy.x)]
−1/2 denote the diagonal matrix with its (i, i)th entry equal

to (1 − cT
i C−1

xx ci)
−1/2. Then [diag(Cyy.x)]

−1/2[Y |X = x − CyxC
−1
xx (x − µx)] has a mul-

tivariate normal distribution with mean vector 0 and correlation matrix R, where R =

[diag(Cyy.x)]
−1/2Cyy.x[diag(Cyy.x)]

−1/2. It can be shown that

P (z|x) = P (Z1 = k(1), · · · , Zp = k(p)|X = x)

= (−1)p

1∑

i(1)=0

· · ·
1∑

i(n)=0

(−1)
∑p

u=1 i(u)

×Φp[(α1,k(1)+i(1) − cT
1 C−1

xx (x− µx)(1− cT
1 C−1

xx c1)
1/2, · · · ; R],

where Φp(β1, β2, · · · , βp; R) is equal to

∫ β1

−∞
· · ·

∫ βn

−∞
(2π)−n/2|R|−1/2 exp

(
−yT R−1y

2

)
dyn · · · dy1.

Here the jth component Zj of z takes the value from 1, 2, 3, . . .m(j) and i(z) denotes the

index of the particular observation with Z = z. Thus i(u) takes the value from the sequence

1, 2, . . . f(z) with f(z) the total number of observations with Z = z. Clearly,

m(1)∑

k(1)=1

· · ·
m(p)∑

k(p)=1

f(k(1), . . . , k(p)) = n.
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We then let

ai,1 = −∞, ai,m(i)+1 = ∞,

ai,k(i) = (αi,k(i) + cT
i C−1

xx µx)(1− cT
i C−1

xx ci)
−1/2,

bi = −C−1
xx ci(1− cT

i C−1
xx ci)

−1/2,

rij = (ρij − cT
i C−1

xx cj)[(1− cT
i C−1

xx ci)(1− cT
j C−1

xx cj)]
−1/2,

for i, j = 1, · · · , p, i < j and k(i) = 2, 3, · · · ,m(i). Consider the one-to-one transformation

by its inverse, which leads to the following results

αi,k(i) = (ai,k(i) + bT
i x)(1 + bT

i Cxxbi)
−1/2,

ci = −Cxxbi(1 + bT
i Cxxbi)

−1/2,

ρij = (rij + bT
i Cxxbj)[(1 + bT

i Cxxbi)(1 + bT
j Cxxbj)]

−1/2.

The parameters of interest are denoted by Θ = {µx,Cxx; bi; rij, i, j = 1, · · · , p, i < j; ai,k(i), i =

1, · · · , p, k(i) = 2, 3, · · · ,m(i)}. If p(x) is the q-dimensional multivariate normal density func-

tion, then the likelihood function of Θ is given by

L(Θ) =
n∏

i=1

p(xi)
n∏

i=1

p(zi|xi)

= (2π)−qn/2|Cxx|−n/2 exp

{
−1

2

n∑
i=1

(xi − µx)
T C−1

xx (xi − µx)

}
×

m(1)∏

k(1)=1

· · ·
m(p)∏

k(p)=1

f(k)∏

f=1


(−1)p

1∑

i(1)=0

· · ·
1∑

i(p)=0

(−1)
∑p

u=1 i(u)Φp(a1,k(1)+i(1) + bT
1 xk,(f), · · · ; R)


 .

The log-likelihood is then

log L(Θ) = −[log L1(Θ1) + log L2(Θ2)] (1)

where Θ1 = {µx, Cxx} and Θ2 = {bi; rij, i, j = 1, · · · , p, i < j; ai,k(i), i = 1, · · · , p, k(i) =

2, 3, · · · ,m(i)}}; and

log L1(Θ1) =
1

2

{
qn log(2π) + n log |Cxx|+

n∑
i=1

(xi − µx)
T C−1

xx (xi − µx)

}
;

log L2(Θ2) = −
m(1)∑

k(1)=1

· · ·
m(p)∑

k(p)=1

f(k)∑

f=1


log(−1)p

1∑

i(1)=0

· · ·
1∑

i(p)=0

× (−1)
∑p

u=1 i(u)Φp(· · · , ai,k(i)+i(i) + bT
i xk,(f), · · · ; R)

]
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2.2 The maximum trimmed likelihood estimator

The trimmed likelihood principle is based on trimming the likelihood function rather than

directly trimming the data, which was introduced independently by Hadi and Luceño (1997)

and Vandev and Neykov (1998). It is always possible to order and trim observations according

to their contributions to the likelihood function, because the likelihood is scalar-valued. For

any given value of θ,

l(θ; x1) ≥ l(θ; x2) ≥ · · · ≥ l(θ; xn), (2)

where l(θ; xi) = ln f(xi; θ) is the contribution of the ith observation to the log likelihood

function. Therefore, the ML estimator maximizes the log likelihood function as

n∑
i=1

l(θ; xi).

Instead of summing up all values of the log likelihood function for each observation, the

trimmed likelihood approach considers to maximize the following objective function:

b∑
i=a

wil(θ; xi), (3)

where a ≤ b, (a, b) ∈ {1, 2, · · · , n}, and wi ≥ 0 are weights. The estimator θ(a, b, w) is ob-

tained by maximizing (3). The resulting method is called as the maximum trimmed likelihood

(MTL) method and θ̂(a, b, w) is the maximum trimmed likelihood estimator (MTLE).

Neykov et al. (2007) give the combinatorial representation of MTLE (3) as follows:

max
θ

h∑
i=1

wil(θ; xi) = max
θ

max
H∈H

∑
i∈H

wil(θ; xi) = max
H∈H

max
θ

∑
i∈H

wil(θ; xi),

where H is the set of all h-subsets of the set {1, · · · , n}. Therefore, it follows that all

possible
(

n
h

)
partitions of the data have to be fitted by the MLE, and the MTLE is given by

the partition with the maximum log-likelihood.

Hadi and Luceño (1997) show that this trimming likelihood principle produces many

existing estimators, such as MLE, least median squares (LMS), LTS, and minimum volume

ellipsoid (MVE) estimators. Vandev and Neykov (1993) present the relation of MTLE with

the minimum covariance determinant (MCD) estimator for multivariate data. Moreover,

Vandev (1993) and Vandev and Neykov (1998) proposed more general classes of estimators

based on the concept of trimming, which accommodate several kinds of estimators. The
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breakdown point properties of MTLE are then unified by these authors (see also Müller and

Neykov (2003) and Dimova and Neykov (2004), in which MTLE is applied to the generalized

linear models). Neykov et al. (2007) apply the MTLE to the robust estimation for a finite

mixture of distributions. Cheng and Biswas (2008) extend the MTL method to the general

location model for multivariate data mixed with continuous and categorical variables. Č́ıžek

(2008) generalizes the concept of trimming likelihood approach to several applications and

provides with its asymptotic properties.

In order to study the breakdown properties of general estimators such as LMS and LTS,

Vandev (1993) develops a d-fullness technique. He shows that their breakdown point is

not less than (n − h)/n if h is within the range of values (n + d)/2 ≤ h ≤ (n − d) for

some constant d which depends upon the density considered. A finite set Γ = {γi : Θ →
R; i = 1, · · · , n} of functions is called d-full if for every {i1, · · · , id} ⊂ {1, · · ·n} the function

γ given by γ(θ) := max{γih(θ), h = 1, 2 · · · , d} is sub-compact (Muller and Neykov, 2003).

The breakdown point can be exemplified by the range of values of h by using d-fullness. A

recommendable choice of h is [(n + d + 1)/2] because then the breakdown point of MTLE is

maximized.

The d-fullness technique allows the statistician to choose the tuning parameter h accord-

ing to the expected percent of outliers in data. Müller (1995) disregards the assumption

that the observations are in general position (Rousseeuw and Leroy, 1987) for the case of

experimental design. Müller and Neykov (2003) and Dimova and Neykov (2004) relax the

compactness condition required by Vandev (1993) and further present a generalization of

the result for case (3). Its breakdown point depends on the quantity N (X) introduced by

Müller (1995). N (X) provides the maximum number of explanatory variables lying in a sub-

space. The breakdown point for LTS is then determined by N (X) = max06=β∈Rp card{i ∈
{1, · · · , n}; xT

i β = 0}. If the explanatory variables are in general position then N (X) = p−1

which is the minimum value for N (X). Müller and Neykov (2003) show the connection be-

tween d-fullness and N (X).

The breakdown points of MVE and MCD have been discussed by Vandev and Neykov

(1993). For computational aspect, Neykov and Müller (2003) propose a fast computing

algorithm for MTLE, which is analogous to the C-step for LTS and MCD of Rousseeuw and

van Driessen (1999, 2006).
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3 MTLE for Polychoric and polyserial correlations

We then extend the MTL approach to the estimation of polychoric and polyserial correlations

for (1). According to the combinatorial representation of Neykov et al. (2007), let Θh =

(Θ1h,Θ2h) denote the parameters for a specific value of h. If H denotes the subset with h

cases and the corresponding data are denoted by Xh and Zh, then the objective function of

MTLE evaluated at h is then

L(Θh) =
∏
i∈H

p(xi)
∏
i∈H

p(zi|xi). (4)

An analog of the log-likelihood of (4) is then

log L(Θh) = −[log L1(Θ1h) + log L2(Θ2h)] (5)

where

log L1(Θ1h) =
1

2

{
qh log(2π) + h log |Cxxh|+

∑
i∈H

(xi − µxh)
T C−1

xxh(xi − µxh)

}
;

log L2(Θ2h) = −
m(1)∑

k(1)=1

· · ·
m(p)∑

k(p)=1

f(k)∑

f=1


log(−1)p

1∑

i(1)=0

· · ·
1∑

i(p)=0

× (−1)
∑p

u=1 i(u)Φp(· · · , ai,k(i)+i(i) + bT
ihxk,(f), · · · ; Rh)

]
.

Here i(u) takes the value from the sequence 1, 2, . . . f(z) with f(z) the total number of obser-

vations with Z = z corresponding to H and hence
∑m(1)

k(1)=1 · · ·
∑m(p)

k(p)=1 f(k(1), . . . , k(p)) = h.

The difficulty here is to find the subset H, which corresponds to the MTLE estimator Θ̂h

and the subscript h is still used for brevity.

3.1 Breakdown point

According to those studies about MTLE (Vandev and Neykov, 1993; Müller and Neykov,

2003; Dimova and Neykov, 2004; Neykov et al., 2007), let

γ(Θ1,Θ2) := max
i∈H

{
−1

2
log |Cxx|+ (xi − µx)

T C−1
xx (xi − µx)

+

m(i)∑

k(i)=1


log(−1)p

1∑

i(1)=0

· · ·
1∑

i(p)=0

(−1)
∑p

u=1 i(u)Φp(· · · , ai,k(i)+i(i) + bT
i xi, · · · ; R)


−K




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be sub-compact for all H ∈ {1, · · · , n} with cardinality N (X) + 1 and K ∈ R. Here N (X )

is defined as the maximum value between N 1(X) and N 2(X), where N 1(X) is discussed in

Vandev and Neykov (1993) and N 2(X) = max0 6=β∈Rp card{i ∈ {1, · · · , n}; xT
i β = 0}. Setting

γ2(Θ2) := γ2(Θ2(Θ1)) = max
i∈H

m(i)∑

k(i)=1


log(−1)p

1∑

i(1)=0

· · ·
1∑

i(p)=0

(−1)
∑p

u=1 i(u)

Φp(· · · , ai,k(i)+i(i) + bT
i xi, · · · ; R)

]
,

we see that γ2 is a sub-compact function. Hence, there exits a compact set Θ2 ( Rp, such

that {Θ2; γ2(Θ2(Θ1)) ≤ C} ⊂ Θ2. Also,

γ1(Θ1) := max
i∈H

{
−1

2
log |Cxx|+ (xi − µx)

T C−1
xx (xi − µx)

}

is sub-compact so that {Θ1; γ1(Θ1) ≤ C} ⊂ Θ1 for some compact set Θ1 ( Rq. We then

have

{(Θ1,Θ2(Θ1)) ∈ Rq ×Rp; γ(Θ1,Θ2(Θ1)) ≤ C}
⊂ {(Θ1,Θ2(Θ1)) ∈ Rq ×Rp; γ2(Θ2(Θ1)) ≤ C and γ1(Θ1) ≤ C} ⊂ Θ1 ×Θ2.

The breakdown point of MTLE (Θ1h,Θ1h) is not less than (1/n) min{n−h+1; h−N (X)} and

its lower bound attains the maximum value of (1/n)[(n−N (X)+1)/2] if [(n+N (X)+1)/2] ≤
h ≤ [(n +N (X) + 2)/2], together with the above discussion and Theorem 1 of Müller and

Neykov (2003).

3.2 The forward search algorithm

To obtain the resulting estimates of the previous subsection, we apply the forward search

algorithm of Atkinson (1994) starts with a randomly selected subset of observations. The

observations of the subset are incremented in such a way that outliers are unlikely to be

included. The algorithm can be briefly summarized as follows.

• (F0) Choose m observations (e.g. m = p + 1, the so-called elemental set) from the

dataset.

• (F1) Obtain the ML estimates based on the subset, compute the values of the log-

likelihood for all observations, and order the log-likelihoods.

• (F2) Calculate the value of the objective criterion.
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• (F3) Choose m + s (usually s = 1) cases with the smallest squared distances of (F1)

as the new subset, and return to step (F1).

• (F4) Iterate steps (F1) to (F3) until the size of the subset equals n.

We call steps (F0) to (F4) a one forward search. There are two ways for obtaining the

initial subset of step (F0). The first one is the original version of Atkinson (1994), in which

the forward searches are run 100 times and each initial subset is randomly chosen from the

data. The other adapted version is to first get a subset which is intended to be outliers and

then only one forward search is performed (see Atkinson and Riani (2000)).

3.3 Real data illustration

The data set can be obtained from http://kdd.ics.uci.edu/databases/coil/coil.html. The

purpose of collecting these data is to protect rivers and streams by monitoring chemical

concentrations and algae communities. Recent years have been characterized by increasing

concern at the impact man is having on the environment. The impact on the environment

of toxic waste, from a wide variety of manufacturing processes, is well known. In temperate

climates across the world summers are characterized by numerous reports excessive summer

algae growth resulting in poor water clarity, mass deaths of river fish from reduced oxygen

levels and the closure of recreational water facilities on account of the toxic effects of this

annual algal bloom. During the research study water quality samples were taken from sites

on different European rivers of a period of approximately one year. These samples were

analyzed for various chemical substances including: nitrogen in the form of nitrates, nitrites

and ammonia, phosphate, pH, oxygen, chloride. In parallel, algae samples were collected

to determine the algae population distributions. It is well known that the dynamics of the

algae community is determined by external chemical environment with one or more factors

being predominant.

The first 8 values for this data set are 8 chemical concentrations, denoted by Vi, i =

1, · · · , 8, which should be relevant for the algae population distribution, denoted by V9, and

there are two ordinal variables, the river size and the fluid velocity. The following table

shows the estimated correlation matrix of these data, in which the first line is calculated

by MLE approach and the second line is using MTLE at h = [0.75n]. It is clear to see the

difference between classical and robust methods.
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V1 V2 V3 V4 V5 V6 V7 V8 V9 Size Velocity
V1 1 Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial
V2 0.0184 1 Pearson Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial

-0.0388
V3 0.2180 -0.2305 1 Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial

0.2454 -0.2699
V4 -0.1743 0.1056 0.1101 1 Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial

-0.0085 0.0769 0.2634
V5 -0.0766 -0.1925 0.0933 0.0688 1 Pearson Pearson Pearson Pearson Polyserial Polyserial

-0.1683 -0.0640 0.2949 0.3545
V6 0.1792 -0.3530 0.4108 0.0892 0.0811 1 Pearson Pearson Pearson Polyserial Polyserial

0.2429 -0.3239 0.4726 0.4188 0.0497
V7 0.1408 -0.4167 0.4474 0.0738 0.1872 0.8336 1 Pearson Pearson Polyserial Polyserial

0.2316 -0.4399 0.5366 0.3998 0.2877 0.8849
V8 0.2770 -0.0358 0.1663 0.3335 0.1053 0.0529 0.2570 1 Pearson Polyserial Polyserial

0.3877 -0.3319 0.3027 0.1656 0.0480 0.3406 0.5075
V9 -0.1611 0.1588 0.2037 0.3102 0.0664 0.0613 0.1327 0.0068 1 Polyserial Polyserial

-0.1630 0.1947 0.1767 0.2336 0.2750 0.0519 0.1355 -0.0936
Size 0.2961 -0.1385 0.0905 -0.0507 0.0467 0.1969 0.2011 0.0833 0.1571 1 Polychoric

0.2997 -0.0822 -0.0386 -0.0916 0.1229 0.0350 0.1260 0.2098 0.1643
Velocity -0.2776 0.2907 -0.3049 -0.0302 -0.3882 -0.2816 -0.4238 -0.3060 -0.0680 -0.5129 1

-0.3653 0.0717 -0.2679 -0.1333 -0.2763 -0.1590 -0.2300 -0.3859 -0.0093 -0.4141

4 Conclusion

In this project, the main contribution is to derive the breakdown point of MTLE for multi-
variate polychoric and polyserial correlations. In addition, the forward search algorithm is
used to find the solution and the whole proposed procedure is applied to a real data set.
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Joint Statistical Meetings（JSM）為美國統計學會所舉辦，是北美統計學

界的年度盛事，歷年來每次與會人數皆超過五千人。參與者涵蓋產官學

界中，各種統計理論及應用之專家、學者與使用者。本次會議依主題區

分，共計超過五百個場次，每一場次約有 3 至 7 篇之論文發表；內容涵

蓋各項統計理論及其相關之應用。會議相關訊息，可參考會議之網址

http://www.amstat.org/meetings/jsm/2008/。 
 
在此次議程中，個人於會議之第一天即擔任一個場次的 Session Chair
之工作，並於會議最後一天發表論文一篇。在此會議期間，亦參與聆聽

許多場次的論文發表，由於同時間發表論文甚多，主要選擇與個人之研

究興趣有關，包括遺漏值分析、穩健估計分析及其他統計熱門問題，藉

此得知當前的研究方向與成果。另外，亦參與有關「統計教學」部分的

場次，數位學者發表其在教學上之改進及相關作法，令人映象深刻，提

供個人未來在統計教學上的參考，多所助益。 
 
由於國內統計學者，大多於美國獲得博士學位；因此，此項會議向來也

是國內統計學者所重視，並為年度大事之一。此次與會之國內參與者，

來自中研院統計所，國家衛生研究院、相關研究機構及各大學統計系所

之學者及博士班學生有 20 人以上。平日大家忙於教學研究，在台時間

很少互動；藉此機會不僅得與國外學者有所交流，亦與國內統計學者論

及國內統計之研究環境與方向，及各單位之差異等，為另一收穫。 
 
不少與會者目前仍為博士班學生，國內大學亦有博士班學生參與並發表

論文，值得本校借鏡，並鼓勵本校博士班學生多多參與類似國際學術活

動。另外，華人在美國統計學界，向來居重要地位，這些年來中國大陸

旅居美國之學者愈來愈多。以此次會議為例，原來自中國大陸的華人學

者在會場中之比例甚高，這是值得國內統計學界該注意、並需持續努

力，以維持國際上之學術領先地位。 
 
個人過去指導碩士班學生林虹妤，畢業於本校統計系所後，兩年前完成

University of Denver 商學院之學位，與其夫婿目前皆於丹佛市工作。其

抽空領我至丹佛大學一遊，特別進入該校商學院與法學院參觀，為此次

會議之額外收穫。 
 
攜回資料包括會議議程紙本及光碟片。 

 


