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Maximum Trimmed Likelihood Estimation of Polychoric
and Polyserial Correlations

Tsung-Chi Cheng*

Abstract

In this project we apply the maximum trimmed likelihood (MTL) approach (Hadi
and Lucenio 1997) to obtain the robust estimators of polychoric and polyserial corre-
lations. The breakdown property of the resulting estimator is discussed. The forward
search algorithm (Atkinson 1994) is adapted to compute the proposed MTL estimates.
A real dataset is also used to illustrate the method and results of the detection of the
outliers.

Keywords: Breakdown point, maximum trimmed likelihood estimator, polychoric cor-
relation, polyserial correlation.

1 Introduction

The detection of multiple outliers in multivariate data has been a particularly intractable
problem. There is a number of approaches for their identification, which essentially requires
a robust estimation of multivariate location and shape. A difficulty is that most estimation
procedures are known to break down when the fraction of contamination is greater than
1/(p+1), where p is the dimension of the data. Both the minimum volume ellipsoid (MVE)
and the minimum covariance determinant (MCD) estimators provide a high breakdown of the
robust estimation of multivariate location and shape (Rousseeuw and Leroy 1987). Moreover,
Butler et al. (1993) show that the MCD estimator has better theoretical properties than
the MVE. Woodruff and Rocke (1994) give empirical results which show that the MCD is
preferred over the MVE in their applications. Croux and Haesbroeck (1999) discuss other
statistical properties of robustness about MCD.

Rather than directly trimming the data, Hadi and Luceno (1997) present the trimmed

likelihood estimator, which is based on trimming the likelihood function. They refer to this
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method as the mazimum trimmed likelihood (MTL) method and the corresponding estimator
as the maximum trimmed likelihood estimator (MTLE). Miiller and Neykov (2003) discuss
the relationships of the least trimmed squares (LTS) estimator and MTLE for a generalized
linear model. Cheng (2005) combines both robust and diagnostic approaches to obtain the
robust regression transformation, in which LTS and MTLE are also linked together.

Most robust estimations focus on the data only with continuous variables as discussed
above. There are relatively few works available about robustness and outliers under a cat-
egorical data analysis (e.g. Bartlett and Lewis (1994), Basu and Basu (1998), Shane and
Simonoff (2001)). In behavioral and psychological studies, data are often mixed with contin-
uous and polytomous (ordinal) variables. A simple approach to analyzing this kind of data
is to assign integral values to each category and proceed with the analysis as if the data have
been measured on an interval scale with the desired distribution. However, this may lead
to erroneous results (Song and Lee, 2001). Several approaches to dealing with this problem
have been explored and proposed in the last three decades (see Olsson (1979), Lee and Poon
(1986), Muthén (1987), Poon and Lee (1987) Lee, Poon and Bentler (1995), Song, J.-Q. and
Lee (2001), Song, X.-Y. and Lee (2003) and among others). Lee and Xu (2003) propose a
method to detect influential observation for a factor analysis with continuous and ordinal
variables.

Cheng and Biswas (2008) apply the MTL approach to obtain the robust estimators of
multivariate location and shape, especially for data mixed with continuous and categorical
variables. Their model is aspired from the general location model of Olkin and Tate (1961).
In this project we further apply the MTL approach to obtain the robust estimation of
polychoric and polyserial correlations. The forward search algorithm of Atkinson (1994) is

adapted to compute the proposed estimates.

2 Polychoric and polyserial correlations

Let & and y be continuous vectors of dimension p and ¢, respectively. It is assumed that

(x?,yT) is distributed a multivariate normal distribution, denoted by

(5) (o)L %))

where p, and p, are p x 1 and ¢ X 1 mean vectors of & and y, Cy, is the p X p covariance
matrix of x, C,, = ng is p X ¢ covariance matrix of (z,y), and R,, is the correlation
matrix of y. It is noted that if C,, is the correlation matrix of x, then C,, will store the

correlation matrix of (z,y).



Let {1 = —00, 52, Qi m(i)s Qim(i)+1 = 00} be the thresholds corresponding to the
tth variable, ¢ = 1,-- - p, the relations of the observable polytomous vector z with the latent

continuous vector y are given by
Zi = k(i), if a iy <Y < Qg1

fori=1,2,---,p, k(i) = 1,2,---,m(3).
Note that p;; = pji, t,7 = 1,2,---,n, 1 < j are off diagonal elements of R,,. The esti-
mates of elements in C,, based on random observations of  and z are called the polyserial

correlations and the estimates of p;; are called the polychoric correlations.

2.1 Maximum likelihood estimation

Poon and Lee (1987) show the MLE of the polyserial and polychoric correlations. Fol-
lowing their presentation, let p(x) and p(x,z) be the probability density function of X
and (X, Z), respectively. Moreover, the conditional distribution of Y given X = x is
MN(C,,C.}x — p,),Cy,,) with Cy,, = R,, — C,,C, C,,. let ¢! be the ith row
of Cys, and let [diag(C,,.)] '/? denote the diagonal matrix Wlth its (7,7)th entry equal
to (1 — c¢/'C,le;)™V2. Then [diag(C,.)] Y |X = = — C,,C,} (z — p,)] has a mul-
tivariate normal distribution with mean vector 0 and correlation matrix R, where R =
[diag(C,, ) Y2C,, .[diag(C,, )] *?. Tt can be shown that

P(zlx) = P(Z,=kQ1), -,
— (_1)17.2 Z (—1)Zu= i)

X0y [(@1 kyti1) — €1 Cop (. — p,)(1 — €] C Ll e)V?, -+ R),

Zp = k()| X = x)

where ©,(51, B2, - - -, Bp; R) is equal to

B1 Bn TR
/ / (2m) 2| R|” 1/26Xp< i y> dyy, - - - dyy.

Here the jth component Z; of z takes the value from 1,2,3,...m(j) and i(z) denotes the
index of the particular observation with Z = z. Thus i(u) takes the value from the sequence
1,2,... f(z) with f(z) the total number of observations with Z = z. Clearly,

m(1) m(p)
Sy SR k() = n

k(1)=1  k(p)=1



We then let

a;1 = —0Q, A;m(i)+1 = OQ,
Aik(i) = (Oéz k(i + CTsz ll’x)(l - C?C;mlci)_l/27
bi = —C Ci( — CTC Ci)_l/Q,
rij = (py— € Crpey)l(1 — €] Copei)(1 — €] Cpey)) 712,

fori,j =1,---,p,i < j and k(i) = 2,3,---,m(i). Consider the one-to-one transformation

by its inverse, which leads to the following results

Ak = (Gige) + b/ z)(1+ bZTC:m:bi)_l/Qa
¢; = —Cuubi(l+b]Cub)"?
Pij = (Tij + bz‘TCmrbj)[(l + bzrcmbi)(l + bjTCmbj)]_l/z-
The parameters of interest are denoted by @ = {p,, Crzi bii 75,0, 5 = 1, -+ 0,0 < J; i ey, 1 =

L p k(i) =2,3,---,m(i)}. If p(x) is the g-dimensional multivariate normal density func-
tion, then the hkehhood function of ® is given by

L(O) = H H (zi|x;)

1
_ —qn/2 —n/2 - o T~—1 o
= (2m) | C .| exp{ i E (x; — p,) C,, (x; l%)} X

m(p)

1 1
H 11 H P Y e 0 (FDE 0 (an k)i + bl @ R)

k()=1  k(p)=1f=1 i(1)=0  i(p)=0

The log-likelihood is then

where @1 = {“x?cxl‘} and @2 = {bzaTZﬁZaj = 1a"'7p72. < j7a2,k(z)7l = 177pak(7’) =
2737’m(7’)}}’ and

1 n
log 11(©1) = 3 {qn log(2m) +nlog |C| + Y (0 — p,) C} (i — um)} ;

=1
m(1) m(p) f(k) 1 1
s @) =~ 3 3 3 [l X X
k(1)=1 k(p)=1 f=1 i(1)=0 i(p)=0

P i(u
% (_1)Zu:1 ( )q)p(. e k(i) T b;!mk’(f)j . -;R)}



2.2 The maximum trimmed likelihood estimator

The trimmed likelihood principle is based on trimming the likelihood function rather than
directly trimming the data, which was introduced independently by Hadi and Lucenio (1997)
and Vandev and Neykov (1998). It is always possible to order and trim observations according
to their contributions to the likelihood function, because the likelihood is scalar-valued. For

any given value of 6,
WO 21) > 1(0;22) > - > 1(0; 3), (2)

where [(0;x;) = In f(x;;0) is the contribution of the ith observation to the log likelihood

function. Therefore, the ML estimator maximizes the log likelihood function as

Z 1(0;x;).

Instead of summing up all values of the log likelihood function for each observation, the

trimmed likelihood approach considers to maximize the following objective function:

Zwil(e;xi), (3)

where a < b, (a,b) € {1,2,---,n}, and w; > 0 are weights. The estimator 0(a, b, w) is ob-

tained by maximizing (3). The resulting method is called as the mazimum trimmed likelihood

(MTL) method and 6(a, b, w) is the maximum trimmed likelihood estimator (MTLE).
Neykov et al. (2007) give the combinatorial representation of MTLE (3) as follows:

0 HeH
i€H 1€H

h
mgxiz;wil(e; x;) = maxmax » w;l(0;z;) = max m;iXZ wil (0; ),

where H is the set of all h-subsets of the set {1,---,n}. Therefore, it follows that all

possible (Z) partitions of the data have to be fitted by the MLE, and the MTLE is given by

the partition with the maximum log-likelihood.

Hadi and Luceno (1997) show that this trimming likelihood principle produces many
existing estimators, such as MLE, least median squares (LMS), LTS, and minimum volume
ellipsoid (MVE) estimators. Vandev and Neykov (1993) present the relation of MTLE with
the minimum covariance determinant (MCD) estimator for multivariate data. Moreover,
Vandev (1993) and Vandev and Neykov (1998) proposed more general classes of estimators

based on the concept of trimming, which accommodate several kinds of estimators. The



breakdown point properties of MTLE are then unified by these authors (see also Miiller and
Neykov (2003) and Dimova and Neykov (2004), in which MTLE is applied to the generalized
linear models). Neykov et al. (2007) apply the MTLE to the robust estimation for a finite
mixture of distributions. Cheng and Biswas (2008) extend the MTL method to the general
location model for multivariate data mixed with continuous and categorical variables. Cizek
(2008) generalizes the concept of trimming likelihood approach to several applications and
provides with its asymptotic properties.

In order to study the breakdown properties of general estimators such as LMS and LTS,
Vandev (1993) develops a d-fullness technique. He shows that their breakdown point is
not less than (n — h)/n if h is within the range of values (n +d)/2 < h < (n — d) for
some constant d which depends upon the density considered. A finite set I' = {, : © —
R;i=1,---,n} of functions is called d-full if for every {iy,---,iq} C {1,---n} the function
v given by v(0) := max{v;,(0),h = 1,2---,d} is sub-compact (Muller and Neykov, 2003).
The breakdown point can be exemplified by the range of values of h by using d-fullness. A
recommendable choice of h is [(n 4+ d 4 1)/2] because then the breakdown point of MTLE is
maximized.

The d-fullness technique allows the statistician to choose the tuning parameter h accord-
ing to the expected percent of outliers in data. Miiller (1995) disregards the assumption
that the observations are in general position (Rousseeuw and Leroy, 1987) for the case of
experimental design. Miiller and Neykov (2003) and Dimova and Neykov (2004) relax the
compactness condition required by Vandev (1993) and further present a generalization of
the result for case (3). Its breakdown point depends on the quantity N (X) introduced by
Miiller (1995). N (X) provides the maximum number of explanatory variables lying in a sub-
space. The breakdown point for LTS is then determined by N(X) = maxozsere card{i €
{1,---,n};xl'B = 0}. If the explanatory variables are in general position then N'(X) = p—1
which is the minimum value for A'(X). Miiller and Neykov (2003) show the connection be-
tween d-fullness and N (X).

The breakdown points of MVE and MCD have been discussed by Vandev and Neykov
(1993). For computational aspect, Neykov and Miiller (2003) propose a fast computing
algorithm for MTLE, which is analogous to the C-step for LTS and MCD of Rousseeuw and
van Driessen (1999, 2006).



3 MTLE for Polychoric and polyserial correlations

We then extend the MTL approach to the estimation of polychoric and polyserial correlations
for (1). According to the combinatorial representation of Neykov et al. (2007), let @, =
(©11, ©9p,) denote the parameters for a specific value of h. If H denotes the subset with h
cases and the corresponding data are denoted by X and Z}, then the objective function of
MTLE evaluated at h is then

[ @) [ p(zila). (4)

1€H 1€H

An analog of the log-likelihood of (4) is then
log L(©®),) = —[logLi(O1}) + log La(Oa)] (5)

where

1
log L1(©1s) = 5{thog(27f)+h10glcmh!+2( — )" C o (i H’zh)}

icH
m(p)
log Ly(©2) = — Z > Z log(~ Z Z
k(1)=1 k(p)=1 f=1 =0 i(p)=
X (—1)Ze= 0D (i) + Dy Rh)] -
Here i(u) takes the value from the sequence 1,2, ... f(2) with f(z) the total number of obser-
vations with Z = z corresponding to H and hence 22(11))21 e Z;n(g):l f(k(D),...,k(p)) = h.

The difficulty here is to find the subset H, which corresponds to the MTLE estimator o,
and the subscript & is still used for brevity.

3.1 Breakdown point

According to those studies about MTLE (Vandev and Neykov, 1993; Miiller and Neykov,
2003; Dimova and Neykov, 2004; Neykov et al., 2007), let

1
v<@1,92>:=%{—Elog|cm|+< n)TC @ )

1 1
—|—Z log( pz Z z(u p( Qi ke(3) 44 (4) +bw27"'aR) - K

k(i)=1 1(1)=0 i(p)=0



be sub-compact for all H € {1,---,n} with cardinality N (X) + 1 and K € R. Here N(X)
is defined as the maximum value between N;(X) and N(X), where N{(X) is discussed in
Vandev and Neykov (1993) and N2(X) = maxozpere card{i € {1,---,n};x] B8 = 0}. Setting

1

1
Y2(O2) 1= 72(02(01)) = max Z log(—1)? Z Z u=1i(w)

k(z i(1)=0 i(p)=0
(- - s Qi (i) +i(i) T+ szwia Tty R)} )

we see that v, is a sub-compact function. Hence, there exits a compact set ©, C R, such

that {@2,72(@2(@1)) S C} C @2. AISO,

1
7(©1) == max {—5 log|Cus| + (@i — )" C.y (i — ux)}

is sub-compact so that {@1;7(0;) < C'} C ©; for some compact set ©; C R?. We then

have

1(©1,0,(0,)) € R x RP;7(©1,0,(0,)) < C}
C {(©1,05(0))) € R? x R?;75(0,(0,)) < C and 71(©,) < C} C O, x O,.

The breakdown point of MTLE (@, 1) is not less than (1/n) min{n—h+1; h—N (X )} and
its lower bound attains the maximum value of (1/n)[(n—N(X)+1)/2] if [(n+N(X)+1)/2] <
h < [(n+ N(X)+ 2)/2], together with the above discussion and Theorem 1 of Miiller and
Neykov (2003).

3.2 The forward search algorithm

To obtain the resulting estimates of the previous subsection, we apply the forward search
algorithm of Atkinson (1994) starts with a randomly selected subset of observations. The
observations of the subset are incremented in such a way that outliers are unlikely to be

included. The algorithm can be briefly summarized as follows.

e (F0) Choose m observations (e.g. m = p + 1, the so-called elemental set) from the

dataset.

e (F1) Obtain the ML estimates based on the subset, compute the values of the log-

likelihood for all observations, and order the log-likelihoods.

e (F2) Calculate the value of the objective criterion.



e (F3) Choose m + s (usually s = 1) cases with the smallest squared distances of (F1)

as the new subset, and return to step (F1).
e (F4) Iterate steps (F1) to (F3) until the size of the subset equals n.

We call steps (F0) to (F4) a one forward search. There are two ways for obtaining the
initial subset of step (F0). The first one is the original version of Atkinson (1994), in which
the forward searches are run 100 times and each initial subset is randomly chosen from the
data. The other adapted version is to first get a subset which is intended to be outliers and

then only one forward search is performed (see Atkinson and Riani (2000)).

3.3 Real data illustration

The data set can be obtained from http://kdd.ics.uci.edu/databases/coil/coil.html. The
purpose of collecting these data is to protect rivers and streams by monitoring chemical
concentrations and algae communities. Recent years have been characterized by increasing
concern at the impact man is having on the environment. The impact on the environment
of toxic waste, from a wide variety of manufacturing processes, is well known. In temperate
climates across the world summers are characterized by numerous reports excessive summer
algae growth resulting in poor water clarity, mass deaths of river fish from reduced oxygen
levels and the closure of recreational water facilities on account of the toxic effects of this
annual algal bloom. During the research study water quality samples were taken from sites
on different European rivers of a period of approximately one year. These samples were
analyzed for various chemical substances including: nitrogen in the form of nitrates, nitrites
and ammonia, phosphate, pH, oxygen, chloride. In parallel, algae samples were collected
to determine the algae population distributions. It is well known that the dynamics of the
algae community is determined by external chemical environment with one or more factors
being predominant.

The first 8 values for this data set are 8 chemical concentrations, denoted by V;,i =
1,---,8, which should be relevant for the algae population distribution, denoted by Vj, and
there are two ordinal variables, the river size and the fluid velocity. The following table
shows the estimated correlation matrix of these data, in which the first line is calculated
by MLE approach and the second line is using MTLE at h = [0.75n]. It is clear to see the

difference between classical and robust methods.



v Vo V3 V4 Vs Ve Vy Vs Vo Size Velocity

1% 1 Pearson Pearson Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial

Vo 0.0184 1 Pearson Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial
-0.0388

Vs 0.2180 -0.2305 1 Pearson Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial
0.2454 -0.2699

Va -0.1743 0.1056 0.1101 1 Pearson Pearson Pearson Pearson Pearson Polyserial Polyserial
-0.0085 0.0769 0.2634

Vs -0.0766 -0.1925 0.0933 0.0688 1 Pearson Pearson Pearson Pearson Polyserial Polyserial
-0.1683 -0.0640 0.2949 0.3545

Ve 0.1792 -0.3530 0.4108 0.0892 0.0811 1 Pearson Pearson Pearson Polyserial Polyserial
0.2429 -0.3239 0.4726 0.4188 0.0497

%4 0.1408 -0.4167 0.4474 0.0738 0.1872 0.8336 1 Pearson Pearson Polyserial Polyserial
0.2316 -0.4399 0.5366 0.3998 0.2877 0.8849

Vg 0.2770 -0.0358 0.1663 0.3335 0.1053 0.0529 0.2570 1 Pearson Polyserial Polyserial
0.3877 -0.3319 0.3027 0.1656 0.0480 0.3406 0.5075

Vo -0.1611 0.1588 0.2037 0.3102 0.0664 0.0613 0.1327 0.0068 1 Polyserial Polyserial
-0.1630 0.1947 0.1767 0.2336 0.2750 0.0519 0.1355 -0.0936

Size 0.2961 -0.1385 0.0905 -0.0507 0.0467 0.1969 0.2011 0.0833 0.1571 1 Polychoric
0.2997 -0.0822 -0.0386 -0.0916 0.1229 0.0350 0.1260 0.2098 0.1643

Velocity -0.2776 0.2907 -0.3049 -0.0302 -0.3882 -0.2816 -0.4238 -0.3060 -0.0680 -0.5129 1

-0.3653 0.0717 -0.2679 -0.1333 -0.2763 -0.1590 -0.2300 -0.3859 -0.0093 -0.4141

4 Conclusion

In this project, the main contribution is to derive the breakdown point of MTLE for multi-
variate polychoric and polyserial correlations. In addition, the forward search algorithm is
used to find the solution and the whole proposed procedure is applied to a real data set.
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