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Abstract

This project describes applications of a version of Stein’s Identity in Bayesian
asymptotics. We show that the use of Stein’s Identity provides an alternative
to traditional Laplace method for obtaining approximations of the marginal
posterior densities.
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1 Introduction

Let g(θ) be a smooth function on the parameter space Θ. We are interested in the

estimation of the posterior mean of g(θ), given a sample of observations x(t); that is,

Et
ξ[g(θ)] = Eξ[g(θ)|xt] =

∫
Θ
g(θ)exp(`t(θ))ξ(θ)dθ∫
Θ

exp(`t(θ))ξ(θ)dθ
, (1)

where `t is the log-likelihood function and ξ the prior. Nowadays, modern computing

techniques like Markov chain Monte Carlo and importance sampling have made many

computations possible. Still, such methods are computational intensive and the sam-

pling schemes vary from distribution to distribution. It is therefore of importance

to have good analytic approximations which are simpler to compute. A traditional

analytic approach to this problem (1) starts from a Taylor series expansion at the max-

imum likelihood estimator (or at the modes of the integrands), proceeds from there

to develop expansions on both the numerator and denominator, and then obtains ap-

proximations by formal division of the two series. For example, Johnson [1, 2] derived
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expansions associated with posterior distribution of some pivotal quantity; Lindley

[3, 4] and Mosteller and Wallace [5] obtained second order approximations for the

integral by applying standard Laplace method to both numerator and denominator

and taking the ratio. Tierney and Kadane [6] renewed interest in Laplace method by

applying it in a special form in which g is assumed to be positive.

In related work, Woodroofe [10, 11] developed a version of Stein’s Identity, which

can be used to write posterior expectations in a particular form. Though this identity

has a close Bayesian connection, the main focus of Woodroofe [10, 11] and some follow

up work is on developing frequentist confidence regions. The first study of this tool

in Bayesian context is Weng [7], which showed asymptotic posterior normality of

nonhomogeneous Poisson model. Recently, Weng [8] further applied this identity for

estimating predictive densities, and approximating marginal posterior distributions

and posterior quantiles for individual parameters. Some formulas obtained are new,

and some are shown to equivalent to the existing ones.

2 Stein’s Identity and the Model

Stein’s Identity Let Φp denote the standard p-variate normal distribution and write

Φph =

∫
hdΦp

for functions h for which the integral is finite. For s > 0, denote Hs as the collection

of all measurable functions h : <p → < for which |h(z)|/b ≤ 1 + ||z||s for some b > 0.

Given h ∈ Hs, let h0 = Φph, hp = h,

hk(y1, ..., yk) =

∫
<p−k

h(y1, ..., yk, w)Φp−k(dw), (2)

gk(y1, ..., yp) = e
1
2
y2k

∫ ∞

yk

[hk(y1, ..., yk−1, w)− hk−1(y1, ..., yk−1)]e−
1
2
w2

dw, (3)

for −∞ < y1, ..., yp < ∞ and k = 1, ..., p. Then let Uh = (g1, ..., gp)
T and V h =

(U2h + U2hT )/2, where U2h is the p × p matrix whose k-th column is Ugk and gk

is as in (3). For example, for z ∈ <p, if h(z) = z1, then Uh(z) = (1, 0, ..., 0)T and

if h(z) = ||z||2, then Uh(z) = z. Simple calculations by taking f(z) in Lemma 2.1
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below as zi and zizj yield

Φp(Uh) =

∫
<p

zh(z)Φp(dz), (4)

Φp(U
2h) =

∫
<p

1

2
(zzT − 1)h(z)Φp(dz). (5)

Lemma 2.1 (Stein′s Identity) Let r be a nonnegative integer. Suppose that f is a

differentiable function on <p, and∫
<p

|f |dΦp +

∫
<p

(1 + ||z||r)||∇f(z)||Φp(dz) <∞,

then

Φp(fh) = Φpf · Φph+

∫
<p

(Uh(z))T∇f(z)Φp(dz),

for all h ∈ Hr. If ∂f/∂zj, j = 1, ..., p, are differentiable, and∫
<p

(1 + ||z||r)||∇2f(z)||Φp(dz) <∞,

then

Φp(fh) = Φpf · Φph+ (ΦpUh)T
∫
<p

∇f(z)Φp(dz) +

∫
<p

tr[(V h(z))∇2f(z)]Φp(dz),

for all h ∈ Hr.

The model Let Xt be a random vector distributed according to a family of prob-

ability densities pt(xt|θ), where t is a discrete or continuous parameter and θ ∈ Θ, an

open subset in <p. Consider a Bayesian model in which θ has a prior density ξ which

is twice differentiable in <p and vanishes off of Θ. Assume that the log-likelihood func-

tion `t(θ) is twice differentiable with respect to θ. Let Bt denote the set of sample

points for which the maximum likelihood estimator θ̂t exists and satisfies ∇`t(θ̂t) = 0,

where ∇ indicates differentiation with respect to θ; therefore, −∇2`t(θ̂t) is positive

definite in Bt. The expressions for posterior expansions in (11) and (12) below are

valid on Bt.

The model Let Xt be a random vector distributed according to a family of prob-

ability densities pt(xt|θ), where t is a discrete or continuous parameter and θ ∈ Θ, an

open subset in <p. Consider a Bayesian model in which θ has a prior density ξ which

is twice differentiable in <p and vanishes off of Θ. Assume that the log-likelihood func-

tion `t(θ) is twice differentiable with respect to θ. Let Bt denote the set of sample
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points for which the maximum likelihood estimator θ̂t exists and satisfies ∇`t(θ̂t) = 0,

where ∇ indicates differentiation with respect to θ; therefore, −∇2`t(θ̂t) is positive

definite in Bt. The expressions for posterior expansions in (11) and (12) below are

valid on Bt.

Define Σt and Zt as

ΣT
t Σt = −∇2`t(θ̂t), (6)

Zt = Σt(θ − θ̂t). (7)

Then the posterior density of θ given data xt is ξt(θ) ∝ exp(`t(θ))ξ(θ), and the

posterior density of Zt is

ζt(z) ∝ ξt(θ(z)) ∝ exp[`t(θ)− `t(θ̂t)]ξ(θ), (8)

where the relation of θ and z is given in (7). Now define

ut(θ) = `t(θ)− `t(θ̂t) +
1

2
||zt||2. (9)

So, (8) can be rewritten as

ζt(z) ∝ φp(z)ft(z), (10)

where ft(z) = ξ(θ(z))exp[ut(θ)] and φp(z) denotes the standard p-variate normal

density.

Observe that the posterior distribution of Zt in (10) is of a form suitable for

Stein’s Identity. Since ξ is twice differentiable in <p and vanishes off of Θ, ft(z)(=

ξ(θ(z))exp[ut(θ)]) also has the properties. So, by Lemma 2.1,

Et
ξ{h(Zt)} = Φph+ Et

ξ{[Uh(Zt)]
T∇ft(Zt)
ft(Zt)

}, (11)

Et
ξ{h(Zt)} = Φph+ (ΦpUh)TEt

ξ[
∇ft(Zt)
ft(Zt)

] + Et
ξ{tr[V h(Zt)

∇2ft(Zt)

ft(Zt)
]}. (12)

Throughout ∇ξ and ∇2ξ denote the gradient and Hessian of ξ with respect to θ,

∇f and ∇2f the gradient and Hessian of f with respect to Z, and Et
ξ and V t

ξ the

posterior expectation and variance given data xt. Some calculations are useful for

later reference.

∇ft(Zt)
ft(Zt)

= (ΣT
t )−1[

∇ξ(θ)
ξ(θ)

+∇ut(θ)], (13)

∇2ft(Zt)

ft(Zt)
= (ΣT

t )−1[
∇2ξ

ξ
+
∇ξ
ξ
∇uTt +∇ut

∇ξT

ξ
+∇2ut +∇ut∇uTt ]Σ−1

t , (14)
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where by (9) we can derive

∇ut(θ) = ∇`t(θ)−∇2`t(θ̂t)(θ − θ̂t), (15)

∇2ut(θ) = ∇2`t(θ)−∇2`t(θ̂t). (16)

3 Marginal Posterior Distributions

All asymptotic posterior expansions in this section are valid for sample points which lie

on Bt (the set in which maximum likelihood estimator θ̂t exists and satisfies ∇`t(θ̂t) =

0; see Section 2) and satisfy the following lemma.

Lemma 3.2 Let Mt(r; r1, ..., rp) denote rth joint posterior moments of Zt with r > 0;

that is, Mt(r; r1, ..., rp) = Et
ξh(Zt), where h(z) =

∏p
i=1 z

ri
i with

∑
ri = r. Then

(i) Et
ξh(Zt) = O(t−1/2) for odd r;

(ii) Et
ξh(Zt) = Φh+O(t−1) for even r.

The above lemma is well known and we state it here for later use. The proof is in,

for instance, Johnson [2]. We can also establish it using Stein’s Identity.

Recall that Xt is a random vector from pt(xt|θ), where θ is chosen according to

the prior density ξ. Let θ0 denote the true underlying parameter. All asymptotic

posterior expansions below are valid for sample points which lie on Bt (see Section 2)

and satisfy the following conditions:

(C0) lim
t→∞

t−1∇2 ˆ̀
t is positive definite,

(C1) t−1 ˆ̀(k)
t = O(1) for k > 0,

(C2) t2Et
ξ[a(θ)− a(θ̂t)−

∑3
s=1(s!)−1a(s)(θ̂t; θ − θ̂t)]2 = O(1),

(C3) Et
ξ||Zt||n = O(1) for n > 0,

where a(θ) is `
(1)
i or `

(2)
ij , a(s)(θ̂t; θ − θ̂t) =

∑
i1···is a

(s)
i1···is(θ̂t)δi1 · · · δis , and O(1) means

convergence of a sequence of real numbers. So, the integrand in (C2) is square of

remainder terms in a Taylor expansion. Condition (C1) is easy to check. Conditions

(C1) and (C2) can be guaranteed by assuming some tail properties of `t and the local

behavior that `(k)(θ) is bounded in a small neighborhood of θ0.

In the following we prove Lemma 3.2 using Stein’s Identity. It should always be

remembered that the derivatives of ft are in (13) and (14), and ∇ut and ∇2ut are in
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(15) and (16). First note that if h is a polynomial of order r, Uh and V h are of orders

r− 1 and r− 2 (see Weng and Woodroofe [9, Lemma 8]); and that by (4), ΦpUh = 0

for even r. Then, by Taylor expansions,

[∇ut(θ)]i =
1

2
δTt Diδt + (Rem1) =

1

2
ZT
t ViZt + (Rem1), (17)

[∇2ut(θ)]ij = [Di]j.Σ
−1
t Zt +

1

2

∑
k,s

ˆ̀(4)
ijks[Z

T
t (ΣT

t )−1eke
T
s Σ−1

t Zt] + (Rem2), (18)

where (Rem1) = (1/6)
∑

jks
ˆ̀(4)
ijksδtjδtkδts + (1/24)

∑
jksq `

(5)
ijksq(θ̃t)δtjδtkδtsδtq, θ̃t lies be-

tween θ and θ̂t, and (Rem2) has a similar form. So, Et
ξ{[Uh(Zt)]iRem1} is bounded

by (C1)-(C3) and Cauchy-Schwartz inequality.

Next, let qk denote Hermite polynomials, given by qk(z)φ(z) = (−d/dz)kφ(z). For

instance, for k = 1, ..., 4 the Hermite polynomials are q1(z) = z, q2(z) = z2 − 1,

q3(z) = z3 − 3z, and q4(z) = z4 − 6z2 + 3.

Theorem 3.1 Take h∗(ztp) in (??) as the indicator function 1(ztp ≤ w), where w ∈
<. Then, the marginal posterior distribution for the individual parameter θp is

P t
ξ (θp ≤ a) = P t

ξ (Ztp ≤ w)

= Φ(w)−
6∑

i=1,i 6=5

1

i!
qi−1(w)φ(w)Et

ξ(qi(Ztp)) +O(t−3/2), (19)

where w = [Σt]pp(a− θ̂tp).

By taking derivative of (19) with respect to a, we obtain the marginal posterior

density

ξtp(a) = [Σt]pp{φ(w) +
6∑

i=1,i 6=5

1

i!
qi(w)φ(w)Et

ξ(qi(Ztp)) +O(t−3/2)}. (20)

Observe that no renormalization is needed for this approximation as
∫
< qi(w)φ(w)dw =

0.
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Report on attending the 7th World Congress in Probability and Statis-

tics Singapore

The 7th World Congress in Probability and Statistics was jointly sponsored by

the Bernoulli Society and the Institute of Mathematical Statistics, two of the major

international statistical societies. This year the conference was held in Singapore

from July 14 to 19, 2008. This meeting is a major international event in probability

and statistics held every four years. It covers a wide range of topics and features

the latest scientific developments in the fields of probability and statistics and their

applications.

I arrived on July 13 and stayed for 6 days. I presented my recent work on Stein’s

Identity and its applications in Bayesian analysis. My talk was scheduled with some

other Bayesian studies so that I got a good chance to see other Bayesian related

work. I attended several other presentations and was impressed by some interesting

talks such as “A picture is worth a thousand numbers: communicating uncertainties

following statistical analysis” by David Spiegelhalter, “Probability and statistics in

internet information retrieval” by Zhi-Ming Ma, and Luke Tierney’s talk on statistical

computing.

I also browsed books displayed in the book stand and purchased one book relevant

to my research.
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