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1 Introduction

Conditional independence tests have different applications. For example, to
make variable selection in a regression model, Li, Cook and Nachtsheim (2005)
proposed to test the independence between the response variable and a predic-
tor variable given other predictors, and remove the predictor variable when the
test is not significant. Su and White (2005) pointed out that conditional inde-
pendence tests can be used for testing Granger non-causality for two time series
and choosing a proper model for a certain family of semi-parametric models.

For the case where the variables involved are discrete, there are many exist-
ing tests for conditional independence. For the case with continuous variables,
there are relatively few results. Li et al (2005) proposed a test of conditional
independence, which is constructed by projecting two variables to the space gen-
erated by the conditioned variable and then testing the independence between
the residuals. Su and White (2005, 2006) proposed tests based on a weighted
Hellinger distance between the conditional densities or based on the difference
between the conditional characteristic functions.

It is desirable to construct a test of conditional independence of two random
vectors X and Y given a random vector Z based on some measure of conditional
association, where the measure of conditional association have the following
properties:

P1 The measure can be defined for any types of random vectors, including
both discrete and continuous variables.

P2 The measure is invariant when one-to-one transforms are applied to each
vector.

P3 The measure is between 0 and 1, where 0 corresponds to independence
and 1 corresponds to full dependence.

Part or all of Properties P1 - P3 have been considered by various authors in
different contexts. Some examples are as follows.

Romanovič (1975) defined the maximum partial correlation between two σ-
fields given a third σ-field. According to Romanovič’s definition, the maximum
partial correlation between σ(X) and σ(Y ) given σ(Z) is

sup
f,g

corr (f(X,Z)− E(f(X,Z)|Z), g(Y, Z)− E(g(Y, Z)|Z)) ,

where σ(X) denotes the σ-field generated by the random vector X. The max-
imum partial correlation between σ(X) and σ(Y ) given σ(Z) can serve as a
measure of conditional association of X and Y given Z, and it satisfies Proper-
ties P1 - P3.

Su and White (2005) proposed a test of conditional independence which
is based on a test statistic that is a weighted Hellinger distance between the
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conditional density of X given Z and the conditional density of Y given Z.
Such a statistic can serve as a measure of conditional association, and they
chose Hellinger distance so that the test statistic has the invariant property P2.

Dauxois and Nkiet (1998) proposed to use canonical coefficients obtain in
nonlinear canonical analysis (NLCA) to construct measures of association and
tests of independence. The following is a straightforward extension of Dauxois
and Nkiet (1998)’s definition of the canonical coefficients to the conditional case.

Definition 1. Suppose that there exist pairs of functions (fi, gi): i = 0,
1, . . ., such that for each i, (fi, gi) is a pair of functions (f, g) that maximizes
E (f(X,Z)g(Y,Z)|Z) subject to E(f2(X,Z)|Z) = 1 = E(g2(Y, Z)|Z) and

E(f(X,Z)fj(X,Z)|Z) = 0 = E(g(Y, Z)gj(Y, Z)|Z) for j < i.

Define ρi(X,Y |Z) = E (fi(X,Z)gi(Y, Z)|Z) for each i. The ρi(X,Y |Z)’s will
be referred as canonical coefficients.

Suppose that the (fi, gi)’s in Definition 1 exist, then a proper combination
of ρi(X,Y |Z)’s can give a measure of conditional association. Some examples
of such a combination are ρ1(X,Y |Z) and −

∑
k log(1 − ρ2

k(X,Y |Z)), whose
unconditional counterparts are two commonly used measures of association, as
mentioned in Huang, Lee and Hsiao (2006).

Among the various approaches for constructing measures of conditional as-
sociation described above, the NLCA approach offers the most flexibility. The
objective of this project is to construct a test of conditional independence based
on measures of conditional association from NLCA. However, it is not clear
what conditions need to be added to guarantee the existence of the (fi, gi)’s. In
the report, an alternative definition for the canonical coefficient ρ1(X,Y |Z) is
provided to avoid finding such conditions.

2 Measures of Conditional Association

In this section, the canonical coefficients ρi(X,Y |Z)’s are defined using a new
approach. In Definition 1, it is clear that ρ0(X,Y |Z) = 1 with f0(X,Z) = 1 =
g0(Y, Z). Therefore, only the ρi(X,Y |Z)’s with i ≥ 1 will be defined again, and
the new definitions involve only pairs of functions in

S = {(f, g) : E(f2(X,Z)|Z) = 1 = E(g2(Y, Z)|Z) and E(f(X,Z)|Z) = 0 = E(g(Y, Z)|Z)}.

As mentioned in Section 1, the purpose for introducing alternative definitions
for the ρi(X,Y |Z)’s is to avoid dealing with the existence of the maximizers
(fi, gi)’s. To achieve this goal, the maximums of certain conditional expecta-
tions in the original definitions of the ρi(X,Y |Z)’s will be replaced by suitable
supremums. In particular, sup(f,g)∈S∗ E(f(X,Z)g(Y, Z)|Z) needs to be defined
for S∗ ⊂ S, for which the following fact is used:
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Fact 1 For S∗ ⊂ S, there exists a sequence {(αn, βn)} in S∗ such that

(i) Thesequence{E(αn(X,Z)βn(Y,Z)|Z)} is increasing (not necessarily strictly),
and

(ii) for every (f, g) ∈ S∗, E(f(X,Z)g(Y, Z)|Z) ≤ limn→∞E(αn(X,Z)βn(Y, Z)|Z)
almost surely.

Furthermore, if (i) and (ii) hold for {(αn(X,Z), βn(Y, Z))} = {(αn,1(X,Z), βn,1(Y, Z))}
or {(αn,2(X,Z), βn,2(Y,Z))}, then

lim
n→∞

E(αn,1(X,Z)βn,1(Y, Z)|Z) = lim
n→∞

E(αn,2(X,Z)βn,2(Y, Z)|Z) (1)

almost surely.

Fact 1 allows one to define sup(f,g)∈S∗ E(f(X,Z)g(Y, Z)|Z):

Definition 2. For S∗ ⊂ S,

sup
(f,g)∈S∗

E(f(X,Z)g(Y, Z)|Z) = lim
n→∞

E(αn(X,Z)βn(Y,Z)|Z),

where {(αn, βn)} is a sequence in S∗ that satisfies (i) and (ii) in Fact 1.

Proof for Fact 1. First, note that (1) holds because for every n,

E(αn,2(X,Z)βn,2(Y, Z)|Z) ≤ lim
n→∞

E(αn,1(X,Z)βn,1(Y, Z)|Z)

and
E(αn,1(X,Z)βn,1(Y, Z)|Z) ≤ lim

n→∞
E(αn,2(X,Z)βn,2(Y, Z)|Z)

almost surely. It remains to find a sequence {(αn, βn)} that satisfies (i) and (ii).
Let {(α∗n(X,Z), β∗n(Y, Z)} be a sequence in S∗ such that E(α∗n(X,Z)β∗n(Y, Z))
increases to sup(f,g)∈S∗ E(f(X,Z)g(Y,Z)).

Let (α1(X,Z), β1(Y, Z)) = (α∗1(X,Z), β∗1(Y,Z)), and for n ≥ 2, define

(αn(X,Z), βn(Y,Z))

=
{

(α∗n(X,Z), β∗n(Y,Z)) if E(α∗n(X,Z)β∗n(Y,Z)|Z) > E(αn−1(X,Z)βn−1(Y,Z)|Z);
(αn−1(X,Z), βn−1(Y, Z)) otherwise.

Then {(αn(X,Z), βn(Y, Z))} is a sequence in S∗ that satisfies (i). To see that
{(αn(X,Z), βn(Y,Z))} also satisfies (ii), for (α, β) in S∗, Define

(α∗∗n , β∗∗n ) =
{

(α, β) if E(α(X,Z)β(Y,Z)|Z) > limn→∞E(αn(X,Z)βn(Y, Z)|Z);
(αn, βn) otherwise.
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Then

E(α∗∗n (X,Z)β∗∗n (Y, Z)|Z) = max{E(α(X,Z)β(Y, Z)|Z), E(αn(X,Z)βn(Y,Z)|Z)}

and

E(α∗∗n (X,Z)β∗∗n (Y, Z)) = sup
(f,g)∈S∗

E(f(X,Z)g(Y,Z)) = E(αn(X,Z)βn(Y, Z)),

so E(α∗∗n (X,Z)β∗∗n (Y,Z)|Z) = E(αn(X,Z)βn(Y,Z)|Z) almost surely and (ii)
holds. The proof of Fact 1 is complete.

With Definition 2, ρ1(X,Y |Z) can be re-defined as follows:

Definition 3. ρ1(X,Y |Z) = sup(f,g)∈S E(f(X,Z)g(Y,Z)|Z).

Note that if the maximizer (f1, g1) in Definition 1 exists, it is clear that ρ1(X,Y |Z) =
E(f1(X,Z)g1(Y, Z)|Z) using Definition 3. Therefore, the definition for ρ1(X,Y |Z)
in Definition 3 can be viewed as a generalized version of that in Definition 1.

It might be possible to define the ρk(X,Y |Z)’s for k ≥ 2 without assuming
the existence of the the (fi, gi)’s in Definition 1. However, the definition is
currently under construction and is not reported here.

Below are some remarks for the ρk(X,Y |Z)’s.

1. ρk(X,Y |Z)’s satisfy Properties P1 and P2 and are between 0 and 1.
ρ1(X,Y |Z) satisfies Property P3. That is, when X and Y are condi-
tionally independent given Z, ρ1(X,Y |Z) = 0. When X is a function of
Y and Z or Y is a function of X and Z, ρ1(X,Y |Z) = 1.

2. When Z is a constant vector, ρk(X,Y |Z)’s are the canonical coefficients
in Dauxois and Nkiet (1998).

3. It is stated in Dauxois and Nkiet (1998) that when the joint distribution

of X and Y is bivariate normal N
((

0
0

)
,

(
1 ρ
ρ 1

))
, the first canon-

ical coefficient ρ1(X,Y ) = |ρ|. This result implies that, when the joint
distribution for X, Y and Z is multivariate normal and X and Y are both
univariate,

ρ1(X,Y |Z) =

∣∣∣∣∣ E(X − E(X|Z))(Y − E(Y |Z))|Z)

(E(X − E(X|Z))2|Z))1/2 (E(Y − E(Y |Z))2|Z))1/2

∣∣∣∣∣
=

∣∣∣∣∣ E(X − E(X|Z))(Y − E(Y |Z)))

(E(X − E(X|Z))2))1/2 (E(Y − E(Y |Z))2))1/2

∣∣∣∣∣ ,
which also equals the absolute value of the usual partial correlation coef-
ficient.
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3 A Test of Conditional Independence

Testing conditional independence is equivalent to testing if E(ρ1(X,Y |Z)) = 0.
In this section, an estimator for E(ρ1(X,Y |Z)) is proposed, and its asymptotic
distribution is derived to give a test of conditional independence.

3.1 Estimation of E(ρ1(X, Y |Z))

An estimator for E(ρ1(X,Y |Z)) can be constructed using basis approximation.
First, suppose that there exist basis functions {φp,i : 1 ≤ i ≤ p, p ≥ 1}, {ψq,j :
1 ≤ j ≤ q, q ≥ 1} and {θr,k : 1 ≤ k ≤ r, k ≥ 1} such that for {pn} and qn with
limn→∞ pn = ∞ and limn→∞ qn = ∞,

lim
n→∞

inf
p≤pn,r≤rn,αp,r,i,k

E

α(X,Z)−
∑

1≤i≤p,1≤k≤r

αp,r,i,kφp,i(X)θr,k(Z)

2

= 0

(2)
and

lim
n→∞

inf
q≤qn,r≤rn,βq,r,j,k

E

β(Y, Z)−
∑

1≤j≤q,1≤k≤r

βq,r,j,kψq,j(Y )θr,k(Z)

2

= 0

(3)
for any α(X,Z) and β(Y,Z) with finite second moments. Furthermore, it is
assumed that for each (p, q), there exist coefficients αp,i’s and βq,j ’s such that

1 =
∑

1≤i≤p

αp,iφp,i(X) and 1 =
∑

1≤j≤q

βq,jψq,j(Y ).

Then ρ1(X,Y |Z) can be approximated by sup(f,g)∈Spn,qn
E(f(X,Z)g(Y, Z)|Z),

where Spn,qn
= {(f, g) ∈ S : f(X,Z) =

∑pn

i=1 αi(Z)φpn,i(X) and g(Y,Z) =∑qn

j=1 βj(Z)ψqn,j(Y )}. Denote the supremum by ρpn,qn
(Z). Then specific ap-

proximation result is stated as follows.

Fact 2 Suppose that limn→∞ pn = ∞ and limn→∞ qn = ∞, then
limn→∞E(|ρ1(X,Y |Z)− ρpn,qn(Z)|) = 0.

The proof of Fact 2 follows from the approximation properties (2) and (3):

ρ1(X,Y |Z) ≈ Ef(X,Z)g(Y, Z)|Z = corr (f(X,Z)g(Y,Z)|Z)
≈ corr (f∗(X,Z), g∗(Y, Z)|Z) ≤ ρpn,qn(Z)

for some (f, g) ∈ S and some (f∗, g∗) ∈ Spn,qn . Based on Fact 2, it is reason-
able to estimate ρ1(X,Y |Z) using an estimator for ρpn,qn(Z). To make such
estimation possible, it is assumed that for each (p, q, i, j), E(φp,i(X)ψq,j(Y )|Z)
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is equal to some continuous function of Z almost surely. Then an estimator for
ρpn,qn

(z) and ρ1(X,Y |Z = z) is

max
{αi}pn

i=1,{βj}qn
j=1

∑
i,j

αiβj

(
Ê(φi(X)ψj(Y )|Z = z)− Ê(φi(X)|Z = z)Ê(ψj(Y )|Z = z)

)
,

where the maximum is taken over all {αi}pn

i=1 and {βj}qn

j=1 such that∑
1≤i≤pn,1≤j≤qn

αiαj

(
Ê(φi(X)φj(X)|Z = z)− Ê(φi(X)|Z = z)Ê(φj(X)|Z = z)

)
= 1

and ∑
1≤i≤pn,1≤j≤qn

βiβj

(
Ê[ψi(Y )ψj(Y )|Z = z]− Ê(ψi(Y )|Z = z)Ê(ψj(Y )|Z = z)

)
= 1.

Here Ê[g(X,Y )|Z = z] =
∑Nn

i=1 g(Xi, Yi)kh(z − Zi)/
∑Nn

i=1 kh(z − Zi), where
Nn → ∞ as n → ∞, for z = (z(1), . . . , z(d)), kh(z) =

∏d
j=1 h

−1k0(z(j)/h)
and k0 is a symmetric probability density function on R. Denote the above
estimator for ρ1(X,Y |Z = z) by ρ̂(z), then N−1

ρ,n

∑Nn+Nρ,n

i=Nn+1 ρ̂(Zi) is an estimator
for E(ρ1(X,Y |Z)), where Nρ,n →∞ as n→∞.

The estimator ρ̂(z) can be obtained using SVD (single value decomposition),
which makes it easy to do the computation.

3.2 Asymptotic distribution of the estimator and test of
conditional independence

To build a test for conditional independence based on the estimator ρ̂, it is
necessary to derive the asymptotic distribution of the estimator under the con-
ditional independence hypothesis. An asymptotic property of the estimator ρ̂(z)
is given in the following theorem.

Theorem 1 Suppose that pn = p and qn = q do not depend on n, then√
Nnhd

n(ρ̂(z) − ρp,q(z)) converges in distribution as n → ∞. Furthermore,
if X and Y are conditionally independent given Z, then Nnh

d
ncK ρ̂

2(z) con-
verges in distribution to the maximum eigenvalue of CCT as n → ∞, where
cK = f(z)/

∫
k2
0(s)ds, f is the pdf of Z and C is an p× q matrix with 0’s in the

first row and first column and other elements are IID N(0, 1).

The proof of Theorem 1 requires only minor modification of Lemma 7.1 in
Dauxois and Nkiet (1998) and is left out. Also, the asymptotic joint distribution
of the estimators of certain conditional expectations is needed, which is taken
directly from the lecture notes by James Powell titled “Notes on Nonparametric
Regression Estimation”, which is available at

http://emlab.berkeley.edu/users/powell/e241a_sp07/nrnotes.pdf
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The asymptotic distribution of the test statistic N−1
ρ,n

∑Nn+Nρ,n

i=Nn+1 ρ̂(Zi) is nor-
mal, with mean and variance equal to the mean and variance of ρ̂(Z1), which can
be approximated using estimators from Bootstrap or the asymptotic distribu-
tion of ρ̂(z). However, if pn and qn both tend to ∞, then the distribution of the
maximum eigenvalue of the random matrix CCT does not converge. Therefore,
a more general version of Theorem 1 needs to be derived in order to understand
the behavior of ρ̂(z) when both pn and qn tend to ∞.
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