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(mass spectrum) (preprocessing)
(peak detection) (alignment) MALDI(Matrix
Assisted Laser Desorption and lonization) SELDI(Surface Enhanced Laser Desorption and
lonization) (mass spectrum, MS)

(mass-to-charge, m/z) (intensity)

(preprocess)
SELDI-TOF

—Bioconductor PROcess —

This research aims to study the alignment step in preprocessing the mass spectrometry (MS)
data. Two popular mass spectrometry experiments are SELDI (Surface Enhanced Laser
Desorption and lonization) and MALDI (Matrix Assisted Laser Desorption and lonization). Ina
mass spectrum of a biological sample, intensities of proteins are recorded in the vertical axis and
the corresponding mass-to-charge (m/z) values are in the horizontal axis of proteins. Due to the
complex nature of the experiment, the data is full of measurement error. The measurement error
make it difficult to correctly identify the presence of a true feature and adequately quantify the
strength of a present true feature. Peaks identification and alignment are thus two essential steps
in data preprocessing. In this research, a new method for peak identification and alignment is
proposed. A real SELDI-TOF mass spectra data set with known true features is used to assess
the proposed method. This method is shown easy to implement and outperform the existing

method in the Bioconductor PROcess package.

(keywords): Mass spectrometry, peak detection, peak alignment, continuous wavelet

transformation.



In identification of important biomarkers via proteomic mass spectra, procedures usually
consist of two steps, namely, preprocessing step and analysis step. The preprocessing step usually
includes baseline subtraction, normalization, peak detection, and alignment. In order to obtain
good subsequent analysis results, an effective preprocessing step is required. Recent
developments in analyzing microarray gene expression data have advanced the analysis step.

However, there are still many issues in terms of the preprocessing step.

Two critical steps for feature extraction of mass spectra are peak detection and peak
alignment. Different procedures have been introduced and applied on MS data sets. Many studies
suggest first to find peaks on individual spectrum and then to match and to align all the detected
peaks subsequently (Tibshirani et al.(2004), Coombes et al.(2005), Morris et al.(2005), Yasui et
al.(2003), Adam et al.(2002)). On the other hand, Morris et al.(2005), Wang, Cagney and
Cartwright(2005)) considered to first form a reference spectrum, which integrates information of
multiple spectra, and then to align and to detect peaks accordingly. Morris et al.(2005) compared
the two aforementioned strategies through examples and simulation studies. They concluded that
second strategy performs better overall. The noise in the reference spectrum is greatly reduced
and the reference spectrum is more sensitive in finding peaks. From a virtual experiment, the
reference spectrum algorithm has better performance in the sense of having greater sensitivity
and less FDR.

The determination of occurrence of a peak is usually based on background-subtracted,
normalized intensity value. A peak is detected if its intensity is relatively notable when compared
with its neighborhood. Recently, Du, Kibbe, and Lin (2006) adopted a Continuous Wavelet
Transform (CWT)-based procedure which utilizes not only the information from intensity but
also the information from the shape of peaks through pattern matching in the wavelet space. Du
et al.(2006) showed that this CWT-based algorithm can reduce false positive rate in detecting
peaks.  Even though the CWT-based peak detection algorithm has advantages over other
algorithms, the CWT-based algorithm only deals with detecting peaks on one single spectrum at a

time.



This paper aims to extend the CWT-based algorithm for peaks extraction on multiple spectra.
We consider first pooling the shape information of all spectra in a reference and then identify the
peaks based on the reference. Moreover, before integrating information, the experimental error in
location is taken into consideration and reduced. The proposed method not only can perform peak
detection for multiple spectra but also carry out peak alignment at the same time. The proposed

method is called multi-spectra CWT-based(MCWT) algorithm.

Assume there are n spectra. For the signal of spectrum i, s;(t), one first calculates the CWT

coefficients,

-b
Ci(a,b)= Fj{si (g p(t)dt, where @, (1) :%(p[tT}

at scale a and translation b for i=1,...,n. Here ¢p(t) is the mother wavelet function. ACWT
coefficients matrix is formed by taking consideration of a range of translation and various scales.
To reduce the deviation of location shift of the same peak, after the CWT coefficients are

obtained, we take the local maximum over the window bx&*b,

Ci*(a,b)= max Ci(a,b"),
b'e[b—5b,b+8b]

for each translation b, on spectrum i, at scale a. Since it is believed that the accuracy in the m/z
position is within 0.3% of the m/z value, here &=0.3%.

The next step is to integrate all the information on CWT coefficients matrices from n spectra
into a single reference CWT coefficients matrix. For each a, b, the average values of the CWT

coefficients over all samples, given by

n
2Cj*(a,b)
Cmean *(a,b) = =1

are recorded in the reference CWT coefficients matrix. Linking the local maximal points at
adjacent scales on the reference CWT coefficient matrix, one is able to find the ridge lines, which
correspond to peaks with high possibility. Henceforth, peaks are identified based on the ridge
lines found on the reference CWT coefficients matrix according to the criteria suggested by Du et
al.(2006). The location of a peak is determined as the translation corresponding to the maximal

CWT coefficient. For each individul spectrum, the identified peaks are then quantified as follows.



Assume there are p identified peaks with m/z values by, ...,bgp. The signal of the j-th identified

peak for spectrum i is quantified as Sj;=maxa Ci*(a,bo;).

In the following section, we consider a real data set with known polypeptide m/z positions
for comparing our proposed method with another popular method, the PROcess package in
Bioconductor. We consider the STANDARD data set provided by the organizers of the sixth
international conference for the critical assessment of microarray data analysis (CAMDA, 2006,
http://camda.duke.edu). The MS spectra was measured by Ciphergen NP20 chips. Twenty-one
real peaks that are resulted by seven polypeptides with mass 7034, 12230, 16951, 29023, 46671,
66433 and 147300 with up to three charges are in the sample, see Du et al.(2006). The 32 spectra
of high laser energy are used on assessment for an alignment procedure. Moreover, the spectra
data with m/z values < 2k are ignored in subsequent analysis due to the fact that spectra data at
low range m/z are too noisy for the machine to record stably.

Our MCWT-based algorithm and PROcess have different definitions for SNR. Thus
different ranges of thresholds of SNR are employed for the two methods to obtain the ROC
curves. Our methods take the SNR threshold ranged from 0.5 to 11 with increment of 0.3, while
the PROcess takes the SNR threshold from 1 to 11 with increment of 0.5. In PROcess, default
setting is used for background subtraction and normalization before peak detection and alignment.
On the contrary, under mild assumptions, the two preprocessing steps are unnecessary for the
MCWT-based algorithm method.

Our methods dominate the method of PROcess package in terms of having lower FDR and
higher sensitivity. Also one finds that the number of identified peaks, sensitivity and FDR of the
MCWT-based algorithm are monotonic decreasing as the SNR threshold. Less intuitively, such
monotonicity does not exist in PROcess.

REFERENCES
< Adam, B.-L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares, L. H., Semmes,

0. J., Schellhammer, P. F.,, Yasui, Y., Feng, Z. and Wright, G. L., Jr. (2002) Serum protein

fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from

benign prostate hyperplasia and healthy men. Cancer Research, 62, 3609-3614.



CAMDA (2006) CAMDA 2006 Competition Data Set.

Coombes, K. R., Tsavachidis, S., Morris, J. S., Baggerly, K. A., Hung, M.-C. and Kuerer, H.
M. (2005) Improved peak detection and quantification of mass spectrometry data acquired
from surface-enhanced laser desorption and ionization by denoising spectra with the
undecimated discrete wavelet transform. Proteomics, 5,4107-4117.

Du, P., Kibbe, W. A. and Lin, S. M.(2006) Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22,
2059-2065.

Gentleman, R. and Vandal, A. C.(2001) Computational algorithms for censored data
problems using intersection graphs. Journal of Computational and Graphical Statistics,10,
403-421.

Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A. and Kobayashi, R. (2005)
Feature extraction and quantification for mass spectrometry in biomedical applications using
the mean spectrum. Bioinformatics, 21, 1764-1775.

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi,G., Koong, A. and Le, Q.-T. (2004)
Sample classification from protein mass spectrometry, by 'peak probability contrasts'.
Bioinformatics, 20, 3034-3044.

Wong, J. W. H., Cagney, G. and Cartwright, H. M. (2005) SpecAlign-processing and
alignment of mass spectra datasets. Bioinformatics Applications Notes, 21, 2088-2090.
Yasuli, Y., Pepe, M., Thompson, M. L., Adam, B.-L., Wright, G. L., Jr., Qu, Y., Potter, J. D.,
Winget, M., Thornquist, M. and Feng, Z. A data-analytic strategy for protein biomarker
discovery:profiling of high-dimensional proteomic data for cancer detection.Biostatistics, 4,

449-463.



