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Robust Diagnostics for the Heteroscedastic Regression
Model

Tsung-Chi Cheng∗

September 17, 2007

Abstract

The assumption of equal variance in the normal regression model is not always ap-
propriate. Cook and Weisberg (1983) provide a score test to detect heteroscedastic-
ity, while Patterson and Thompson (1971) propose the residual maximum likelihood
(REML) estimation to estimate variance components in the context of an unbalanced
incomplete-block design. REML is often preferred to the maximum likelihood esti-
mation as a method of estimating covariance parameters in a linear model. However,
outliers may have some effect on the estimate of the variance function. This paper in-
corporates the maximum trimming likelihood estimation of Hadi and Luceño (1997) in
REML to obtain a robust estimation of modelling variance heterogeneity. The forward
search algorithm of Atkinson (1994) is employed to find the resulting estimator. Sim-
ulation and real data examples are used to illustrate the performance of the proposed
approach.

Keywords: Forward search algorithm; heteroscedasticity; maximum trimmed likelihood
estimator; residual maximum likelihood estimator; outlier; robust diagnostics.

1 Introduction

The assumption of equal variance in the normal regression model is not always appropriate.

Cook and Weisberg (1983) provide a score test to detect heteroscedasticity. In an attempt

to eliminate variance heterogeneity, a transformation is often used, but the evidence for

transformations may sometimes depend crucially on one or a few observations. Several

authors point out that data transformations can be very sensitive to outliers (eg. Tsai and

Wu, 1990). Furthermore, it may be the case that modelling the variance itself is of great

interest or a simple transformation is inadequate to correct for the unequal variance.

∗Department of Statistics, National Chengchi University, 64 ZhihNan Road, Section 2, Taipei 11605,
Taiwan. E-mail: chengt@nccu.edu.tw
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Apart from the maximum likelihood estimation (MLE) for the linear regression model

with heteroscedastic error (see Harvey, 1976; Aitkin, 1987), Patterson and Thompson (1971)

propose the residual maximum likelihood (REML) estimation to estimate variance compo-

nents in the context of an unbalanced incomplete-block design. REML is often preferred

to MLE as a method for estimating covariance parameters in a linear model. Alternative

and more general derivations of REML are given by Harville (1974), Cooper and Thompson

(1977) and Verbyla (1990). Applying the conditional likelihood representation, Smyth and

Verbyla (1996) extend the concept of REML to the generalized linear models with varying

dispersion and a canonical link. One of the advantages about REML is it provides a tool to

estimate the varying variance function during the iterative procedure.

Carroll and Ruppert (1988, chapter 5) discuss issues about regression transformation and

weighting in an effort to robustify the analysis. More general discussions on estimating the

heteroscedastic regression models are given by Welsh, Carroll and Ruppert (1994). One of

the shortcomings in their approaches is that they can have a low breakdown point. Verbyla

(1993) extends the deletion diagnostic approach to detect the dependence, estimation, and

tests of homogeneity based on full and residual maximum likelihoods. However, it is known

that case deletion diagnostics has its limitation in terms of masking and swamping effects

when multiple outliers exist in the data. This essentially requires a robust estimator. One

of the desirable properties for a robust estimator is one with a high breakdown point that

is capable of handling multiple outliers. Several approaches have been proposed for the

purposes of the identification of outliers and robust estimation in the last two decades.

Among these methods, Hadi and Luceño (1997) propose the trimmed likelihood estimator,

which is based on trimming the likelihood function rather than directly trimming the data.

They refer to this method as the maximum trimmed likelihood (MTL) method and the

corresponding estimator as the maximum trimmed likelihood estimator (MTLE).

Müller and Neykov (2003) discuss the relationships of the least trimmed squares (LTS)

estimator and MTLE for a generalized linear model. Employing the concepts of the least

trimmed squares (LTS) estimator and the maximum trimmed likelihood estimator (MTLE),

Cheng (2005) unifies robust statistics and a diagnostic approach to deal with the outlier

problem in the regression transformation. Cheng and Biswas (2007) apply the MTL approach

to obtain the robust estimators of the multivariate location and shape, especially for data

mixed with continuous and categorical variables. The purpose of this article is to develop a

robust method of modelling variance heterogeneity that will not be influenced by potential

outliers.

This paper incorporates the trimming likelihood concept in REML to obtain a robust
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estimation for the problem of variance heterogeneity when outliers are present in the data.

This paper is outlined as follows. Section 2 briefly reviews the literature about modelling

heteroscedasticity for the linear regression model. Section 3 discusses the idea of the trimmed

likelihood approach. A new estimation procedure is then proposed in combination with both

REML and MTL approaches, which is named as the residual trimmed maximum likelihood

(RTML) estimator. It is given in oreder to deal with estimating the heteroscedastic regres-

sion model in the presence of outliers. The forward search algorithm of Atkinson (1994) is

adapted for the resulting RTML estimator. Section 4 conducts a simulation study to com-

pare the performance of the REML and RTML estimators. Section 5 illustrates the proposed

procedure using three real data examples. New findings are discovered by the RTML results.

Section 6 concludes.

2 Model of heteroscedasticity

Consider the linear model

yi = xT
i β + εi, i = 1, 2, · · · , n, (1)

where yi is the response variable, xi is a p× 1 vector of explanatory variables, β is a vector

of unknown parameters, and εi is the random error that is assumed to be independent and

follows N(0, σ2
i (γ)). The variance model is the log-linear form

log σ2
i = zT

i γ, (2)

where zi is a k× 1 vector of explanatory variables and γ is a vector of unknown parameters.

It is noted that zi may and often does have common components as xi. The first component

of each zi is 1, so that if γ2 = · · · = γk = 0, then this leads to a constant variance σ2 = exp γ1.

2.1 Maximum likelihood estimation

The maximum likelihood estimation for the heteroscedastic regression model has been dis-

cussed by Harvey (1976) and Aitkin (1987), which is briefly described as follows. The

log-likelihood under models (1) and (2) is

log L(β,γ; y) = −1

2

{
n∑

i=1

log σ2
i +

n∑

i=1

(yi − xT
i β)2

σ2
i

}
, (3)

where y be a n × 1 vector of the response variable. Let d be the vector with ith element

di = (yi − xT
i β)2, X and Z are n × p and n × k matrices of the explanatory variables,

3



respectively, and Σ is the diagonal variance matrix with ith element σ2
i . If 1n denotes the

n× 1 vector of unit elements, then the score vector and the Fisher expected information of

(3) are

u(β,γ; y) =

(
XTΣ−1(y −Xβ)
1
2
ZT (Σ−1d− 1n)

)
and I(β,γ) =

(
XTΣ−1X 0

0 1
2
ZT Z

)
. (4)

This yields an iterative procedure for the estimates as

β̂(t+1) = (XTΣ−1
(t)X)−1XTΣ−1

(t)y,

γ̂(t+1) = γ̂(t) + (ZT Z)−1ZT (Σ−1
(t)d− 1n),

where t indicates the tth iterate. Cook and Weisberg (1983) provide a diagnostic test based

on results (4) for a non-constant variance of models (1) and (2).

2.2 Residual maximum likelihood estimation

With a variance model, REML takes into account the loss of degrees of freedom in estimating

the mean. The REML estimate of γ is founded by using the marginal likelihood (Patterson

and Thompson, 1971; Harville, 1974; Cooper and Thompson, 1977; Verbyla, 1990 and 1993)

log LR(γ; y) = −1

2

{
log |Σ|+ log |XTΣ−1X|+ yT Py

}

= −1

2

{
n∑

i=1

zT
i γ + log |XTΣ−1X|+ yT Py

}
, (5)

where P = Σ−1 −Σ−1X(XTΣ−1X)XTΣ−1. The score vector for γ is given by

uR(γ) =
1

2
ZT (Σ−1d− 1n + h),

where h is the vector of the diagonal elements of

H = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2.

This is the hat matrix in a weighted regression. The expected information matrix is

IR(γ) =
1

2
ZT V Z,

where V = V ar(Σ−1d)/2. V is an n × n matrix with diagonal elements (1 − hii)
2 and

off-diagonal elements h2
ij, where hij denotes the (i, j) entry of H .

The method of scoring leads to the estimate when evaluated at iterate t as being

γ̄(t+1) = γ̄(t) + (ZT V Z)−1ZT (Σ−1
(t)d− 1n + h).

REML is often preferred to MLE as a method of estimating covariance parameters in the

linear model. An R package, statmod, is provided by Smyth (2002) to fit heteroscedastic and

varying dispersion models by REML.
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3 Robust heteroscedastic regression model

It is known that outliers can have effects on REML (eg. Verbyla, 1993). Therefore this

section considers a robust estimation for the heteroscedastic regression model. The method

extends the maximum trimmed likelihood approach to REML.

3.1 The maximum trimmed likelihood estimator

Hadi and Luceño (1997) propose a trimmed likelihood principle based on trimming the

likelihood function rather than directly trimming the data. It is always possible to order

and trim observations according to their contributions to the likelihood function, because

the likelihood is scalar-valued. For any given value of θ,

l(θ; x1) ≥ l(θ; x2) ≥ · · · ≥ l(θ; xn), (6)

where l(θ; xi) = ln f(xi; θ) is the contribution of the ith observation to the log likelihood

function. Therefore, the ML estimator maximizes the log likelihood function as

n∑

i=1

l(θ; xi).

The method proposed by Hadi and Luceño (1997) replaces the log likelihood function by

the trimmed log likelihood function:

b∑

i=a

wil(θ; xi), (7)

where a ≤ b, (a, b) ∈ {1, 2, · · · , n}, and wi ≥ 0 are weights. The estimator θ(a, b, w) is

obtained by maximizing (7). They call this method as the maximum trimmed likelihood

(MTL) method and θ̂(a, b, w) is the maximum trimmed likelihood estimator (MTLE).

Hadi and Luceño (1997) show that this trimming likelihood principle produces many ex-

isting estimators, such as MLE, least median squares (LMS), least trimmed squares (LTS),

and minimum volume ellipsoid (MVE) estimators. Cheng and Biswas (2007) present the re-

lation of MTLE with the minimum covariance determinant (MCD) estimator for multivariate

data.

3.2 Residual trimmed maximum likelihood estimation

In combination with both MTL and REML approaches, we propose a residual trimmed

maximum likelihood (RTML) estimation for models (1) and (2). Let θq = (βq,γq) denote
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the parameters for a specific value of q. If Q denotes the subset with q cases and the

corresponding data are denoted by yq and Xq, then the trimmed log-likelihood under models

(1) and (2) is

log Lq(βq,γq; yq) = −1

2





∑

i∈Q
log σ2

qi +
∑

i∈Q

(yi − xT
i βq)

2

σ2
qi



 . (8)

The corresponding RTML estimator is analogous to (5), which is to maximize

log LRq(γq; yq) = −1

2

{
log |Σq|+ log |XT

q Σ−1
q Xq|+ yT

q P qyq

}

= −1

2





∑

i∈Q
zT

i γq + log |XT
q Σ−1

q Xq|+ yT
q P qyq



 , (9)

where P q = Σ−1
q −Σ−1

q Xq(X
T
q Σ−1

q Xq)X
T
q Σ−1

q and Σq is the diagonal variance matrix with

ith element σ2
qi. The resulting RTML estimator evaluated at q is denoted by θ̂q = (β̂q, γ̂q).

This corresponds to the REML estimator based on the subset Q. Therefore, the analogous

expression of the score vector and expected information matrix for γ remain the same in

subsection 2.2. The details are expressed in the subsequent subsection. The difficulty here

is to find the subset Q.

3.3 Computing algorithm

To obtain the RTML estimate of θq, this subsection employs the forward search algorithm

of Atkinson (1994). The forward search algorithm starts with a randomly selected subset of

observations. The observations of the subset are incremented in such a way that outliers are

unlikely to be included.

For a specific value of q, we now give the details about using the forward search algorithm

to an approximate solution of θ̂q.

• Step 0. Choose the initial subset:

The forward search algorithm starts with the selection of a subset of m = m0 units,

where m0 must be large enough to estimate the unknown parameters θ. Here, we

suggest using m0 = p + k. The subset is denoted by M.

• Step 1. Obtain the ordered log-likelihood:

We first compute the REML estimate of θ based on the subsetM, which is to maximize

log LRm(γm; ym) = −1

2

{
log |Σm|+ log |XT

mΣ−1
m Xm|+ yT

mP mym

}
, (10)
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where P m = Σ−1
m −Σ−1

m Xm(XT
mΣ−1

m Xm)XT
mΣ−1

m . The method of scoring leads to the

estimate when evaluated at iterate t as

β̂m,(t+1) = (XT
mΣ̂

−1

m,(t)Xm)−1XT
mΣ̂

−1

m,(t)ym,

γ̄m,(t+1) = γ̄m,(t) + (ZT
mV mZm)−1ZT

m(Σ̂
−1

m,(t)dm − 1m + hm).

Here, hm is the vector of the diagonal elements of the corresponding hat matrix

Hm = Σ̂
−1/2

m,(t)Xm(XT
mΣ̂

−1

m,(t)Xm)−1XT
mΣ̂

−1/2

m,(t),

where Σ̂m,(t) denotes an m ×m matrix with the ith diagonal element σ̂2
mi. Moreover,

V m is an m ×m matrix with diagonal elements (1 − hii)
2 and off-diagonal elements

h2
ij, where hij denotes the (i, j) entry of Hm, and dm is the vector with ith element

di = (yi − xT
i β̂m,(t))

2, i ∈M.

The resulting estimate is denoted by θ̂m = (β̂m, γ̄m). Here, θ̂m can be directly obtained

by using Smyth’s (2002) approach based on the chosen m observations. We then

calculate the value of the log-likelihood for each case as:

lim(β̂m, γ̄m) ∝ −1

2

{
zT

i γ̄m +
(yi − xT

i β̂m)2

σ̂2
mi

}
, i = 1, · · · , n, (11)

where σ̂2
mi = zT

i γ̄m.

• Step 2. Calculate the value of the objective criterion:

The objective function of the RTML estimation evaluated at q is

`qm =
q∑

i=1

l(i)m, (12)

where l(i)m is the ordering of the log likelihood lim as

l(1)m ≥ l(2)m ≥ · · · ≥ l(n)m. (13)

• Step 3. Add observations during the forward search:

Let m = m0 + s (usually s = 1). We then choose those cases with the largest m values

of the ordered log-likelihood (13). These new m cases form a new subset, also denoted

by M.

• Step 4. Iterate Step 1 to Step 3 until the size of the subset equals n:

At each forward iteration, a new REML estimate θ̂m is obtained from the new subset,

and hence so is the value of the log-likelihood (11), lim, for i = 1, 2 · · · , n and ordering

l(i)m. As a sequence, this leads a series of `qm, m = m0 +s,m0 +2s, · · ·. The maximum

value of these `qm’s is denoted by `q, which is used to evaluate this forward search.
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Steps 0 to 4 form a forward search. One hundred forward searches are suggested by

Atkinson (1994), which yield a series of `q’s. The maximum value of these `q’s provides the

approximate solution of the RTML estimate of θ, which is also indicated by θ̂q for simplicity.

It is noted that the resulting RTML estimate can be viewed as the REML one based on those

q observations.

Once θ̂q is obtained, the so-called weighted residual

si =
ei

σ̂qi

=
yi − xT

i β̂q

σ̂qi

, i = 1, 2 · · · , n, (14)

can be used to flag the outlying cases. Here, σ̂2
qi = zT

i γ̄q, i = 1, 2 · · · , n. The corresponding

hat matrix is then

Hq = Σ̂
−1/2

q(n) X(XT
q Σ̂

−1

q Xq)
−1XT Σ̂

−1/2

q(n) ,

where Σ̂q(n) denotes an n× n matrix with the ith diagonal element, σ̂2
qi, and Σ̂q denotes an

q × q matrix corresponding to those q cases in the chosen subset. Let hqi denote the ith

diagonal element of Hq. It can be used to identify the leverage point.

4 Simulation study

In this section we conduct a simulation study to show the performance of the proposed

approach.

4.1 Data generating process

To generate data for the heteroscedastic regression model with high leverage points, we

adapt the process of Rousseeuw (1984), in which a well-known simulated data example for

the linear regression model with high contamination is present. To illustrate the proposed

approach, p = 2 is used. For “good” data, x1 is generated from the uniform distribution

U(0, 10) and x2 follows U(0, 20), and the response variable is as follows

yi = 20 + x1i + x2i + εi,

where εi ∼ N(0, σ2
i ) and

log σ2
i = 0.001 + 0.6x1i.

The “bad” data points are generated from a multivariate normal distribution



x1

x2

y


 ∼ MN







1
1

ym − 20


 ,




0.252 0 0
0.252 0

0 0.252





 ,

8



where ym denotes the smallest values of those good yi’s.

Figure 1 presents the scatter matrix of the simulated data with sample size 100, in which

the last 20 observations are assigned to be outlying. Parts (a) and (b) of Figure 2 are

the standardized residuals computed by OLS and LTS (75% of data used for the fitting),

respectively. There is no outlier revealed by LTS, whereas OLS identifies a couple of points

as outliers. Parts (c) and (e) of Figure 2 are the weighted residuals computed by the REML

and RTML approaches, respectively. Only one case revealed as an outlier based on REML,

while those 20 outlying cases are successfully identified by RTML. The values of hi obtained

by REML and RTML are shown in parts (d) and (f) of Figure 2, respectively. They result

in quite different patterns by these two approaches.

===Figure 1 is here===

===Figure 2 is here===

4.2 Simulation result

To see the capability of the proposed procedure, we conduct a simulation for models (1)

and (2). The data are generated in a similar manner as the previous subsection. The good

data are generated by model (1) setting parameter β0 = 20 and all other β’s being 1. The

values of x1 are generated from a uniform distribution with values between 0 and 10, while

other x variables have values between 0 and 20. In order to simplify the study, p = 5 is used

and only one explanatory variable, x1, is related to the error function. The heteroscedastic

errors follow (2) using the parameter values as γ0 = 0.001, and γ1 = 0.3, 0.6, or 0.9 (for the

different values of γ1, denoted by data types I, II and III, respectively). All other γ’s are then

zero. The values of γ1 are assigned to produce a relatively moderate to a very severe degree

of heteroscedasticity, while the “bad” data are generated from a multivariate distribution

with the following form

(
xT

i

yi

)
∼ MN

((
1T

ym − 20

)
, diag(0.252, · · · , 0.252)

)
,

where ym denotes the smallest values of those good yi’s. This will allow more distinct

distances between bad and good data for more heteroscedastic data. It is noted that the

simulated data belong to data type II. The range of data type III is larger than the other

two types, so that those outlying points will be farther away from the good data at the same

values of x1.

The comparison between REML and RTML is the main concern herein. Tables 1, 2, and

3 present the simulation results of data types I, II, and III, respectively. For each data type,
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sample sizes 100, 200, and 400 are considered. Each data set contains 10% or 20% outliers,

and 300 replicates are carried out to compare the average estimates of β and γ, which are

shown on the first line in the tables. The values on the second line for every β and γ are the

sample standard deviation of the 300 estimates. To examine the effects of variance functions,

two kinds of error functions are considered in the model fitting. One includes regressors X1

and X2, and the other considers the extra effect of X3 and X4. REML2 and RTML2 denote

the former, while REML4 and RTML4 indicate the latter.

===Table 1 is here===

===Table 2 is here===

===Table 3 is here===

It is clear to see that RTML outperforms REML, especially when heteroscedasticity

becomes more severe. For every data type, both RTML2 and RTML4 provide quite close

results in estimating the mean functions, whereas the difference between RTML2 and RTML4

becomes larger when the degree of heteroscedasticity is more severe. This may due to the

choice of the error function model. The estimate of γ2 for RTML2 and that of (γ2, γ3, γ4)

for RTML4 are close to zero. This concludes that the different choices of the error functions

do not lead to different results by RTML, but do have an effect on estimating variance

parameters by REML.

The higher the sample size is, the better the performance of RTML is in terms of both

the smaller bias and smaller sample standard deviation. However, the behavior of REML

does not depend on the sample size when outliers exist.

It is noted that the LTS (under the assumption of constant errors) provides quite reason-

able results when the sample size is large, but the sample standard deviations are relatively

large. This is due to a neglect of the heteroscedastic errors. This becomes serious when the

degree of heteroscedasticity is severe (data type III). All results of LTS fit based on 75% of

the data.

The results for data type III also seem to be better than the other two data types. This

is due to the outliers for type III being more distant than the other two.

Other effects on the performance of the proposed approach are the value of q for the

RMTL and the value of s for the forward searches. For the simulation results above, the

values of q are set to be [0.75n] for both RTML and LTS, and s is 2, 3, and 6 for sample size

100, 200, and 400, respectively. Atkinson and Cheng (1999) conclude that the higher the

value of q is, the higher the efficiency of LTS will be, and the more stable the identification

of outliers is, provided that the value of q is not large enough to include the existing outliers.

A similar result can be expected for the RTML estimates. On the other hand, the smaller
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values of s will consume more computation time. We do not explore both issues further here,

but the different values of q will be examined for real data examples in the next section.

5 Examples

In this section three real data examples are used to illustrate the RTML approach.

5.1 Mussels data

Mussels data have been used to illustrate transformations of response and explanatory vari-

ables for the regression analysis by Cook and Weisberg (1994). The data were collected as

part of a larger ecological study of mussels. There are 82 mussels in this data set. The mass

(M) of the mussel’s muscle is measured as the response variable. There are four explanatory

variables related to the physical measurements of each mussel’s shell, including the length

(L), width (W ), height (H), and mass (S). Apart from the following linear regression model

M = β0 + βLL + βW W + βHH + βSS + ε, (15)

Cook and Weisberg (1997) employ the marginal model plot which reveals the nonconstant

variance for this model. Therefore, they consider a dispersion model to improve the above

mean model as follows

V ar(ε|L, W,H, S) = exp(γ0 + γLL + γW W + γHH + γSS). (16)

Firstly, two available approaches are suggested to inspect heteroscedasticity. The first

one applies LTS regression approach using several different proportions of data to fit the

model under the assumption of constant errors. Atkinson and Cheng (1999) present this to

evaluate the stability of the estimates and the identification of outliers. Table 4 shows the

estimation results by LTS based on 65%, 75%, and 85% of data fitting for model (15). The

estimate of βL varies from the positive sign to a negative sign when the proportion of data

increases in the fitting. The estimate of βW based on 65% of data is different from those

based on 75% and 85% of data. While the estimates of βH and βS remain the same for

65% and 75% of data, different values are obtained when 85% of data are fitted in LTS. The

instable estimation may be due to outliers and/or heteroscedastic errors.

===Table 4 is here===

The second approach to reveal heteroscedasticity is to apply the quantile regression anal-

ysis of Koenker and Bassett (1978). The test for heteroscedasticity by means of regression
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quantiles have been discussed by Koenker and Bassett (1982) and Welsh, Carroll and Rup-

pert (1994). Similar to the previous one for LTS, here we also use quantile regression as an

exploratory tool rather than confirmatory analysis for revealing heteroscedasticity. Figure 3

presents the estimates evaluated at quantiles 0.1 to 0.9 for model (15) without S. The solid

line denotes the point estimate and the dashed lines indicate the bound of the 95% confidence

interval for the estimates. These results are obtained through the approach of Kocherginsky,

He and Mu (2005). It is clear to see that the values of the estimated coefficient for variable

L declines from the lower quantile to the higher one, whereas those for variable M increase

from the lower quantile to the higher one. It also features that the confidence intervals of the

estimates are wider for higher quantiles. This may imply that heteroscedastic errors exist in

the data.

===Figure 3 is here===

We then apply REML and RTML to these data by fitting models (15) and (16). Parts

(a) and (b) of Figure 4 are the plots of the standardized OLS and LTS residuals, respectively,

which are based on model (15) under constant errors. Part (c) is the plot of the weighted

residuals based on the REML approach. In general, these three residual plots present quite

a similar pattern although different outlying cases are identified, while part (e) is the plot of

the weighted residuals by RTML. It shows a similar pattern as the previous three plots, but

larger values of residuals are given for several observations. Cases 2, 8, 10, 11, 16, 21, 24,

29, 34, 37, 39, and 44 are revealed as outlying by RTML, whereas only cases 8 and 24 are

outliers by REML. Parts (d) and (f) depict the values of hi obtained by REML and RTML,

respectively. However, they appear to be quite different patterns by these two approaches.

Apart from model (16), another two variance functions are also examined. Similar results

for the identification of outliers are obtained based on the other two models. We omit this

part, because there are similar plots as in Figure 4 for these two models. Table 5 presents the

estimation results, in which all these three models yield quite similar estimates for the mean

function based on each approach, REML and RTML. Nevertheless, the estimates under the

same models are quite different between these two approaches.

To verify the difference, a case-deletion based on REML is used. REMLS denotes the

result applying the REML approach based on subset S being excluded from the data. Here,

S1 denotes those 12 outlying observations revealed by RTML, whereas S2 includes 2 outlying

cases by REML. It is clear to see that the results of RTML and REMLS1 are similar, and

there is a slight difference between REML and REMLS1 , and REMLS1 and REMLS2 are

quite different from each other. Furthermore, if we look at the values of deviance and the

score statistic of Cook and Weisberg (1983), the difference is distinct when fitting the model
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without those cases in S1. This also confirms that the score test is clearly influenced by

outliers.

A comparison among these tree models is not significantly different in terms of deviance

for REMLS1 and the objective value for RTML. The latter one is denoted by MTLq in Table

5, which shows the maximum values of `q’s. It is noted that q = [0.85n] is used for RTML

and LTS for the presentation. Other values of q, such as [0.65n], [0.75n] and [0.9n], have

been examined as well, but similar results are obtained.

===Figure 4 is here===

===Table 5 is here===

5.2 Cherry trees data

The cherry tree data set is used by several authors to illustrate the problems of a regression

transformation and a transform-both-sides model. This is a set of measurements on the

volume (Y ), diameter (D), and height (H) of 31 black cherry trees. Atkinson (1985, pp.

124-129) compares some candidate models to provide a means of predicting the volume of

timber in unfelled trees. If the first-order regression model is considered, which includes

the response variable, volume, and two explanatory variables, girth and height, then the

score statistic suggests strong evidence of a transformation on the response variable and the

estimated transformation parameter λ̂ = 0.3066. Tsai and Wu (1990) conclude that the cube

root transformation (the quick estimate of Cook and Wang (1983) for λ is 0.2931) to the

dependent variable with the weighted regression model provides a reasonable explanation of

the data. Cheng (2005) obtains the different estimated values of λ (between 0.21 and 0.36)

when different proportions of data are used for LTS, which may be due to the heteroscedastic

error structure in the data (Tsai and Wu, 1990). Cook and Weisberg (1983) use the score

test to examine several heteroscedastic error functions for these data. Verbyla (1993) also

uses these data, but different error functions are inspected. We then explore this data set

further here.

According to the previous studies mentioned above, the following model is reasonable for

these data

Y 1/3 = β0 + βHH + βDD + ε.

Four kinds of variance functions for the above model are considered as shown in Table 6.

Here, models A, B, and C were examined by Cook and Weisberg (1983), while model D

was discussed by Verbyla (1993). Figure 5 compares the weighted residuals between REML

and RTML for these four models. No matter which model is used, there is no other outlier
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revealed by REML as shown in parts (a1), (b1), (c1), and (d1) of Figure 5. However, RTML

detects different outliers under different models. For models A and C, cases 14, 15, 16, and

23 are outliers as shown in parts (a2) and (c2) of Figure 5, while part (b2) of Figure 5 flags

out cases 15 and 18 as outliers for model B, and cases 9 and 11 for model D in part (d2). The

different outliers are identified based on different variance functions. This coincides with the

findings of Cheng (2005). He shows that different subsets of deleted cases are obtained when

estimating the robust transformation parameter as different proportions of data are used for

LTS. The results confirm that this is due to the different heteroscedastic errors.

The case-deletion approach is used again to verify the different results obtained by REML

and RTML. Table 6 presents the estimation results. Firstly, no matter what heteroscedastic

error structures are considered, the estimates of the mean function for these four models

are quite similar based on each approach, REML and RTML. However, the estimates of

the coefficients vary for different variance functions. The values of deviance and the score

statistic of Cook and Weisberg (1983) are also distinct when those outliers are excluded or

included in the analysis.

It is noted that the RTML results based on q = [0.9n] are reported here, and other values

of q yield similar results.

===Figure 5 is here===

===Table 6 is here===

5.3 Gas vapours data

This is a set of experimental data relating the quantity of hydrocarbons recovered (Y ) to

four explanatory variables, including initial tank temperature (X1), temperature of gasoline

(X2), initial vapour pressure (X3), and vapour pressure of dispensed gasoline (X4). It is a

series of 32 fillings of a tank with gasoline for the purpose of studying a device for capturing

emitted hydrocarbons. A linear regression model is considered by Cook and Weisberg (1983)

as

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε,

and the assumption of homoscedasticity is examined.

Cook and Weisberg (1982) conclude that there is no other influence case in the data. We

reach a similar conclusion when applying the REML approach to these data under four kinds

of heteroscedastic errors as shown in parts (a1), (a2), (a3), and (a4) of Figure 4, in which

there appear only one or two outlying cases. All these four variance models are examined by

Cook and Weisberg (1983). The variables related to the variance functions are referred to
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in Table 7. However, parts (b1), (b2), (b3), and (b4) of Figure 6 show that there are around

18 to 20 outliers under different heteroscedastic error structures when the RTML approach

is used.

Table 7 reports the estimation results. Unlike the previous two examples, the estimated

coefficients for both mean functions and variance functions based on each approach, REML

and RTML, are quite different when fitting different variance functions. Moreover, the esti-

mation results are also quite different for every model when RTML and REML are applied.

Case 1 appears to have a very large negative value of residual in part (a2) of Figure

6, and cases 25 and 86 are outliers in part (a1) under model A. We therefore compare the

results of RTML and REML based on the whole data and excluding those observations. All

four estimation results under model A appear quite different from each other.

RTML and REML also yield quite different estimation results for the three other variance

models, models B, C, and D. The values of the score statistic for all four models are distinct

when outliers are included or excluded from the data. They are all significant.

It is noted that q = [0.85n] is used for RTML for the presentation. The small values of q

tend to reveal more extra outliers for this data set. The slight different results are obtained

when different heteroscedastic error structures are considered. We do not report the details

here.

===Figure 6 is here===

===Table 7 is here===

6 Conclusions

In this paper we extend the trimmed likelihood approach to the residual likelihood estimation

and adapt the forward search algorithm to find the proposed estimates, RTML. A simulation

study shows that RTML performs better than REML when an appropriate proportion of

outliers exist in the data. The illustrations of real data obtain new findings based on RTML.

It is natural that different variance functions lead to different weights for each case, so that

different outliers are then revealed. The REML estimates and the score test of Cook and

Weisberg (1983) are influenced by outliers. The case-deletion based on REML confirms the

results.

Some aspects related to the present paper merit future research in this area. Firstly,

several candidate models for variance structures are used for the real data illustration in

section 5. All are based on the literature. The model selection approach proposed by Shi

and Tsai (2002) could be extended to the current paper for the choice of an optimal model in
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the presence of outliers. Nevertheless, the simulation study leads to RTML providing robust

estimates even though the variance function is over-fitting. Secondly, the work of Wen, Chen,

and Chen (2007) on testing a subset of regression parameters under heteroscedasticity would

be another extension for the present paper. Finally, it is of particular interest to employ the

results of Atkinson and Riani (2006) and Atkinson, Riani, and Cerioli (2006). This would

enhance the current results, but more computational efforts are expected.
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Table 1. The simulation results for data type I.

(a) 10% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS 18.787 1.037 1.025 1.027 1.026 1.022

2.142 0.137 0.059 0.063 0.061 0.060
REML2 15.002 1.128 1.117 1.091 1.092 1.094 1.956 0.136 -0.057

1.921 0.123 0.066 0.060 0.055 0.058 1.086 0.097 0.049
REML4 16.476 1.074 1.071 1.072 1.073 1.061 2.425 0.177 -0.046 -0.046 -0.048

1.654 0.125 0.059 0.052 0.051 0.052 1.314 0.082 0.042 0.046 0.044
RTML2 19.168 1.021 1.019 1.019 1.018 1.016 -0.376 0.199 -0.005

2.076 0.156 0.069 0.069 0.066 0.063 1.036 0.147 0.067
RTML4 19.117 1.014 1.020 1.020 1.023 1.015 -0.391 0.196 -0.006 0.000 -0.006

2.044 0.158 0.073 0.071 0.069 0.063 1.611 0.146 0.071 0.079 0.077

n = 200
LTS 19.455 1.012 1.011 1.011 1.010 1.012

1.472 0.097 0.041 0.042 0.040 0.041
REML2 14.235 1.150 1.140 1.102 1.099 1.103 2.443 0.105 -0.074

1.185 0.087 0.042 0.039 0.041 0.041 0.887 0.072 0.043
REML4 16.194 1.083 1.076 1.076 1.075 1.062 3.030 0.159 -0.059 -0.058 -0.061

1.120 0.081 0.039 0.036 0.039 0.040 0.970 0.056 0.034 0.031 0.032
RTML2 19.676 1.004 1.007 1.009 1.005 1.008 -0.205 0.189 -0.002

1.322 0.102 0.041 0.047 0.039 0.043 0.538 0.076 0.038
RTML4 19.708 1.003 1.005 1.008 1.006 1.008 -0.195 0.186 -0.002 -0.001 -0.002

1.246 0.103 0.042 0.044 0.039 0.043 0.838 0.078 0.039 0.039 0.037

n = 400
LTS 19.921 1.005 1.002 1.001 1.002 1.000

0.816 0.059 0.025 0.025 0.027 0.026
REML2 13.934 1.154 1.156 1.100 1.101 1.100 2.889 0.079 -0.092

0.866 0.062 0.029 0.032 0.032 0.031 0.681 0.050 0.033
REML4 16.291 1.075 1.075 1.072 1.073 1.053 3.494 0.144 -0.070 -0.068 -0.068

0.875 0.062 0.028 0.027 0.029 0.028 0.663 0.038 0.022 0.022 0.022
RTML2 19.954 1.004 1.002 1.000 1.002 1.000 -0.202 0.192 -0.001

0.675 0.067 0.025 0.025 0.025 0.025 0.344 0.045 0.025
RTML4 19.940 1.005 1.002 0.999 1.002 1.001 -0.183 0.195 -0.002 -0.001 -0.001

0.704 0.067 0.026 0.025 0.026 0.026 0.495 0.046 0.024 0.027 0.024
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Table 1. (Continued)

(b) 20% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS 15.051 1.162 1.097 1.100 1.097 1.098

3.761 0.210 0.094 0.095 0.092 0.094
REML2 13.014 1.203 1.146 1.139 1.137 1.139 1.376 0.171 -0.015

3.443 0.168 0.088 0.078 0.084 0.092 0.937 0.089 0.039
REML4 13.847 1.163 1.121 1.126 1.129 1.116 1.622 0.182 -0.016 -0.019 -0.020

2.915 0.159 0.078 0.073 0.083 0.083 1.265 0.083 0.043 0.047 0.044
RTML2 15.706 1.116 1.086 1.092 1.090 1.087 0.015 0.135 -0.001

3.926 0.242 0.113 0.118 0.113 0.107 0.766 0.183 0.073
RTML4 15.285 1.130 1.094 1.100 1.100 1.095 0.149 0.124 -0.001 -0.005 -0.016

4.108 0.262 0.120 0.121 0.121 0.115 0.794 0.198 0.088 0.083 0.084

n = 200
LTS 15.052 1.152 1.097 1.098 1.099 1.102

4.320 0.180 0.090 0.094 0.097 0.093
REML2 10.915 1.245 1.196 1.175 1.177 1.181 1.881 0.132 -0.021

2.685 0.118 0.075 0.062 0.062 0.067 0.840 0.073 0.035
REML4 12.273 1.189 1.154 1.154 1.158 1.147 2.241 0.147 -0.025 -0.025 -0.027

2.280 0.112 0.061 0.062 0.058 0.066 1.204 0.066 0.037 0.037 0.038
RTML2 16.199 1.100 1.073 1.077 1.079 1.083 0.080 0.180 0.003

4.374 0.171 0.100 0.100 0.107 0.104 0.475 0.114 0.036
RTML4 16.230 1.100 1.074 1.078 1.077 1.081 0.030 0.174 0.001 0.004 0.005

4.408 0.180 0.102 0.103 0.106 0.103 0.571 0.118 0.036 0.036 0.039

n = 400
LTS 17.221 1.092 1.055 1.055 1.054 1.054

4.144 0.144 0.088 0.085 0.085 0.085
REML2 9.445 1.301 1.229 1.203 1.196 1.199 2.384 0.096 -0.032

1.956 0.093 0.056 0.044 0.044 0.048 0.757 0.057 0.033
REML4 11.744 1.207 1.163 1.167 1.162 1.143 2.936 0.117 -0.039 -0.039 -0.038

1.695 0.082 0.046 0.044 0.045 0.054 1.091 0.045 0.035 0.033 0.031
RTML2 18.299 1.050 1.033 1.035 1.033 1.035 0.018 0.222 0.001

3.633 0.124 0.075 0.081 0.079 0.081 0.384 0.072 0.024
RTML4 18.252 1.052 1.035 1.035 1.034 1.036 -0.004 0.224 0.001 0.001 0.002

3.689 0.127 0.078 0.081 0.078 0.083 0.439 0.077 0.024 0.023 0.022
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Table 2. The simulation results for data type II.

(a) 10% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS 14.579 1.171 1.106 1.122 1.114 1.101

5.214 0.442 0.145 0.136 0.145 0.148
REML2 8.833 1.245 1.269 1.226 1.220 1.215 2.371 0.359 -0.044

4.560 0.278 0.131 0.132 0.136 0.130 1.195 0.100 0.055
REML4 12.175 1.145 1.167 1.173 1.161 1.140 2.882 0.409 -0.048 -0.045 -0.044

3.596 0.280 0.111 0.112 0.111 0.117 1.544 0.080 0.053 0.051 0.055
RTML2 17.955 1.056 1.045 1.048 1.036 1.043 0.217 0.404 -0.009

4.194 0.327 0.119 0.112 0.104 0.119 0.986 0.157 0.066
RTML4 17.881 1.056 1.050 1.048 1.040 1.041 0.214 0.407 -0.014 -0.004 -0.002

4.237 0.330 0.119 0.114 0.114 0.124 1.478 0.161 0.071 0.067 0.070

n = 200
LTS 16.459 1.133 1.075 1.069 1.064 1.072

5.133 0.349 0.126 0.125 0.123 0.126
REML2 6.615 1.296 1.335 1.254 1.251 1.255 2.855 0.321 -0.055

4.024 0.219 0.127 0.103 0.108 0.104 1.076 0.077 0.050
REML4 11.488 1.146 1.180 1.178 1.175 1.144 3.520 0.391 -0.059 -0.058 -0.057

3.031 0.207 0.086 0.082 0.090 0.091 1.305 0.055 0.044 0.042 0.041
RTML2 19.315 1.023 1.018 1.014 1.011 1.014 0.153 0.424 -0.001

2.833 0.212 0.071 0.073 0.073 0.075 0.563 0.090 0.036
RTML4 19.279 1.017 1.018 1.013 1.013 1.016 0.149 0.417 -0.002 0.000 0.001

2.836 0.216 0.074 0.075 0.074 0.077 0.874 0.093 0.036 0.038 0.036

n = 400
LTS 18.728 1.047 1.022 1.026 1.025 1.027

3.705 0.243 0.087 0.088 0.090 0.085
REML2 4.912 1.342 1.387 1.272 1.278 1.275 3.409 0.279 -0.070

3.253 0.156 0.108 0.077 0.082 0.078 0.939 0.065 0.042
REML4 11.949 1.145 1.165 1.165 1.168 1.119 4.222 0.375 -0.075 -0.075 -0.074

2.414 0.150 0.063 0.067 0.065 0.066 1.042 0.043 0.034 0.032 0.033
RTML2 19.889 1.000 1.002 1.001 1.003 1.003 0.150 0.426 0.001

1.161 0.132 0.035 0.032 0.035 0.035 0.337 0.051 0.022
RTML4 19.890 0.999 1.003 1.001 1.003 1.003 0.107 0.431 0.000 0.001 0.002

1.156 0.130 0.035 0.031 0.036 0.036 0.472 0.052 0.022 0.022 0.023
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Table 2. (Continued)

(b) 20% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS 7.177 1.365 1.264 1.262 1.246 1.278

6.561 0.573 0.187 0.197 0.181 0.189
REML2 6.042 1.325 1.303 1.298 1.297 1.305 1.706 0.388 0.006

6.793 0.331 0.184 0.187 0.169 0.180 1.000 0.101 0.038
REML4 6.467 1.313 1.293 1.286 1.296 1.301 1.662 0.386 0.004 0.004 0.001

6.570 0.341 0.179 0.182 0.176 0.190 1.215 0.098 0.040 0.041 0.042
RTML2 8.128 1.215 1.244 1.249 1.252 1.283 0.464 0.309 0.028

7.111 0.540 0.227 0.266 0.241 0.249 0.691 0.188 0.077
RTML4 8.110 1.192 1.256 1.249 1.250 1.285 0.388 0.268 0.003 0.019 0.022

7.182 0.573 0.242 0.267 0.241 0.252 0.780 0.216 0.088 0.088 0.097

n = 200
LTS 3.983 1.510 1.318 1.329 1.319 1.326

6.783 0.465 0.159 0.180 0.153 0.176
REML2 2.062 1.424 1.377 1.384 1.380 1.392 2.240 0.334 0.005

6.980 0.287 0.156 0.166 0.161 0.181 0.864 0.086 0.027
REML4 3.014 1.390 1.356 1.367 1.361 1.369 2.288 0.337 0.000 -0.003 -0.002

6.139 0.266 0.140 0.162 0.149 0.172 1.179 0.076 0.036 0.034 0.034
RTML2 8.018 1.229 1.255 1.261 1.258 1.262 0.563 0.332 0.037

8.605 0.415 0.217 0.222 0.218 0.224 0.522 0.154 0.048
RTML4 7.814 1.222 1.265 1.262 1.269 1.264 0.467 0.284 0.020 0.023 0.025

8.624 0.431 0.220 0.220 0.224 0.218 0.503 0.179 0.047 0.047 0.047

n = 400
LTS 2.579 1.601 1.347 1.355 1.348 1.343

7.680 0.404 0.176 0.166 0.164 0.166
REML2 -1.415 1.537 1.464 1.453 1.441 1.448 2.723 0.290 -0.002

6.827 0.261 0.162 0.142 0.151 0.150 0.825 0.071 0.023
REML4 0.607 1.470 1.414 1.417 1.401 1.400 2.878 0.299 -0.009 -0.010 -0.009

5.599 0.239 0.136 0.135 0.131 0.144 1.260 0.060 0.037 0.036 0.037
RTML2 11.140 1.221 1.186 1.190 1.190 1.190 0.509 0.372 0.029

9.323 0.319 0.207 0.214 0.211 0.216 0.508 0.158 0.037
RTML4 10.203 1.209 1.213 1.213 1.215 1.208 0.406 0.343 0.019 0.020 0.019

9.613 0.300 0.225 0.223 0.221 0.220 0.469 0.183 0.029 0.031 0.030
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Table 3. The simulation results for data type III .

(a) 10% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS 17.901 1.091 1.034 1.070 1.033 1.024

12.449 1.353 0.370 0.354 0.359 0.375
REML2 -31.529 2.038 2.386 1.918 1.888 1.899 6.174 0.313 -0.118

22.866 1.160 0.559 0.597 0.616 0.629 1.270 0.095 0.095
REML4 5.415 1.138 1.310 1.323 1.283 1.207 7.192 0.554 -0.138 -0.126 -0.132

16.120 0.891 0.393 0.389 0.356 0.373 1.295 0.133 0.070 0.075 0.075
RTML2 20.128 0.969 1.000 0.996 0.989 1.003 0.214 0.727 -0.004

1.596 0.404 0.074 0.074 0.072 0.070 0.684 0.096 0.049
RTML4 20.199 0.962 1.000 0.994 0.988 1.001 0.146 0.731 -0.003 0.000 -0.002

1.646 0.415 0.077 0.076 0.075 0.074 1.029 0.099 0.052 0.051 0.051

n = 200
LTS 19.726 1.002 1.014 0.991 1.008 1.010

5.844 0.793 0.223 0.199 0.232 0.205
REML2 -34.608 2.066 2.595 1.865 1.882 1.889 6.857 0.279 -0.141

20.256 1.089 0.484 0.496 0.547 0.527 1.091 0.080 0.085
REML4 9.230 1.059 1.223 1.223 1.225 1.124 7.807 0.566 -0.144 -0.149 -0.147

9.519 0.634 0.229 0.235 0.238 0.189 0.884 0.104 0.054 0.049 0.051
RTML2 19.986 1.004 1.001 1.000 1.000 1.000 0.296 0.710 -0.001

1.026 0.293 0.044 0.045 0.044 0.044 0.409 0.057 0.029
RTML4 19.965 1.007 1.002 1.001 1.000 1.001 0.279 0.708 0.000 -0.002 0.000

1.035 0.291 0.045 0.045 0.045 0.046 0.591 0.060 0.030 0.031 0.030

n = 400
LTS 19.942 1.022 0.990 1.009 1.004 0.998

2.989 0.568 0.135 0.137 0.138 0.128
REML2 -35.677 1.996 2.736 1.820 1.831 1.793 7.452 0.261 -0.172

18.570 0.874 0.417 0.461 0.453 0.448 0.780 0.068 0.074
REML4 11.466 1.053 1.172 1.178 1.181 1.072 8.264 0.572 -0.154 -0.160 -0.158

4.866 0.432 0.124 0.134 0.121 0.098 0.585 0.074 0.039 0.037 0.037
RTML2 19.874 1.003 1.005 1.005 1.001 1.004 0.318 0.701 0.000

0.676 0.198 0.030 0.030 0.031 0.034 0.300 0.042 0.021
RTML4 19.872 1.006 1.004 1.005 1.000 1.005 0.299 0.703 0.000 0.000 0.000

0.687 0.195 0.031 0.030 0.031 0.035 0.418 0.041 0.021 0.020 0.021
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Table 3. (Continued)

(b) 20% outliers in the data
β0 β1 β2 β3 β4 β5 γ0 γ1 γ2 γ3 γ4

n = 100
LTS -43.588 3.391 2.180 2.294 2.298 2.237

40.790 2.442 0.950 1.055 1.015 0.927
REML2 -67.352 3.284 2.876 2.809 2.881 2.837 5.168 0.303 0.004

36.035 1.543 1.013 0.930 1.031 0.969 1.336 0.101 0.064
REML4 -39.246 2.573 2.243 2.244 2.303 2.279 5.765 0.396 -0.042 -0.050 -0.041

41.890 1.695 0.994 1.020 1.065 1.137 2.246 0.151 0.102 0.103 0.098
RTML2 13.154 1.120 1.128 1.172 1.153 1.152 0.165 0.774 0.019

17.547 0.784 0.397 0.476 0.433 0.433 0.756 0.187 0.060
RTML4 12.048 1.142 1.174 1.172 1.174 1.177 0.075 0.762 0.014 0.008 0.007

19.232 0.814 0.484 0.454 0.493 0.474 1.014 0.215 0.057 0.061 0.060

n = 200
LTS -29.928 2.729 1.966 2.013 1.994 1.974

45.747 2.016 0.974 0.979 0.968 0.967
REML2 -81.304 3.663 3.178 3.086 3.085 3.058 5.853 0.246 -0.012

30.871 1.328 0.728 0.815 0.819 0.821 1.058 0.072 0.055
REML4 -34.887 2.329 2.117 2.165 2.168 2.112 6.848 0.394 -0.073 -0.074 -0.078

42.178 1.581 0.911 0.962 0.928 1.095 1.950 0.151 0.095 0.094 0.095
RTML2 18.491 1.042 1.030 1.036 1.034 1.028 0.137 0.810 0.005

9.129 0.370 0.202 0.215 0.214 0.187 0.468 0.097 0.035
RTML4 18.312 1.039 1.042 1.038 1.036 1.031 0.130 0.799 0.004 0.000 0.003

9.440 0.348 0.243 0.217 0.214 0.196 0.618 0.126 0.032 0.032 0.030

n = 400
LTS -8.922 2.061 1.560 1.581 1.566 1.572

44.319 1.845 0.890 0.911 0.884 0.922
REML2 -97.174 4.083 3.571 3.355 3.332 3.333 6.445 0.201 -0.023

29.111 1.067 0.671 0.678 0.668 0.693 0.844 0.054 0.044
REML4 -28.337 2.111 2.002 2.020 1.995 1.888 7.748 0.408 -0.103 -0.104 -0.099

44.395 1.472 0.935 0.965 0.950 1.015 1.627 0.159 0.087 0.089 0.084
RTML2 19.974 1.018 1.001 1.000 0.998 1.000 0.175 0.803 0.000

0.672 0.164 0.033 0.032 0.032 0.031 0.266 0.036 0.019
RTML4 19.961 1.020 1.002 1.000 0.999 1.000 0.165 0.809 0.000 -0.001 0.001

0.689 0.164 0.034 0.032 0.033 0.031 0.371 0.036 0.019 0.018 0.019
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Table 4. LTS analysis for mussels data.

LTS
65% 75% 85%

β̂0 -25.03 -24.56 -25.61

β̂L 0.02 0.00 -0.02

β̂W 0.39 0.54 0.54

β̂H 0.20 0.19 0.25

β̂S 0.20 0.19 0.25
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Figure 1: The scatter matrix of the simulated data.
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Figure 2: Diagnostic analyses for the simulated data: (a) the plot of the standardized OLS
residuals; (b) the plot of the standardized LTS residuals; (c) the plot of the weighted REML
residuals; (d) the plot of hi based on the REML approach; (e) the plot of the weighted RTML
residuals; and (f) the plot of hi based on the RTML approach.
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Figure 3: Quantile regression analysis for the mussels data.

31



0 20 40 60 80

−3
−2

−1
0

1
2

3

(a)

Observation

St
an

da
rd

ize
d 

Re
sid

ua
l (

O
LS

)

0 20 40 60 80

−1
.5

−0
.5

0.
5

1.
5

(b)

Observation

St
an

da
rd

ize
d 

Re
sid

ua
l (

LT
S)

0 20 40 60 80

−3
−2

−1
0

1
2

3

(c)

Observation

W
ei

gh
te

d 
Re

sid
ua

l (
RE

M
L)

0 20 40 60 80

0.
1

0.
2

0.
3

0.
4

(d)

Observation

Hi
 (R

EM
L)

0 20 40 60 80

−4
−2

0
2

4
6

8

(e)

Observation

W
ei

gh
te

d 
Re

sid
ua

l (
RT

M
L)

0 20 40 60 80

0.
1

0.
2

0.
3

0.
4

(f)

Observation

Hi
 (R

TM
L)

Figure 4: Diagnostic analyses for the mussels data: (a) the plot of the standardized OLS
residuals; (b) the plot of the standardized LTS residuals; (c) the plot of the weighted REML
residuals; (d) the plot of hi based on REML approach; (e) the plot of the weighted RTML
residuals; and (f) the plot of hi based on RTML approach (REML and RTML are based on
Model A in Table 5).
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Figure 5: Diagnostic analyses for the cherry tree data: (a1), (b1), (c1), and (d1) are the plots
of the weighted REML residuals; (a2), (b2), (c2), and (d2) are the plots of the standardized
RTML residuals. a, b, c, and d correspond to models A, B, C, and D in Table 6, respectively.
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Figure 6: Diagnostic analyses for the gas vapours data: (a1), (b1), (c1), and (d1) are the
plots of the weighted REML residuals; (a2), (b2), (c2), and (d2) are the plots of the weighted
RTML residuals. a, b, c, and d correspond to models A, B, C, and D in Table 7, respectively.
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一、參加會議經過 

 
本人於 8 月 22 日出發至葡萄牙里斯本，參與本年度之 The 56th Session of ISI，於 8 月 24
日早上發表上述之論文；與會期間並出席其他場論文發表，獲得甚多。 

會議期間與其他國家學者多有交誼，其中與任教於 Indian Statistical Institute 之 Dr Atanu 
Biswas討論未來合作研究之主題與方向。另外，個人博士論文指導教授 Prof A. C. Atkinson
在此次會中亦主導一場名為「Discovering data structure with the forward search」的邀請演

講主題，此主題為個人這些年的研究重心。 
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