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CORRECTED CONFIDENCE INTERVALS FOR
SECONDARY PARAMETERS FOLLOWING SEQUENTIAL

TESTS

Abstract

Corrected confidence intervals are developed for the mean of the second
component of a bivariate normal process when the first component is
being monitored sequentially. This is accomplished by constructing a first
approximation to a pivotal quantity, and then using very weak expansions
to determine the correction terms. The asymptotic sampling distribution
of the renormalised pivotal quantity is established in both the case where
the covariance matrix is known and when it is unknown. The resulting
approximations have a simple form and the results of a simulation study
of two well-known sequential tests show that they are very accurate. The
practical usefulness of the approach is illustrated by a real example of
bivariate data. Detailed proofs of the main results are provided.

1 Introduction

Suppose that a sequential test is carried out to compare two treatments. Then,
following the test, there is interest in making valid inferences about the different
parameters. For example, the primary parameter will typically be some mea-
sure of the treatment difference and there may be several secondary parameters
too. These could be the individual treatment effects or the effects of baseline
covariates, such as age, gender, disease stage, and so on. However, the use of
a sequential design leads to the usual maximum likelihood estimators being bi-
ased and associated confidence intervals having incorrect coverage probabilities.
One approach to the estimation problem is to study the approximate bias and
sampling distributions of the maximum likelihood estimators.

Until recently, much of the research on estimation following sequential tests
focussed on primary parameters. For example, an approach based on approxi-
mately pivotal quantities was developed by Woodroofe (1992) in the context of
a single stream of normally distributed observations. Here, interest lay in pro-
viding an approximate confidence interval for a mean. The work in the present
paper extends this approach in several respects. We consider bivariate normal
data, where interest lies in estimating the mean of the second component of the
process when the first is being monitored sequentially. Further, we consider the
case of an unknown covariance matrix for the process.

One of the first papers to address the problem of estimation of secondary
parameters following a sequential test was Whitehead (1986). For large samples,
he showed how the bias of the estimator of the secondary parameter is related to
that of the primary parameter, and then showed how a bias-adjusted estimator
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of the secondary parameter could be constructed. Gorfine (2001) has shown
how a theorem of Yakir (1997) may be used to define an unbiased estimator
of the secondary parameter. Related work has been carried out by Liu and
Hall (2001). More recently, Hall and Yakir (2003) develop tests and confidence
procedures in a very general context.

Several authors have developed methods for the construction of confidence
intervals based on approximately pivotal quantities. Whitehead, Todd and Hall
(2000) show how approximate confidence intervals may be obtained for a bivari-
ate normal process when the covariance matrix is known and then show how
these may be applied to problems in which approximate bivariate normality
can be assumed. Liu (2004) considers a similar problem and shows how the
appropriate corrections may be obtained using moment expansions, though the
method developed appears to be somewhat restricted. In the present paper, we
consider both the known and the unknown covariance matrix cases.

The approximately pivotal quantities are constructed by considering the
bivariate version of the signed root transformation, and then using a version of
Stein’s (1981) identity and very weak expansions to determine the correction
terms. The results in the known covariance matrix case are obtained by applying
those of Weng and Woodroofe (2000) for the two-parameter exponential family.
In the unknown covariance matrix case, similar ideas to those used by Weng and
Woodroofe (2006) in the context of stationary autoregressive processes are used
to establish the asymptotic sampling distribution of the renormalised pivotal
quantity. The resulting correction terms have a simple form and complement
the results of Whitehead (1986).

In Section 2, the correction terms for the usual approximately pivotal quan-
tity in the known covariance matrix case are determined using results for the
two-parameter exponential family and it is shown how these may be used to
construct corrected confidence intervals for the secondary parameter. The case
of an unknown covariance matrix is then considered in Section 3, and the asymp-
totic sampling distribution of the renormalised pivotal quantity is obtained. The
results of a simulation study of two well-known sequential tests are reported in
Section 4 and a real example of bivariate data is used to illustrate the approach
in Section 5. Some remarks and an indication of possible extensions to the
present work are given in Section 6. Appendices contain detailed proofs of the
main results.
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2 Bivariate normal process with known covari-
ance matrix

2.1 The general method for two-parameter exponential
families

LetXj = (X1j , X2j)′ for j = 1, . . . , n be independent random vectors distributed
according to a two-parameter exponential family with probability density

pθ(x) = eθ
′x−b(θ),

where θ = (θ1, θ2)′ ∈ Ω and Ω is the natural parameter space, assumed to be
open. Let Ln(θ) denote the log-likelihood function based on x1, . . . , xn, and
consider the bivariate version of the signed root transformation (e.g. Bickel and
Ghosh, 1990) given by

Zn1 = Zn1(θ) =
√

2{Ln(θ̂n)− Ln(θ̃n)}sign(θ1 − θ̂n1) (1)

and
Zn2 = Zn2(θ) =

√
2{Ln(θ̃n)− Ln(θ)}sign(θ2 − θ̃n2), (2)

where θ̂n = (θ̂n1, θ̂n2)′ is the maximum likelihood estimator and θ̃n = (θ1, θ̃n2)′

is the restricted maximum likelihood estimator for fixed θ1. Then we have
Ln(θ) = Ln(θ̂n)− ||Zn||2/2, where Zn = (Zn1, Zn2)′.

Consider a Bayesian model in which θ has a prior density ξ with compact
support in Ω. Let Eξ denote expectation in the Bayesian model in which θ is
replaced with a random vector Θ and let Enξ denote conditional expectation
given {Xj , j = 1, . . . , n}. Then the posterior density of Θ given X1, ..., Xn is
ξn(θ) ∝ eLn(θ)ξ(θ), and the posterior density of Zn is

ζn(z) ∝ J(θ̂n, θ)ξn(θ) ∝ J(θ̂n, θ)ξ(θ)e−
1
2 ||z||

2
, (3)

where z and θ are related by (1) and (2), and J is a Jacobian term. From (3),

ζn(z) = fn(z)φ2(z), z ∈ <2, (4)

where φ2 denotes the standard bivariate normal density and

fn(z) ∝ J(θ̂n, θ)ξ(θ).

Now, for p ≥ 0, let Hp be the set of all measurable functions h : <2 → <
for which |h(z)|/c ≤ 1 + ||z||p for some c > 0, and let H = ∪p≥0Hp. So, H0

denotes the set of bounded functions. Let Φk denote the standard k-variate
normal distribution for k = 1, 2 and write

Γh =
∫
hdΓ
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for an arbitrary measure Γ. Given h ∈ Hp, let h0 = Φ2h, h2 = h and

h1(y1) =
∫
<
h(y1, w)Φ1(dw),

and

g1(y1, y2) = e
1
2y

2
1

∫ ∞
y1

{h1(w)− h0}e−
1
2w

2
dw,

g2(y1, y2) = e
1
2y

2
2

∫ ∞
y2

{h2(y1, w)− h1(y1)}e− 1
2w

2
dw (5)

for −∞ < y1, y2 <∞. Then let Uh = (g1, g2)′ and V h = (U2h+U2h′)/2, where
U2h is the 2× 2 matrix whose ith column is Ugi and gi is as in (5). Lemma 2.1
below follows from Lemma 1 of Weng and Woodroofe (2000).

Lemma 2.1 (Stein′s identity) Let r be a nonnegative integer. Suppose that
dΓ = fdΦ2, where f is twice differentiable on <2 for which∫

<2
|f |dΦ2 +

∫
<2

(1 + ||z||r)||∇f(z)||Φ2(dz) <∞

and ∫
<2

(1 + ||z||r)||∇2f(z)||Φ2(dz) <∞.

Then

Γh = Γ1 · Φ2h+ Φ2(Uh)′
∫
<2
∇f(z)Φ2(dz) +

∫
<2

tr{(V h)∇2f}dΦ2

for all h ∈ Hr.

From (4), the posterior distributions of Zn are of a form appropriate for
Stein’s identity. Let

Γξ1(θ̂n, θ) =
√
n
∇fn(Zn)
fn(Zn)

and

Γξ2(θ̂n, θ) = n
∇2fn(Zn)
fn(Zn)

.

Now let Bn denote the event {θ̂n ∈ ∇b(Ω)} and let Ξ0 denote the collection
of all prior densities ξ = ξ(θ) with compact support in Ω for which ξ is twice
differentiable almost everywhere under Pξ, and ∇2ξ is bounded on its support.
Proposition 2.1 below follows from Proposition 2 of Weng and Woodroofe (2000).

Proposition 2.1 Suppose that ξ ∈ Ξ0. Then

Enξ {h(Zn)} = Φ2h+
1√
n

(Φ2Uh)′Enξ {Γ
ξ
1(θ̂n, θ)}+

1
n

tr[Enξ {V h(Zn)Γξ2(θ̂n, θ)}]

almost everywhere on Bn, for all h ∈ H.
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Let N = Na be a family of stopping times, depending on a design parameter
a ≥ 1. Suppose that

a

Na
→ ρ2(θ)

in Pθ-probability for almost every θ ∈ Ω, where ρ is a continuous function on
Ω. Suppose also that, for every compact set K ⊆ Ω, there is an η > 0 such that

Pθ(Na ≤ ηa) = o(a−q), (6)

uniformly with respect to θ ∈ K as a→∞, for some q ≥ 1/2. Lemma 3 below
follows from Theorem 12 of Weng and Woodroofe (2000). Moreover, by their
Lemma 5 and (6) above, we have Pθ(BcN ) = o(1/a).

Lemma 2.2 The random vector ZN = (ZN1, ZN2)′ is uniformly integrable with
respect to Pξ.

In what follows, suppose that θ1 is the primary parameter and that θ2 is a
nuisance parameter. Then, for inference about θ1, it is appropriate to use ZN1.
Now, from Proposition 2,

ENξ {h(ZN1)} = Φ1h+
1√
N

(Φ1Uh)ENξ {Γ
ξ
1,1(θ̂N , θ)}+

1
N
ENξ {V h(ZN1)Γξ2,11(θ̂N , θ)}.

To determine the mean correction term for ZN1, we take h(z) = z, in which
case Φ1h = 0, Φ1Uh = 1 and V h(z) = 0. Similarly, for the variance correction
term, we take h(z) = z2, in which case Φ1h = 1, ΦUh = 0 and V h(z) = 1.
Denote by bij the partial derivatives bij(θ) = ∂i+jb(θ)/∂θi1∂θ

j
2, and similarly for

ξij . Let i1(θ) = (b20 − b211/b02)(θ), i2(θ) = b02(θ), Γξ1,1(θ, θ) = limω→θ Γξ1,1(ω, θ)
and Γξ2,11(θ, θ) = limω→θ Γξ2,11(ω, θ), and let κ(θ) and m(θ) be such that

Eξ{ρ(θ)Γξ1,1(θ, θ)} =
∫ ∫

Ω

ξ(θ)κ(θ)dθ1dθ2 (7)

and

Eξ{ρ2(θ)Γξ2,11(θ, θ)− 2ρ(θ)κ(θ)Γξ1,1(θ, θ) +κ2(θ)} =
∫ ∫

Ω

m(θ)ξ(θ)dθ1dθ2. (8)

Then some algebra yields

κ(θ) =
(−b02, b11) · ∇ρ

b02i
1/2
1

(θ) + ρ(θ)

{
(b02,−b11) · ∇i1

6b02i
3/2
1

(θ) +
(b02,−b11) · ∇i2

2b202i
1/2
1

(θ)

}
.

(9)
A similar, but more complicated expression, may also be obtained for m(θ).

Now, define

Z
(0)
N =

ZN1 − µ̂(0)
N

τ̂
(0)
N

, (10)
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where

µ̂
(0)
N =


κ̂N/
√
a if |κ̂N | ≤ a1/6{log(a)}−1,

a−1/3{log(a)}−1 if κ̂N > a1/6{log(a)}−1,
−a−1/3{log(a)}−1 if κ̂N < −a1/6{log(a)}−1,

(11)

and

τ̂
(0)
N =

{ √
1 + m̂N/a if |m̂N | ≤

√
a/log(a),

1 otherwise,
(12)

with κ̂N = κ(θ̂N ) and m̂N = m(θ̂N ).

Theorem 2.1 Let h be a bounded function. Suppose that ρ(θ) is almost dif-
ferentiable with respect to θ1 and θ2. If (6) holds with q = 1 and ξ ∈ Ξ0, then

Eξ{h(Z(0)
N )} = Φ1h+ o(1/a).

The proof is in Appendix A.3. Theorem 2.1 shows that under mild conditions
Z

(0)
N is approximately standard normal to order o(1/a) in the very weak sense

of Woodroofe (1986). It extends Theorem 14 of Weng and Woodroofe (2000)
by not requiring h to be symmetric and not assuming ∇2ξ to be continuous.

So, an asymptotic level 1− α confidence interval for θ1 is

IN = {θ1 : |Z(0)
N | ≤ zα/2}, (13)

where zα/2 is the 100(α/2)-th percentile of the standard normal distribution.

2.2 The bivariate normal model with known covariance
matrix

Suppose that Xj = (X1j , X2j)′ for j = 1, . . . , n are independent random vec-
tors from a bivariate normal distribution with mean vector θ = (θ1, θ2)′ and
covariance matrix

Σ =
(

σ2
1 γσ1σ2

γσ1σ2 σ2
2

)
.

Let ψ = (σ2
1 , σ

2
2 , γ)′. As before, let N = Na be the stopping time depending on

a. Then, since the likelihood function is not affected by the use of a stopping
time (e.g. Berger and Wolpert, 1984), the density of XN is

p(x; θ, ψ) = exp
[
−N log(2π)− N

2
log{σ2

1σ
2
2(1− γ2)}

− 1
2σ2

1σ
2
2(1− γ2)

σ2
2

N∑
j=1

(x1j − θ1)2 + σ2
1

N∑
j=1

(x2j − θ2)2

−2γσ1σ2

N∑
j=1

(x1j − θ1)(x2j − θ2)


 . (14)
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If we assume that θ is unknown and ψ is known, then this model is a two-
parameter exponential family with density that satisfies

log p(x; θ) = c(x) +Nθ1t1 +Nθ2t2 −Nb(θ),

where t1 = x̄1/{σ2
1(1 − γ2)} − γx̄2/{σ1σ2(1 − γ2)}, t2 = x̄2/{σ2

2(1 − γ2)} −
γx̄1/{σ1σ2(1 − γ2)} and b(θ) = θ′Σ−1θ/2. Since b(θ) is quadratic in θ, both
i1(θ) and i2(θ) defined in Section 2.1 are constants; and therefore κ(θ) in (9)
reduces to

κ(θ) =
(−b02, b11) · ∇ρ(θ)

b02i
1/2
1

= −σ1ρ10, (15)

where ρij = ∂i+jρ/∂θi1∂θ
j
2 and the second equality in (15) follows since the stop-

ping time N is assumed to depend only on X11, . . . , X1N . Simple calculations
show that the maximum likelihood estimator of θ is (θ̂1, θ̂2) = (X̄N1, X̄N2) and
that the restricted maximum likelihood estimator of θ2 given θ1 is θ̃2 = θ̃2(θ1) =
θ̂2 − γσ2(θ1 − θ̂1)/σ1. By (1) and (2), it is straightforward to obtain

(ZN1, ZN2) = (
√
Nσ−1

1 (θ1−θ̂1),
√
Nσ−1

2 (1−γ2)−1/2{θ2−θ̂2−γσ2(θ1−θ̂1)/σ1}).

Furthermore, since the stopping time depends only on the first population, it
can be shown that m(θ) in (8) satisfies

m(θ) = κ2(θ) = (σ1ρ10)2.

Then, substituting these ZN1, κ and m into (10), (11), and (12), by Theorem
2.1, the approximate level 1− α confidence interval for θ1 is as in (13).

For inference about the secondary parameter θ2, it is not appropriate to use
ZN2 as it depends on both θ1 and θ2. So, we consider the transformation

ZN1 = ZN1(θ) =
√

2{LN (θ̂N1, θ̂N2)− LN (θ̃N1, θ2)}sign(θ2 − θ̂N2), (16)

where θ̃N1 = θ̃N1(θ2) is the restricted maximum likelihood estimator of θ1 given
θ2. Then ZN1 =

√
N(θ2− θ̂2)/σ2. To obtain the mean correction term, we need

to replace bij and ρij in (15) with bji and ρji. So,

Eθ(ZN1) ' 1√
a
κ(θ) =

1√
a

(−b20, b11) ·
(
ρ01

ρ10

)
b20(b02 − b211

b20
)1/2

(θ) = − 1√
a
σ1γρ10. (17)

Using a similar trick, we obtain

m(θ) = κ2(θ) = (σ1γρ10)2. (18)

With this ZN1 and its corresponding mean and variance corrections, we ob-
tain a renormalised pivot Z(0)

N as in (10). Then, by Theorem 2.1, an asymptotic
level 1− α confidence interval for θ2 is

θ̂N2 +
σ2√
N
µ̂

(0)
N ±

σ2√
N
τ̂

(0)
N zα/2. (19)
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This interval is of the same form as the one obtained by Whitehead, Todd and
Hall (2000). However, they use recursive numerical integration to calculate the
correction terms instead of asymptotic approximations.

3 Extension to unknown covariance matrix case

In this section, we consider the following three cases:

C1. σ1 and σ2 are known, but γ is unknown;

C2. σ1 and σ2 are unknown, but γ is known;

C3. σ1, σ2 and γ are all unknown.

When the parameters are unknown, we estimate them by σ̂2
i =

∑N
j=1(Xij −

θ̂i)2/(N − 1) for i = 1, 2 and

γ̂ =

∑N
j=1(X1j − θ̂1)(X2j − θ̂2)√∑N

j=1(X1j − θ̂1)2
∑N
j=1(X2j − θ̂2)2

.

As the main interest of this paper concerns inference about the secondary
parameter θ2, in the rest of the paper we let ZN1 be as in (16). So the corre-
sponding κ(σ1, γ, ρ10) and m(σ1, γ, ρ10) are as in (17) and (18). For cases C1-C3,
we consider κ̂(1)

N = κ(σ1, γ̂, ρ̂10), κ̂(2)
N = κ(σ̂1, γ, ρ̂10) and κ̂(3)

N = κ(σ̂1, γ̂, ρ̂10), re-
spectively; and correspondingly define µ̂(k)

N and τ̂
(k)
N for k = 1, 2, 3 as in (11)

and (12). Then, let

Z
(1)
N =

ZN1 − µ̂(1)
N

τ̂
(1)
N

(20)

and

Z
(k)
N =

ZN1(σ̂2)− µ̂(k)
N

τ̂
(k)
N

(21)

for k = 2, 3, where ZN1(σ̂2) =
√
N(θ2 − θ̂2)/σ̂2. We will use Z(k)

N for k = 1, 2, 3
as pivotal quantities for cases C1, C2 and C3, respectively.

Define ω̂N = σ̂2
2/σ

2
2 . Then we can rewrite Z(k)

N for k = 2, 3 in (21) as

Z
(k)
N =

(σ2
σ̂2

)ZN1 − µ̂(k)
N

τ̂
(k)
N

=
ZN1 − µ̂(k)

N ω̂
1/2
N

ω̂
1/2
N τ̂

(k)
N

. (22)

In the rest of the paper, let Ξ denote the collection of all prior densities ξ(ψ, θ) =
ξ1(ψ)ξ2(θ) with compact support in (0,∞)2 × (−1, 1) × Ω for which ξ is twice
differentiable almost everywhere under Pξ and ∇2ξ is bounded on its support.
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Theorem 3.2 Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then, for
k = 2, 3,∣∣∣∣∣
∫

(0,∞)2×(−1,1)

∫
Ω

[
Eψ,θ{h(Z(k)

N )} − Φ1h− 1
a

(Φ4h)ρ2(θ)
]
ξ(ψ, θ)dθdψ

∣∣∣∣∣ = o(
1
a

)

(23)
for all bounded functions h.

The definition of Φ4 and the proof are in Appendix A.4. Theorem 3.2 shows
that Z(k)

N for k = 2, 3 are asymptotically distributed according to a t distribution
with N degrees of freedom to order o(1/a) in the very weak sense, since Φ1h+
(Φ4h)ρ2(θ)/a represents the first two terms in an Edgeworth-type expansion for
the t distribution (e.g. Barndorff-Nielsen and Cox, 1989, Chap.2; Hall, 1992,
Chap.2). Hence,

Pψ,θ{|Z(k)
N | ≤ z} = 2GN (z)− 1 + o(1/a) (24)

very weakly, where GN denotes the t distribution with N degrees of freedom.
So, an asymptotic level 1− α confidence interval for θ2 is

θ̂N2 +
σ̂2√
N
µ̂

(k)
N ±

σ̂2√
N
τ̂

(k)
N cN,α/2,

where cN,α/2 is the 100(α/2)-th percentile of the t distribution with N degrees
of freedom. Note that the form of the above interval is similar to one obtained
by Keener (2005) using fixed θ expansions. However, his interval is only valid
up to order o(1/

√
a) and only applicable to linear stopping boundaries.

The proof of Theorem 3.2 reveals that the correction term (Φ4h)ρ2(θ)/a in
(23) arises from the use of ω̂N . Since σ2 is known for Z(1)

N in (20), this correction
term vanishes in the asymptotic expansion for Z(1)

N and an immediate corollary
to Theorem 3.2 is the following result.

Corollary 3.1 Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then∣∣∣∣∣
∫

(0,∞)2×(−1,1)

∫
Ω

[Eψ,θ{h(Z(1)
N )} − Φ1h]ξ(ψ, θ)dθdψ

∣∣∣∣∣ = o(
1
a

)

for all bounded functions h.

Therefore, Z(1)
N is asymptotically standard normal to order o(1/a) in the

very weak sense, and consequently

Pψ,θ{|Z(1)
N | ≤ z} = 2Φ1(z)− 1 + o(1/a)

very weakly. From this, one can set confidence intervals for θ2 as in (19), but
with µ̂

(0)
N and τ̂

(0)
N replaced by µ̂(1)

N and τ̂
(1)
N .
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4 Simulation results

4.1 General

Section 3 considers asymptotic results for Z(k)
N for a class of stopping times

N = Na depending only on the first population. Specifically, let q denote a
measurable function on < which is almost differentiable; let θ̂n1 =

∑n
j=1X1j/n

and
N = Na = inf{n ≥ m0 : nq(θ̂n1) ≥ a} ∧m, (25)

where m0 and m denote the initial sample size and the maximum size, respec-
tively; m0 = ba/ε20c and m = ba/ε2c, bxc is the greatest integer less than or
equal to x, a ≥ 1 is a boundary parameter, ε a truncation parameter and ε0
controls the initial sample size. In this section, we assess the accuracy of the
method for two simulated examples, the truncated sequential probability ratio
test and the repeated significance test. The actual coverage probability and
expected stopping time are assessed through simulation for σ1 = σ2 = 1 and
selected values of (θ1, θ2, γ).

4.2 Truncated sequential probability ratio test

The stopping time (25) with q(y) = |y| is equivalent to

N = inf{n ≥ m0 : |Sn1| ≥ a} ∧m,

where Sn1 =
∑n
j=1X1j is the partial sum from the first population. This is

the truncated probability ratio test depending on three parameters, a ≥ 1, ε0
and ε. Simple calculations yield a/N → ρ2, where ρ = max{min(ε0,

√
|θ1|), ε}.

The parameter values are taken as a = 10, ε =
√

0.1 and ε0 =
√

5.0. So,
m0 = a/ε20 = 2 and m = a/ε2 = 100. Tables 1 and 2 contain results for known
σ1 and σ2, but unknown γ, that is, case C1, and for unknown σ1, σ2 and γ, that
is, case C3, respectively.

In Table 1, we report the expected sample size and the lower and upper 0.05,
0.025 noncoverage probabilities for ZN1 and Z(1)

N . The results show that Z(1)
N is

very accurate for all selected parameter values, but ZN1 is negatively skewed.
Table 2 compares the coverage probabilities using ZN1 and Z

(3)
N . The coverage

probabilities for Pψ,θ(|ZN1| ≤ zα/2) for α = 0.05 and 0.1 are in the columns
with the title ‘ZN1’. The results using (24) for the pivotal quantity Z

(3)
N are

given under the title ‘Z(3)
N : tN ’. As (23) suggests that Z(3)

N can be approximated
by a t distribution with a/ρ̂2 degrees of freedom, we give the results in the last
two columns ‘Z(3)

N : ta/ρ̂2 ’. Apparently, the coverage probabilities for the näıve
statistic are all significantly less than the nominal values. The results using a/ρ̂2

degrees of freedom are slightly better than those with N . The distribution of
Z

(3)
N shows no appreciable skewness.

Table 1. Truncated sequential probability ratio test with known σ1 and σ2, but unknown γ;
replicates=10,000
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( ± means 1.96 standard deviations )

ZN1 Z
(1)
N

(θ1, θ2, γ) Eψ,θ(N) L0.05 U0.05 L0.025 U0.025 L0.05 U0.05 L0.025 U0.025
(0.30, 1.00, 0.40) 35.42 0.059 0.040 0.031 0.019 0.048 0.049 0.025 0.025
(0.60, 1.00, 0.40) 17.87 0.057 0.039 0.028 0.020 0.048 0.048 0.024 0.025
(0.80, 1.00, 0.40) 13.54 0.056 0.043 0.027 0.022 0.048 0.050 0.024 0.025
(0.30, 1.00, 0.80) 35.20 0.070 0.030 0.036 0.017 0.050 0.050 0.023 0.024
(0.60, 1.00, 0.80) 17.87 0.064 0.036 0.034 0.017 0.049 0.052 0.025 0.026
(0.80, 1.00, 0.80) 13.55 0.058 0.040 0.029 0.019 0.046 0.055 0.023 0.027

± 0.004 0.004 0.003 0.003 0.004 0.004 0.003 0.003

Table 2. Truncated sequential probability ratio test with unknown σ1, σ2 and γ;
replicates=10,000

( ± means 1.96 standard deviations )

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.30, 1.00, 0.40) 35.42 0.885 0.934 0.892 0.944 0.896 0.947
(0.60, 1.00, 0.40) 17.87 0.871 0.923 0.884 0.941 0.892 0.947
(0.80, 1.00, 0.40) 13.54 0.863 0.917 0.885 0.936 0.895 0.945
(0.30, 1.00, 0.80) 35.20 0.877 0.929 0.891 0.944 0.896 0.947
(0.60, 1.00, 0.80) 17.87 0.865 0.918 0.879 0.936 0.888 0.942
(0.80, 1.00, 0.80) 13.55 0.859 0.911 0.878 0.935 0.888 0.944

± 0.006 0.004 0.006 0.004 0.006 0.004

4.3 Repeated significance test

The stopping time (25) with q(y) = y2 is equivalent to

N = inf{n ≥ m0 : |Sn1| ≥
√
na} ∧m.

This is the repeated significance test depending on three parameters, a ≥ 1, ε0
and ε. It is easily seen that a/N → ρ2, where ρ = max{min(ε0, |θ1|), ε}. We
take a = 10, ε =

√
0.1 and ε0 =

√
2.0. So, m0 = a/ε20 = 5 and m = a/ε2 = 100.

Tables 3 and 4 contain results for known σ1 and σ2, but unknown γ, that is,
case C1, and for unknown σ1, σ2 and γ, that is, case C3, respectively.

In Table 3, we see that ZN1 is slightly more negatively skewed than in
Table 1, but Z(1)

N is again very accurate for all selected parameter values. The
coverage probabilities in Table 4 show that the use of ZN1 leads to significantly
lower coverage probabilities than the nominal values, but using Z

(3)
N and a t

distribution with a/ρ̂2 degrees of freedom also works very well for this test. As
before, the distribution of Z(3)

N shows no appreciable skewness.

Table 3. Repeated significance test with known σ1 and σ2, but unknown γ;
replicates=10,000.

( ± means 1.96 standard deviations )
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ZN1 Z
(1)
N

(θ1, θ2, γ) Eψ,θ(N) L0.05 U0.05 L0.025 U0.025 L0.05 U0.05 L0.025 U0.025
(0.30, 1.00, 0.40) 75.18 0.064 0.045 0.034 0.023 0.052 0.047 0.026 0.024
(0.60, 1.00, 0.40) 27.53 0.061 0.037 0.031 0.018 0.047 0.045 0.023 0.023
(0.80, 1.00, 0.40) 16.16 0.060 0.041 0.032 0.019 0.050 0.052 0.024 0.025
(0.30, 1.00, 0.80) 74.88 0.093 0.047 0.049 0.024 0.052 0.047 0.025 0.024
(0.60, 1.00, 0.80) 27.26 0.083 0.029 0.041 0.014 0.051 0.044 0.025 0.023
(0.80, 1.00, 0.80) 16.20 0.067 0.030 0.032 0.016 0.049 0.047 0.025 0.024

± 0.004 0.004 0.003 0.003 0.004 0.004 0.003 0.003
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Table 4. Repeated significance test with unknown σ1, σ2 and γ; replicates=10,000.
( ± means 1.96 standard deviations )

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.30, 1.00, 0.40) 75.18 0.880 0.934 0.897 0.947 0.900 0.948
(0.60, 1.00, 0.40) 27.53 0.872 0.925 0.891 0.939 0.896 0.946
(0.80, 1.00, 0.40) 16.16 0.854 0.907 0.875 0.933 0.886 0.942
(0.30, 1.00, 0.80) 74.88 0.847 0.911 0.891 0.945 0.896 0.948
(0.60, 1.00, 0.80) 27.26 0.850 0.908 0.883 0.938 0.893 0.945
(0.80, 1.00, 0.80) 16.20 0.850 0.904 0.876 0.934 0.887 0.945

± 0.006 0.004 0.006 0.004 0.006 0.004

5 A practical example

In this section, we illustrate the proposed confidence interval method using the
data obtained by Bellissant et al. (1997). This study was concerned with the
treatment of infants of up to eight years of age suffering from gastroesophageal
reflux. The infants were randomised between metoclopramide and placebo,
which they received for a two-week period. The pH level in the oesophagus
was measured continuously using a flexible electrode secured above the lower
oesophageal sphincter. The primary response variable was the percentage re-
duction in acidity, measured by the proportion of time that pH < 4, over the
two weeks of treatment.

The above variable was taken to be normally distributed and the triangular
test (Whitehead, 1997, Chap.4) was used to monitor the study. Inspections
were made after groups of about four patients and the trial was stopped after
the seventh interim analysis, with the conclusion that metoclopramide is not an
improvement over placebo. Although Bellissant et al. (1997) mention various
normally distributed secondary response variables of interest, only standard
analyses of them are carried out. For example, uncorrected confidence intervals
are given for secondary parameters of interest. Thus, it is interesting to apply
the corrected confidence intervals presented in Section 3 in this case.

In order to illustrate the confidence interval method, we assume that there
is a single secondary response variable, the proportion of time that pH < 4 on
day 14, and that the patients arrive in pairs, with one patient in each pair being
assigned to metoclopramide and the other to placebo. The trial data give the
estimates θ̂1 = 0.3, θ̂2 = 0.07, σ̂1 = 0.5 and σ̂2 = 0.1. To simulate the trial, we
treated these values as the true values for the parameters. Further, since the
sample covariance matrix was not available, we simulated the trial when γ = 0.4
and γ = 0.8, as for the two sequential tests in Section 4. As in the original trial
of Bellissant et al. (1997), we use a one-sided triangular test to test H0 : θ1 = 0
against H1 : θ1 > 0 and choose the design parameters so that it has significance
level 5% and 95% power for θ1 = 0.5.

Let ma denote the group size, possibly depending on a > 0. Then the
stopping time for the above triangular test is essentially of the form

N = inf{n ≥ 1 : ma|n, Sn1/σ̂1 ≥ a+bn−0.583 or Sn1/σ̂1 ≤ −a+3bn+0.583},

13



where ma|n means that ma divides n and Sn1 denotes the sum of the first n
differences in response between metoclopramide and placebo. Values are chosen
for the parameters a > 0 and b > 0 in order to satisfy the error probability
requirements, and the number 0.583 is a correction for overshoot of the stopping
boundaries due to the discreteness of the inspection process (e.g. Whitehead,
1997, Chap.4). Upon termination of the test, H0 is rejected if SN1/σ̂1 ≥ a +
bN−0.583 and accepted if SN1/σ̂1 ≤ −a+3bN+0.583. Now, the above stopping
time may be rewritten as

N = inf{n ≥ 1 : ma|n and nq(θ̂n1/σ̂1) ≥ a− 0.583}, (26)

where q(y) = max(y− b, 3b−y). Note that (26) is a special case of more general
stopping times studied by, for example, Morgan (2003). So we have a/N → ρ2,
where ρ = max(

√
θ1/σ1 − b,

√
3b− θ1/σ1), provided that ma = o(a). As in

Bellissant et al. (1997), we take a = 5.495 and b = 0.2726. These values may
be obtained using PEST 4 (Brunier and Whitehead, 2000). Since the data are
being monitored after groups of four patients, we have ma = 2.

In Table 5, we report the probabilities of rejecting H0, that is, the power,
the expected numbers of pairs of patients, and the coverage probabilities using
ZN1 and Z

(3)
N , all of the results being based on 10,000 replications. Although

the simulated sequential test satisfies the power requirement for θ1 = 0.5, it
is a little conservative. This is because the above stopping time is not exactly
the same as the original. Now, we know from Section 4 that the confidence
intervals based on ZN1 have coverage probabilities below the nominal values
and that those based on Z

(3)
N have roughly the correct coverage probabilities.

The results in Table 5 show that the use of Z(3)
N leads to coverage probabilities

which are usually quite close to the nominal values, especially given the small
sample sizes. Note that, since our theory has been developed for the case where
ρ = ρ(θ1), when calculating the correction terms, σ1 has been replaced with its
estimate except in terms involving ρ̂, when its true value is used. We return to
this point in Section 6.

Table 5. Triangular test with unknown σ1, σ2 and γ; replicates=10,000.
( ± means 1.96 standard deviations )

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Power Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.00, 0.07, 0.40) 0.021 7.43 0.807 0.864 0.848 0.921 0.892 0.935
(0.00, 0.07, 0.80) 0.021 7.43 0.815 0.867 0.857 0.919 0.896 0.936
(0.30, 0.07, 0.40) 0.574 10.49 0.826 0.885 0.866 0.927 0.894 0.949
(0.30, 0.07, 0.80) 0.574 10.49 0.780 0.849 0.860 0.921 0.892 0.956
(0.50, 0.07, 0.40) 0.956 8.17 0.818 0.877 0.860 0.926 0.893 0.942
(0.50, 0.07, 0.80) 0.956 8.17 0.812 0.867 0.859 0.923 0.896 0.945

± 0.006 0.004 0.006 0.004 0.006 0.004

Returning to the actual trial, a standard analysis gives an uncorrected confi-
dence interval for θ2 of (0.018, 0.122), whereas the corrected confidence interval
is (0.008, 0.124) when γ = 0.4 and (0.002, 0.122) when γ = 0.8. So the approach
is useful in practice, especially if the correlation coefficient is large.
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6 Discussion

In this paper, we have shown how corrected confidence intervals for secondary
parameters may be constructed following a sequential test in which one com-
ponent of a bivariate normal process is being monitored. The intervals have a
simple form and very weak expansions are used to justify them. Simulation of
two well-known sequential tests show that the approximations are very accurate.
We have also illustrated the approach using a real-life example.

We have only considered sequential tests based on the mean of the first
component of a bivariate normal process. As we have seen in Section 5, a
sequential test may also depend on the variance of the first component, so
that ρ = ρ(θ1, σ1). The derivation of the variance correction term is more
complicated in this case, since the sampling variation in σ̂2

1 needs to be allowed
for. For some related work in this direction, see Woodroofe and Coad (1999).

There may be several primary response variables in practice. So a natural
extension would be to generalise the ideas in Sections 2 and 3 to a p-variate
normal process, where p > 2. Such a development would require consideration
of the multivariate version of the signed root transformation and an application
of the results of Weng and Woodroofe (2000) for the p-parameter exponential
family in order to determine the analogues of the mean and variance correction
terms in (17) and (18).

Although we have considered both the known and unknown covariance ma-
trix cases in this paper, one assumption that we have made is that the correlation
coefficient between the two components of the response vector is constant over
time. This is called the proportionality case by Hall and Yakir (2003). Another
natural extension would be to generalise the ideas in Sections 2 and 3 to the
non-proportional case where the correlation coefficient is a function of time.

A further possible extension is to consider two binary streams of data, where
the primary parameter is the log odds ratio and the secondary parameters are
the individual success probabilities. Although approximations may be obtained
using the results of Weng and Woodroofe (2000), they do not lead to simple
formulae. However, it would be interesting to compare this approach with that
of Todd and Whitehead (1997), and also to consider unequal sample sizes.

A

A.1 Wald-type equations for bivariate normal models

In this subsection, we provide some results on randomly stopped sums for the
bivariate normal models. Recall the definitions of γ̂ and σ̂2

i , i = 1, 2, in Section
3. Now define σ̃2

i = (N − 1)σ̂2
i /N , i = 1, 2. So,

σ̃2
i − σ2

i =

∑N
j=1(Xij − θi)2

N
− σ2

i − (θ̂i − θi)2, (27)
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and γ̂ defined in Section 3 can be rewritten as

γ̂ =

∑N
j=1(X1j − θ̂1)(X2j − θ̂2)

Nσ̃1σ̃2
. (28)

Let L1N denote the likelihood function based on the first population and let
L′1N denote the partial derivative of L1N with respect to σ2

1 , so that

L1N = exp

−N2 log(2π)− N

2
log(σ2

1)− 1
2σ2

1

N∑
j=1

(x1j − θ1)2


and

L′1N ≡
∂

∂σ2
1

L1N =

 1
2σ4

1

N∑
j=1

(x1j − θ1)2 − N

2σ2
1

L1N . (29)

Then we also have

∂
∂σ2

1
(2σ4

1L
′
1N )

L1N
= −N +

1
2σ4

1


N∑
j=1

(x1j − θ1)2 − σ2
1N


2

. (30)

Let p be as in (14). Some of the derivations in Lemma A.3 below rely on
the identity (e.g. Woodroofe, 1982, Chap.1)

∂

∂σ2
i

Eψ,θ(MN ) =
∫
MN

(
∂

∂σ2
i

log p
)
dPψ,θ (31)

for i = 1, 2, where

∂

∂σ2
1

log p = − N

2σ2
1

+
1

2σ2
1σ

2
2(1− γ2)

σ2
2

σ2
1

N∑
j=1

(x1j − θ1)2

− γ
σ2

σ1

N∑
j=1

(x1j − θ1)(x2j − θ2)

 ,

and ∂ log p/∂σ2
2 has a similar form.

Lemma A.3 Suppose that ξ ∈ Ξ, MN = MN (X11, . . . , X1N , X21, . . . , X2N ),
b(ψ, θ) is twice differentiable and ∇2b is bounded. Then the following hold:
(i) Eξ{b(ψ, θ)MN} = Eξ{b(ψ, θ)}Eξ̃(MN ), where ξ̃ = ξb/Eξ(b) ∈ Ξ;

(ii) Eξ{
∑N
j=1(Xij − θi)2/N} = Eξ(σ2

i ) for i = 1, 2;
(iii) Eξ[{

∑N
j=1(Xij − θi)2}2/N ] = Eξ(2σ4

i + σ4
iN) for i = 1, 2;

(iv) Eξ{
∑N
j=1(X1j − θ1)2

∑N
j=1(X2j − θ2)2/N} = Eξ(2γ2σ2

1σ
2
2 + σ2

1σ
2
2N).
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Proof. The proof of (i) is straightforward and hence omitted. Consider (ii).
Taking MN = 1/N in (31) for i = 1, 2 leads to

γEψ,θ

{∑N
j=1(X1j − θ1)(X2j − θ2)

N

}
= −σ1σ2(1− γ2)

+
σ2

σ1
Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}

−2σ3
1σ2(1− γ2)

∂

∂σ2
1

Eψ,θ(
1
N

)

and a similar equation with σ1 and σ2 switched, where ∂Eψ,θ(1/N)/∂σ2
i = 0,

since N defined in (25) does not depend on σi; and therefore,

Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}
=
σ2

1

σ2
2

Eψ,θ

{∑N
j=1(X2j − θ2)2

N

}
. (32)

By (29),

Eξ

{∑N
j=1(X1j − θ1)2

N

}
= Eξ

(
2σ4

1

L′1N
NL1N

+ σ2
1

)
,

where

Eξ

(
2σ4

1

L′1N
NL1N

)
=

∫ ∫
2σ4

1ξ(σ
2
1 , θ1)Eσ1,θ1

(
L′1N
NL1N

)
dσ2

1dθ1

= −
∫ ∫ {

4σ2
1ξ(σ

2
1 , θ1) + 2σ2

1

∂

∂σ2
1

ξ(σ2
1 , θ1)

}
Eσ1,θ1(

1
N

)dσ2
1dθ1

= −
∫ ∫

4σ2
1ξ(σ

2
1 , θ1)Eσ1,θ1(

1
N

)dσ2
1dθ1

+
∫ ∫

2ξ(σ2
1 , θ1)

∂

∂σ2
1

{
σ2

1Eσ1,θ1(
1
N

)
}
dσ2

1dθ1

=
∫ ∫

2σ4
1ξ(σ

2
1 , θ1)

∂

∂σ2
1

{
Eσ1,θ1(

1
N

)
}
dσ2

1dθ1,

where the third line follows by an integration by parts and the fact that ξ is
defined on a compact set and vanishes on the boundaries, and the last line is
zero since Eσ1,θ1(1/N) does not depend on σ1. So, Eξ{

∑N
j=1(X1j − θ1)2/N} =

Eξ(σ2
1), and then by (32), we have Eξ{

∑N
j=1(X2j − θ2)2/N} = Eξ(σ2

2).
Now consider (iii) and (iv). First, by (30),

{
∑N
j=1(X1j − θ1)2}2

N
=

8σ6
1L
′
1N + 4σ8

1L
′′

1N

NL1N
+ 2σ4

1 + 2σ2
1

N∑
j=1

(X1j − θ1)2 −Nσ4
1 ,
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where Eξ{(8σ6
1L
′
1N + 4σ8

1L
′′

1N )/(NL1N )} = 0 can be proved in the same way as
in the preceding paragraph, and Eξ{σ2

1

∑N
j=1(X1j−θ1)2} = Eξ(σ4

1N) by Wald’s
equation. Hence,

Eξ

 1
N


N∑
j=1

(X1j − θ1)2


2
 = Eξ(2σ4

1 + σ4
1N). (33)

Next, taking MN =
∑N
j=1(X1j − θ1)2/N in (31) for i = 1, 2 leads to

∂

∂σ2
1

Eψ,θ

{∑N
j=1(X1j − θ1)2

N

}

= − 1
2σ2

1

Eψ,θ


N∑
j=1

(X1j − θ1)2

+
1

2σ4
1(1− γ2)

Eψ,θ

[
{
∑N
j=1(X1j − θ1)2}2

N

]

− γ

2σ3
1σ2(1− γ2)

Eψ,θ

[∑N
j=1(X1j − θ1)2

∑N
j=1{(X1j − θ1)(X2j − θ2)}
N

]
(34)

and a similar equation. Taking MN =
∑N
j=1(X2j − θ2)2/N in (31) for i = 1, 2

leads to two further equations. By (ii), (33), (34) and the other three equations,
we obtain (iii) and (iv). 2

A.2 Biases and variances of estimators

We now give some properties of the estimators for the bivariate normal mod-
els. Similar calculations are carried out by Coad and Woodroofe (1998) for an
adaptive normal linear model.

Lemma A.4 Suppose that ξ ∈ Ξ and that (6) holds with q = 1. Then the
following hold:
(i) Eξ(θ̂i − θi) = o(1/

√
a) for i = 1, 2;

(ii) Eξ(σ̂2
i − σ2

i ) = o(1/a) for i = 1, 2.

Proof. Consider (i). First, by (6), Eξ[(θ̂i − θi)1{a/Na≥1/η}] = o(1/a). Then,
observe that

√
a(θ̂i − θi)1{a/Na<1/η} =

√
a

N
N1/2(θ̂i − θi)1{a/Na<1/η} ⇒ N(0, σ2

i ρ
2).

Since a/Na < 1/η and N1/2(θ̂i − θi) is uniformly integrable by Lemma 2.2, the
left side converges in the mean. Hence (i) follows.

Next, consider (ii). From (27) and Lemma A.3(ii), aEξ(σ̃2
i−σ2

i ) = −aEξ{(θ̂i−
θi)2}. Then, since σ̂2

i − σ2
i = σ̃2

i − σ2
i + σ̃2

i /(N − 1), we have

aEξ(σ̂2
i − σ2

i ) = −aEξ{(θ̂i − θi)2}+ Eξ(
a

N
σ̃2
i ) + o(1),
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where a(θ̂i − θi)2 ⇒ ρ2σ2
i χ

2
1 and is uniformly integrable, by a similar argument

to the preceding paragraph, and hence converges in the mean, and the second
term is Eξ(ρ2σ2

i ) + o(1). So the result follows. 2

A simple consequence of Lemma A.4(ii) is

Eξ(ω̂N − 1) = o(1/a). (35)

The derivation of Lemma A.5(iii)(iv) below relies on the identity

∂

∂γ
Eψ,θ(MN ) =

∫
MN

(
∂

∂γ
log p

)
dPψ,θ, (36)

where p is as in (14) and

∂

∂γ
log p =

Nγ

1− γ2
+

(1 + γ2)
(1− γ2)2

∑N
j=1(X1j − θ1)(X2j − θ2)

σ1σ2

− γ

(1− γ2)2

{∑N
j=1(X1j − θ1)2

σ2
1

+

∑N
j=1(X2j − θ2)2

σ2
2

}

=
Nγ

1− γ2
+

(1 + γ2)
(1− γ2)2

{
Nγ̂σ̂1σ̂2

σ1σ2
+
N(θ̂1 − θ1)(θ̂2 − θ2)

σ1σ2

}

− γ

(1− γ2)2

{
Nσ̂2

1 +N(θ̂1 − θ1)2

σ2
1

+
Nσ̂2

2 +N(θ̂2 − θ2)2

σ2
2

}
.

Lemma A.5 Suppose that ξ ∈ Ξ. Then the following hold:
(i) Eξ{N(σ̃2

i − σ2
i )2} = 2Eξ(σ4

i ) + o(1) for i = 1, 2;
(ii) Eξ{N(σ̃2

1 − σ2
1)(σ̃2

2 − σ2
2)} = 2Eξ(γ2σ2

1σ
2
2) + o(1);

(iii) Eξ(γ̂ − γ) = −Eξ{γ(1− γ2)/(2N)}+ o(1/a);
(iv) Eξ{(γ̂ − γ)2} = o(1/

√
a).

Proof. For (i), first from Wald’s equation,

0 = Eψ,θ


N∑
j=1

(Xij − θi)2 −Nσ2
i

 = Eψ,θ{N(σ̃2
i − σ2

i ) +N(θ̂i − θi)2}. (37)

Next, by (27) we can write

N(σ̃2
i−σ2

i )2 =
{
∑N
j=1(Xij − θi)2}2

N
−2N(σ̃2

i−σ2
i ){σ2

i+(θ̂i−θi)2}−N{σ2
i+(θ̂i−θi)2}2,

where Eξ{N(σ̃2
i − σ2

i )(θ̂i − θi)2} and Eξ{N(θ̂i − θi)4} are both o(1). Then,
together with Lemma A.3(iii) and (37), we obtain the desired result.
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For (ii), by (27),

N(σ̃2
1 − σ2

1)(σ̃2
2 − σ2

2) =
1
N

N∑
j=1

(X1j − θ1)2
N∑
j=1

(X2j − θ2)2 − σ2
1

N∑
j=1

(X2j − θ2)2

−σ2
2

N∑
j=1

(X1j − θ1)2 − (θ̂1 − θ1)2
N∑
j=1

(X2j − θ2)2

−(θ̂2 − θ2)2
N∑
j=1

(X1j − θ1)2 +N(θ̂1 − θ1)2(θ̂2 − θ2)2

+Nσ2
1(θ̂2 − θ2)2 +Nσ2

2(θ̂1 − θ1)2 +Nσ2
1σ

2
2 ,

where we have Eξ{
∑N
j=1(X1j − θ1)2

∑N
j=1(X2j − θ2)2/N} = Eξ(2γ2σ2

1σ
2
2 +

σ2
1σ

2
2N) by Lemma A.3(iv), Eξ{σ2

1

∑N
j=1(X2j − θ2)2 + σ2

2

∑N
j=1(X1j − θ1)2} =

2Eξ(σ2
1σ

2
2N) by Wald’s equation, Eξ{N(θ̂1− θ1)2(θ̂2− θ2)2} = o(1) because the

integrand approaches zero and is uniformly integrable, and

Eξ

(θ̂2 − θ2)2

Nσ2
1 −

N∑
j=1

(X1j − θ1)2




= Eξ

N(θ̂2 − θ2)2
N∑
j=1

{(X1j − θ1)2 − σ2
1}/N

 = o(1)

because N(θ̂2 − θ2)2 = Op(1) and
∑N
j=1{(X1j − θ1)2 − σ2

1}/N = op(1) are both
uniformly square integrable. Similarly, Eξ[(θ̂1−θ1)2{Nσ2

2−
∑N
j=1(X2j−θ2)2}] =

o(1). Hence (ii) follows.
Consider (iii). Taking MN = 1/(Nσ̃1σ̃2) in (36), and then multiplying both

sides by (1− γ2)2 leads to

(1− γ2)2 ∂

∂γ
Eψ,θ

(
1

Nσ̃1σ̃2

)
= Eψ,θ

[
γ(1− γ2)

(
1

σ̃1σ̃2

)
+

(1 + γ2)
σ1σ2

{
γ̂ +

(θ̂1 − θ1)(θ̂2 − θ2)
σ̃1σ̃2

}

− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

σ̃1σ̃2

}

− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

σ̃1σ̃2

}]
. (38)

From (28), the distribution of γ̂ does not depend on the values of σ1 and σ2.
So, without loss of generality, we take σ1 = σ2 = 1 in the evaluation of Eψ,θ(γ̂).
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Letting ψ0 = (1, 1, γ)′, then together with (38) we have

Eψ,θ(γ̂) = Eψ0,θ(γ̂)

=
(1− γ2)2

1 + γ2

∂

∂γ
Eψ0,θ

(
1

Nσ̃1σ̃2

)
− γ(1− γ2)

1 + γ2
Eψ0,θ

(
1

σ̃1σ̃2

)
−Eψ0,θ

{
(θ̂1 − θ1)(θ̂2 − θ2)

σ̃1σ̃2

}
+

γ

1 + γ2
Eψ0,θ

(
σ̃1

σ̃2
+
σ̃2

σ̃1

)

+
γ

1 + γ2
Eψ0,θ

{
(θ̂1 − θ1)2

σ̃1σ̃2
+

(θ̂2 − θ2)2

σ̃1σ̃2

}
.

Now we claim that
∂

∂γ
Eξ

(
1

Nσ̃1σ̃2

)
= o(

1
a

), (39)

Eξ

(
1

σ̃1σ̃2

)
= 1 +

1
a
{5

2
Eξ(ρ2) +

1
4
Eξ(ρ2γ2σ2

1σ
2
2)}+ o(

1
a

), (40)

Eξ

(
σ̃1

σ̃2
+
σ̃2

σ̃1

)
= 2 +

1
a
{Eξ(ρ2)− 1

2
Eξ(ρ2γ2σ2

1σ
2
2)}+ o(

1
a

), (41)

Eξ

{
(θ̂1 − θ1)2

σ̃1σ̃2
+

(θ̂2 − θ2)2

σ̃1σ̃2

}
=

2
a
Eξ(ρ2) + o(

1
a

) (42)

and

Eξ

{
(θ̂1 − θ1)(θ̂2 − θ2)

σ̃1σ̃2

}
=

1
a
Eξ(γρ2) + o(

1
a

). (43)

Since the verifications of (39)-(43) are similar, here we only sketch the proof for
(40). A Taylor series expansion about the point σ2

10 = σ2
20 = 1 gives

1
σ̃1σ̃2

' 1− 1
2

(σ̃2
1 − 1)− 1

2
(σ̃2

2 − 1) +
3
8

(σ̃2
1 − 1)2 +

3
8

(σ̃2
2 − 1)2 +

1
4

(σ̃2
1 − 1)(σ̃2

2 − 1).

Then, by (i) and (ii), we obtain (40).
For (iv), we take MN = 1/(Nσ̃1σ̃2)2 in (36), multiply both sides by (1−γ2)2,

and then take the derivative of both sides with respect to γ. We obtain

∂

∂γ

[
(1− γ2)2 ∂

∂γ
Eψ,θ

{
1

(Nσ̃1σ̃2)2

}]
= Eψ,θ

(
∂

∂γ

[
γ(1− γ2)

{
1

N(σ̃1σ̃2)2

}
+

1 + γ2

σ1σ2

{
γ̂

Nσ̃1σ̃2
+

(θ̂1 − θ1)(θ̂2 − θ2)
N(σ̃1σ̃2)2

}

− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

N(σ̃1σ̃2)2

}
− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

N(σ̃1σ̃2)2

}])

+Eψ,θ

([
γ(1− γ2)

{
1

N(σ̃1σ̃2)2

}
+

1 + γ2

σ1σ2

{
γ̂

Nσ̃1σ̃2
+

(θ̂1 − θ1)(θ̂2 − θ2)
N(σ̃1σ̃2)2

}
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− γ

σ2
1

{
σ̃2

1 + (θ̂1 − θ1)2

N(σ̃1σ̃2)2

}
− γ

σ2
2

{
σ̃2

2 + (θ̂2 − θ2)2

N(σ̃1σ̃2)2

}](
∂

∂γ
log p

))

= Eψ,θ

{
(1 + γ2)2(γ̂ − γ)2

(σ1σ2)2(1− γ2)2

}
+ Ia,

where Eξ(Ia) = O(1/a) and the last equality follows from tedious calculations,
which are omitted here. Since

Eξ

(
∂

∂γ

[
(1− γ2)2 ∂

∂γ
Eψ,θ

{
1

(Nσ̃1σ̃2)2

}])
= o(

1√
a

),

the required result follows. 2

Note that, in the absence of a stopping time, Lemma A.5(iii) reduces to the
usual bias formula for the sample correlation coefficient in the fixed-sample case
(e.g. Muirhead, 1982, Chap.5).

Lemma A.6 Suppose that ξ ∈ Ξ. Then
√
N(ω̂N − 1) ⇒ N(0, 2). Moreover,

N(ω̂N − 1)2 is uniformly integrable with respect to Pξ.

Proof. The first statement follows since

√
N(ω̂N−1) =

√
N

σ2
2

(σ̂2
2−σ2

2) =
√
N

∑N
j=1{(X2j − θ2)2 − σ2

2}
(N − 1)σ2

2

+
√
N

N − 1
−
√
N(θ̂2 − θ2)2

σ2
2

,

where the first term on the right-hand side converges in distribution to N(0, 2)
by Anscombe’s theorem and the last two terms are op(1).

For the second statement, it suffices to show that N(ω̂N − 1)2 converges to
2χ2

1 in the mean. From Lemma A.5(i) and the relationship between σ̂2 and σ̃2,
we have Eξ{N(ω̂N − 1)2} → 2. So the result follows. 2

Two additional results are needed for Lemma A.7. By (6) with q ≥ 1/2 and
Lemma A.5(i), we have

Eξ[a(σ̃2
i − σ2

i )21{Na>ηa}] = Eξ

[ a
N
N(σ̃2

i − σ2
i )21{Na>ηa}

]
= O(1) (44)

for i = 1, 2, and, by (37), we have

Eξ[a||θ̂ − θ||21{Na>ηa}] = Eξ

[ a
N
N ||θ̂ − θ||21{Na>ηa}

]
= O(1). (45)

Lemma A.7 Let g(ψ, θ) be twice continuously differentiable on a compact set
K ⊆ (0,∞)2 × (−1, 1) × Ω. Suppose that ξ ∈ Ξ and (6) holds with q ≥ 1/2.
Then

Eξ[{g(ψ, θ)− g(ψ̂, θ̂)}1{Na>ηa}] = o(1/
√
a).

Proof. By compactness and continuity, there exists C > 0 such that

|g(ψ, θ)− g(ψ̂, θ̂)− (ψ − ψ̂, θ − θ̂)′∇g(ψ̂, θ̂)| ≤ C(||ψ̂ − ψ||2 + ||θ̂ − θ||2).
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Now, since Eξ[(||ψ̂−ψ||2+||θ̂−θ||2)1{Na>ηa}] = o(1/
√
a) by Lemma A.5(iv), (44)

and (45), and ||Eξ(θ̂ − θ)||+ ||Eξ(ψ̂ − ψ)|| = o(1/
√
a) by Lemma A.4(i)(ii) and

Lemma A.5(iii), the statement follows by using the arguments in Proposition
6.13 of Weng and Woodroofe (2006). 2

Note that, if K = ∪qi=1Ki, Ki are compact sets, Ko
i ∩ Ko

j = ∅ for i 6= j,
where Ko

i denotes the interior of Ki, and g is twice piecewise continuously
differentiable on Ki, then we can write

Eξ{g(ψ, θ)− g(ψ̂, θ̂)} =
q∑
i=1

∫
Ki

ξ(ψ, θ)Eψ,θ{g(ψ, θ)− g(ψ̂, θ̂)}dθdψ

=
q∑
i=1

1
ci

∫
Ki

ξi(ψ, θ)Eψ,θ{g(ψ, θ)− g(ψ̂, θ̂)}dθdψ

=
q∑
i=1

1
ci
Eξi{g(ψ, θ)− g(ψ̂, θ̂)},

where ci are normalising constants and ξi = ciξ1Ki
. Thus, Lemma A.7 holds

for such g. In particular, it applies to κ and yields Eξ[{κ̂(k)
N − κ}1{Na>ηa}] =

o(1/
√
a) for k = 0, 1, 2, 3.

A.3 Proof of Theorem 2.1

Three lemmas are required for the proof.

Lemma A.8 Let h be a bounded function, and let

H0(σ, µ) =
∫
<
h(
z − µ
σ

)φ(z)dz

and
H1(σ, µ) =

∫
<
zh(

z − µ
σ

)φ(z)dz

for σ > 0 and −∞ < µ < ∞. Then H0 and H1 have continuous derivatives of
all orders. Further, at µ = 0 and σ = 1, we have H0 = Φ1h, ∂H0/∂µ = −Φ1Uh,
∂H0/∂σ = −2Φ1V h, ∂2H0/∂µ

2 = 2Φ1V h, H1 = Φ1Uh, ∂H1/∂µ = −2Φ1V h,
∂H1/∂σ = 0 and ∂2H1/∂µ

2 = 0.

This lemma is a simple extension of Lemma 13 of Weng and Woodroofe
(2000) and can be proved analogously. Note that, if h is symmetric, then
Φ1Uh = 0, and hence ∂H0/∂µ = H1 = 0, and Lemma A.8 reduces to their
Lemma 13.

Now define

R2,a(h) = a

(
ENξ {h(ZN )} − Φ2h− 1√

N
(Φ2Uh)′ENξ {Γ

ξ
1(θ, θ)}

− 1
a

tr[Φ2V hENξ {ρ2(θ)Γξ2(θ, θ)}]
)
.
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Then, by Proposition 2.1, we have

R2,a(h) =
√
a

[√
a

N
(Φ2Uh)′ENξ {Γ

ξ
1(θ̂, θ)− Γξ1(θ, θ)}

]
+
a

N
tr[ENξ {V h(ZN )Γξ2(θ̂, θ)}]− tr[Φ2V hENξ {ρ2(θ)Γξ2(θ, θ)}]

= R
(1)
2,a(h) +R

(2)
2,a(h).

Lemma A.9 below is similar to Theorem 7 of Weng and Woodroofe (2000), but
here we consider R2,a(h) for all bounded h, not necessarily symmetric.

Lemma A.9 If (6) holds with q = 1 and ξ ∈ Ξ0, then lima→∞|Eξ[R2,a(h)1{Na>ηa}]| =
0 for all bounded h.

Proof. First, lima→∞|Eξ{R(2)
2,a(h)}| = 0 follows by the same argument used to

prove Theorem 7 of Weng and Woodroofe (2000). Next, since

|Eξ[R(1)
2,a(h)1{Na>ηa}]| =

√
a

∣∣∣∣Eξ((Φ2Uh)′ENξ

[√
a

N
{Γξ1(θ̂, θ)− Γξ1(θ, θ)}

]
1{Na>ηa})

∣∣∣∣
≤ C1

√
aEξ{||Γξ1(θ̂, θ)− Γξ1(θ, θ)||}

for some constant C1, the right-hand side is o(1) by Lemma A.7. 2

Proof of Theorem 2.1. Since h is bounded and both Pξ(Na ≤ ηa) and Pξ(BcN )
are o(1/a), it suffices to show that Eξ[h(Z(0)

N )1{Na>ηa}∩BN
] = Φ1h + o(1/a).

Write h(Z(0)
N ) = ha(ZN1). Then, by the definition of R2,a,

ENξ {h(Z(0)
N )} = ENξ {ha(ZN1)}

= Φ1ha +
1√
a

(Φ1Uha)ENξ {ρ(θ)Γξ1,1(θ, θ)}

+
1
a

(Φ1V ha)ENξ {ρ2(θ)Γξ2,11(θ, θ)}+
1
a
R2,a(ha), (46)

where Eξ[R2,a(ha)1{Na>ηa}] → 0 as a → ∞ by Lemma A.9. Since h here may
not be symmetric, by Lemma A.8 two additional terms arise in the analysis of
(46), namely,

A(h) =
1√
a

(Φ1Uh)ENξ {ρ(θ)Γξ1,1(θ, θ)} − 1√
a

(Φ1Uh)κ̂(0)
N .

To show that the effect of non-symmetry of h vanishes, observe that

Eξ[A(h)1{Na>ηa}] =
1√
a

(Φ1Uh)Eξ[{ρ(θ)Γξ1,1(θ, θ)− κ̂(0)
N }1{Na>ηa}]

=
1√
a

(Φ1Uh)Eξ[{κ(θ)− κ̂(0)
N }1{Na>ηa}],

where the last line is o(1/a) by Lemma A.7. So, the theorem follows. 2
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A.4 Proof of Theorem 3.2

Given a measurable function h, s > 0, c > 0 and ν ∈ <, let

h∗(z) = h{s− 1
2 c−1(z − ν)}, (47)

Ψ0(h; ν, s) = −(Φ1Uh)ν + (Φ1V h)ν2 − 2(Φ1V h)(c− 1)

−(Φ1V h)(s− 1)− (Φ3h)ν(s− 1) +
1
2

(Φ4h)(s− 1)2

and
Ψ1(h; ν, s) = −2(Φ1V h)ν + (Φ3h)(s− 1),

where
Φ3h =

1
2

∫
<

(2− z2)zh(z)Φ1{dz}

and
Φ4h =

∫
<
{1

4
(z2 − 1)2 − 1

2
}h(z)Φ1{dz}.

Lemma A.10 There is a constant C for which

|Φ1h∗ − Φ1h−Ψ0(h; ν, s)| ≤ C{|ν|3 + |s− 1|3 + |c− 1|3/2},

|Φ1Uh∗ − Φ1Uh−Ψ1(h; ν, s)| ≤ C{|ν|2 + |s− 1|2 + |c− 1|}

and
|Φ1V h∗ − Φ1V h| ≤ C{|ν|+ |s− 1|+ |c− 1|},

for all |ν| ≤ 1, |s− 1| ≤ 1/2, |c− 1| ≤ 1/2 and bounded h.

We omit the proof of this lemma since it can be derived in a similar manner to
Lemma 1 of Woodroofe and Coad (1997).

Proof of Theorem 3.2. We shall only consider Z(2)
N , as the same argument

applies to Z
(3)
N . From (22), we can write h{Z(2)

N } = h∗(ZN1), where ZN1 is
defined in (16) and h∗(z) is as in (47). As in the proof of Theorem 2.1, we
only need to consider the set {Na > ηa} ∩ BN . If ψ = (σ2

1 , σ
2
2 , γ)′ is known,

the bivariate normal model is a two-parameter exponential family. Let EN,ψξ2
denote the conditional expectation given ψ and the data by time N . So, by
Proposition 2.1,

EN,ψξ2
{h∗(ZN1)} − Φ1h = EN,ψξ2

{h∗(ZN1)} − Φ1h∗ + Φ1h∗ − Φ1h

=
1√
a

(Φ1Uh∗)EN,ψξ2
{ρ(θ)Γξ1,1(θ, θ)}

+
1
a

(Φ1V h∗)EN,ψξ2
{ρ2(θ)Γξ2,11(θ, θ)}

+
1
a
R2,a{h∗(ZN )}+ Φ1h∗ − Φ1h, (48)

25



where Eξ2 [R2,a(h∗)1{Na>ηa}]→ 0 as a→∞ by Lemma A.9. Then, by Lemma
A.10 we can write the last two lines of (48) as

1√
a
{Φ1Uh− 2(Φ1V h)ω̂1/2

N µ̂
(2)
N + (Φ3h)(ω̂N − 1)}EN,ψξ2

{ρ(θ)Γξ1,1(θ, θ)}

+
1
a

(Φ1V h)EN,ψξ2
{ρ2(θ)Γξ2,11(θ, θ)} − (Φ1Uh)ω̂1/2

N µ̂
(2)
N + (Φ1V h){ω̂1/2

N µ̂
(2)
N }

2

−2(Φ1V h){τ̂ (2)
N − 1} − (Φ1V h)(ω̂N − 1)− (Φ3h)ω̂1/2

N µ̂
(2)
N (ω̂N − 1)

+
1
2

(Φ4h)(ω̂N − 1)2 + o(
1
a

)

=
1√
a

(Φ1Uh)IN +
1
a

(Φ1V h)IIN +
1√
a

(Φ3h)IIIN + (Φ4h)IVN + o(
1
a

),

where
IN = EN,ψξ2

{ρ(θ)Γξ1,1(θ, θ)} − ω̂1/2
N κ̂

(2)
N ,

IIN = EN,ψξ2
{ρ2(θ)Γξ2,11(θ, θ)} − 2ω̂1/2

N κ̂
(2)
N EN,ψξ2

{ρ(θ)Γξ1,1(θ, θ)}+ {ω̂1/2
N κ̂

(2)
N }

2

−2a{τ̂ (2)
N − 1} − a(ω̂N − 1),

IIIN = EN,ψξ2
[(ω̂N − 1){ρ(θ)Γξ1,1(θ, θ)− ω̂1/2

N κ̂
(2)
N }]

and

IVN =
1
2

(ω̂N − 1)2.

To prove (23), it suffices to show that Eξ[IN1{Na>ηa}] = o(1/
√
a), that

Eξ[IIN1{Na>ηa}] = o(1), that Eξ[IIIN1{Na>ηa}] = o(1/
√
a) and that aEξ[IVN1{Na>ηa}] =

Eξ{ρ2(θ)}+o(1). For IN , recall from (7) that we may write Eξ2{ρ(θ)Γξ1,1(θ, θ)} =
Eξ2{κ(σ1, γ, ρ10)}, which together with Lemma A.7 yields

√
aEξ[IN1{Na>ηa}] =

√
aEξ[{κ− ω̂1/2

N κ̂
(2)
N }1{Na>ηa}] = o(1).

Next, consider IIN . By consistency of σ̂2 and κ̂
(2)
N , and (18),

Eξ[ρ2(θ)Γξ2,11(θ, θ)− 2ρ(θ)κ̂(2)
N ω̂

1/2
N Γξ1,1(θ, θ) + {κ̂(2)

N ω̂
1/2
N }

2]

= Eξ{ρ2(θ)Γξ2,11(θ, θ)− 2ρ(θ)κΓξ1,1(θ, θ) + κ2}+ o(1)

= Eξ(κ2) + o(1).

So, by definition of τ̂ (2)
N and (35),

Eξ(IIN ) = Eξ[κ2 − 2a{τ̂ (2)
N − 1}]− aEξ(ω̂N − 1) + o(1)

= −aEξ(ω̂N − 1) + o(1)
= o(1).
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For IIIN , write
√
a(IIIN ) =

√
a(ω̂N − 1){ρ(θ)Γξ1,1(θ, θ)− ω̂1/2

N κ̂
(2)
N },

where |ρ(θ)Γξ1,1−ω̂
1/2
N κ̂

(2)
N | is bounded, and

√
a(ω̂N−1) converges to a limit with

mean zero and is uniformly integrable by Lemma A.6. So Eξ(IIIN ) = o(1/
√
a).

For IVN , first observe by (6) that Eξ[IVN1{Na≤ηa}] = o(1/a). Then, note
that we have aIVN1{Na>ηa} = a(ω̂N − 1)21{Na>ηa}/2, which is uniformly in-
tegrable and approaches ρ2χ2

1 by Lemma A.6. So, the desired result follows.
2
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參與 24th International Conference on Machine Learning 成果報告

與會過程與心得:

筆者於 6 月 18 日抵達 Portland, Oregon 參與 2007 年的國際機器學習研討會

(ICML). 機器學習與統計有密切關係, 有些機器學習方法也稱為統計學習方法.
本屆大會是成立以來第 24 屆, 投稿論文 500 餘篇 但接受篇數只有 150 篇. 與

會者約 500 人. 研討會從 6 月 19 日起, 至 6 月 24 日止, 共為期 5 天.
我們論文標題為 “Trust Region Newton Method for Large-Scale Logistic
Regression.” 該文是今年度唯一被接受的台灣論文,討論當資料很大量的情況下,
如何解 logistic regrssion. 所有被接受的論文除了 slide presentation, 尚有 poster
session. 在 poster session 時, 與會者可以就近各有興趣的論文的 poster, 並直接

向站立一旁的作者提出問題且交換意見. 筆者覺得收穫良多.

筆者廣泛聽取各種統計學習相關之議題, 瞭解到當今由於電腦科技與 Internet
的蓬勃發展, 統計學者所面對的資料比以往的更為龐雜, 由此衍生出許多新的統

計問題. 筆者深感此一研究方向的重要性.


