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CORRECTED CONFIDENCE INTERVALS FOR
SECONDARY PARAMETERS FOLLOWING SEQUENTIAL
TESTS

Abstract

Corrected confidence intervals are developed for the mean of the second
component of a bivariate normal process when the first component is
being monitored sequentially. This is accomplished by constructing a first
approximation to a pivotal quantity, and then using very weak expansions
to determine the correction terms. The asymptotic sampling distribution
of the renormalised pivotal quantity is established in both the case where
the covariance matrix is known and when it is unknown. The resulting
approximations have a simple form and the results of a simulation study
of two well-known sequential tests show that they are very accurate. The
practical usefulness of the approach is illustrated by a real example of
bivariate data. Detailed proofs of the main results are provided.

1 Introduction

Suppose that a sequential test is carried out to compare two treatments. Then,
following the test, there is interest in making valid inferences about the different
parameters. For example, the primary parameter will typically be some mea-
sure of the treatment difference and there may be several secondary parameters
too. These could be the individual treatment effects or the effects of baseline
covariates, such as age, gender, disease stage, and so on. However, the use of
a sequential design leads to the usual maximum likelihood estimators being bi-
ased and associated confidence intervals having incorrect coverage probabilities.
One approach to the estimation problem is to study the approximate bias and
sampling distributions of the maximum likelihood estimators.

Until recently, much of the research on estimation following sequential tests
focussed on primary parameters. For example, an approach based on approxi-
mately pivotal quantities was developed by Woodroofe (1992) in the context of
a single stream of normally distributed observations. Here, interest lay in pro-
viding an approximate confidence interval for a mean. The work in the present
paper extends this approach in several respects. We consider bivariate normal
data, where interest lies in estimating the mean of the second component of the
process when the first is being monitored sequentially. Further, we consider the
case of an unknown covariance matrix for the process.

One of the first papers to address the problem of estimation of secondary
parameters following a sequential test was Whitehead (1986). For large samples,
he showed how the bias of the estimator of the secondary parameter is related to
that of the primary parameter, and then showed how a bias-adjusted estimator



of the secondary parameter could be constructed. Gorfine (2001) has shown
how a theorem of Yakir (1997) may be used to define an unbiased estimator
of the secondary parameter. Related work has been carried out by Liu and
Hall (2001). More recently, Hall and Yakir (2003) develop tests and confidence
procedures in a very general context.

Several authors have developed methods for the construction of confidence
intervals based on approximately pivotal quantities. Whitehead, Todd and Hall
(2000) show how approximate confidence intervals may be obtained for a bivari-
ate normal process when the covariance matrix is known and then show how
these may be applied to problems in which approximate bivariate normality
can be assumed. Liu (2004) considers a similar problem and shows how the
appropriate corrections may be obtained using moment expansions, though the
method developed appears to be somewhat restricted. In the present paper, we
consider both the known and the unknown covariance matrix cases.

The approximately pivotal quantities are constructed by considering the
bivariate version of the signed root transformation, and then using a version of
Stein’s (1981) identity and very weak expansions to determine the correction
terms. The results in the known covariance matrix case are obtained by applying
those of Weng and Woodroofe (2000) for the two-parameter exponential family.
In the unknown covariance matrix case, similar ideas to those used by Weng and
Woodroofe (2006) in the context of stationary autoregressive processes are used
to establish the asymptotic sampling distribution of the renormalised pivotal
quantity. The resulting correction terms have a simple form and complement
the results of Whitehead (1986).

In Section 2, the correction terms for the usual approximately pivotal quan-
tity in the known covariance matrix case are determined using results for the
two-parameter exponential family and it is shown how these may be used to
construct corrected confidence intervals for the secondary parameter. The case
of an unknown covariance matrix is then considered in Section 3, and the asymp-
totic sampling distribution of the renormalised pivotal quantity is obtained. The
results of a simulation study of two well-known sequential tests are reported in
Section 4 and a real example of bivariate data is used to illustrate the approach
in Section 5. Some remarks and an indication of possible extensions to the
present work are given in Section 6. Appendices contain detailed proofs of the
main results.



2 Bivariate normal process with known covari-
ance matrix

2.1 The general method for two-parameter exponential
families

Let X; = (X1, Xg;) for j =1,...,n be independent random vectors distributed

according to a two-parameter exponential family with probability density
po(r) e =bO),

where 6 = (01,62)" € Q and Q is the natural parameter space, assumed to be

open. Let L,(#) denote the log-likelihood function based on zy,...,2,, and

consider the bivariate version of the signed root transformation (e.g. Bickel and
Ghosh, 1990) given by

Zp1 = Zn1(0) = \/2{Ln(én) — Ln(6,)}sign(6y — 0,1) (1)

and

Zuz = Zu(0) = \/2{Ln(Br) — Lo (0) }sign(0s — ), @)

where 6,, = (énl, éng)/ is the maximum likelihood estimator and 6,, = (01, éng)’
is the restricted maximum likelihood estimator for fixed 6#;. Then we have
Ln(0) = L, (0,) — || Za|[?/2, where Z,, = (Zn1, Zn2)'-

Consider a Bayesian model in which 6 has a prior density £ with compact
support in Q. Let E¢ denote expectation in the Bayesian model in which 6 is
replaced with a random vector © and let EY denote conditional expectation
given {X;,7 = 1,...,n}. Then the posterior density of © given Xj,..., X, is
£,(0) ox e (D¢(9), and the posterior density of Z,, is

Ga(2) 0 T (0, 0)8n(0) o< T (B, 0)£(B)e™ 21T, (3)
where z and 6 are related by (1) and (2), and J is a Jacobian term. From (3),
Ca(2) = fa(2)¢2(2), =€ R?, (4)

where ¢2 denotes the standard bivariate normal density and

fn(2) o< J (0, 0)€(0).

Now, for p > 0, let H, be the set of all measurable functions h : ®2 — R
for which |h(z)|/c < 1+ ||z||P for some ¢ > 0, and let H = Up>oH,. So, Hy
denotes the set of bounded functions. Let ®* denote the standard k-variate
normal distribution for k = 1,2 and write

I'h = /th



for an arbitrary measure I'. Given h € Hp, let hg = ®2h, hy = h and

ha(ys) = /% By, w)®* (dw),

and

gy y2) = e%yf/ {h1(w) — ho}e 3" du,
Yy

1

plyys) = o / {ha(yn,w) — o) e ¥ du (5)
Yy

2

for —oco < y1,y2 < co. Then let Uh = (g1, 92)" and Vh = (U?h+U?1')/2, where
U?2h is the 2 x 2 matrix whose ith column is Ug; and g; is as in (5). Lemma 2.1
below follows from Lemma 1 of Weng and Woodroofe (2000).

Lemma 2.1 (Stein's identity) Let r be a nonnegative integer. Suppose that
dl' = fd®2, where f is twice differentiable on R2 for which

/ F1d9? + / (1+ (2T F(2)][82(d2) < oo
R2 R2
and
/m (U 922193 (d2) < oo,
Then

Th=T1-®2h+®*(UhL) | Vf(2)®*(d2) +/ tr{(Vh)V?f}d®*
R2 R2

for all h € H,.

From (4), the posterior distributions of Z,, are of a form appropriate for
Stein’s identity. Let

€/h =V iu(Zyn)
B0 =V
and V2f(Z))
Erh _ n\4n
Bl ) =n=p 7y

Now let B, denote the event {f, € Vb(Q)} and let Zy denote the collection
of all prior densities & = £(6) with compact support in Q for which & is twice
differentiable almost everywhere under P, and V2¢ is bounded on its support.
Proposition 2.1 below follows from Proposition 2 of Weng and Woodroofe (2000).

Proposition 2.1 Suppose that £ € Eqg. Then

B2 (h(Z0)} = 0+ (@ UR) BT (0.0} + B (VA(Z)TS(6,.0))

almost everywhere on By, for all h € H.



Let N = N, be a family of stopping times, depending on a design parameter

a > 1. Suppose that
a

—_ 2(0
~, 0
in Py-probability for almost every 6 € €2, where p is a continuous function on
). Suppose also that, for every compact set K C €, there is an 1 > 0 such that

By(No < na) = o(a™), (6)

uniformly with respect to § € K as a — oo, for some g > 1/2. Lemma 3 below
follows from Theorem 12 of Weng and Woodroofe (2000). Moreover, by their
Lemma 5 and (6) above, we have Py(BS) = o(1/a).

Lemma 2.2 The random vector Zy = (Zn1,Zn2) is uniformly integrable with
respect to Pe.

In what follows, suppose that 61 is the primary parameter and that 65 is a
nuisance parameter. Then, for inference about 61, it is appropriate to use Zy1.
Now, from Proposition 2,

L
VN

To determine the mean correction term for Zyi, we take h(z) = z, in which
case ®'h = 0, ®'Uh = 1 and Vh(z) = 0. Similarly, for the variance correction
term, we take h(z) = 22, in which case ®'h = 1, ®Uh = 0 and Vh(z) = 1.
Denote by b;; the partial derivatives b;;(8) = 9°77b(0)/060%065, and similarly for
&ij- Let i1(0) = (bao — b1 /bo2) (6), 12(6) = bo2(6), T 1(6,6) = lime, o T 1 (w, )
and T5 1, (0,0) = limy, g T'5 11 (w, 6), and let x(6) and m(6) be such that

A 1 A
E{ {h(Zx1)} = @ ht —= (@' U EF TS 1 (O, O)}+ - B {VR(Zn1)TS 11 (0. 0))-

Eclp(O)1,(0.0)) = [ /Q £(0)r(6)d01 b (7)
and
Bl (O)TS,11(6.0) = 20(0)x(O)1,0.0) +570)} = [ [ m(o)e(0)ataate. )

Then some algebra yields

—bo2,b11) - V bo2, —b11) - Vi bo2, —b11) - Vi
(o) = o2l NP p(e)w(e){(‘” W VI () 4 Qoz b ’2(9)}.
b02711 6b0221 2b0221
(9)

A similar, but more complicated expression, may also be obtained for m(6).
Now, define

(10)



where

o Rn/yVa if || < a'/%{log(a)} ",
i =4 o log(@)} iRy > a/%flogla)} 1, (11)
—a"Y3{log(a)}~' ifky < —al/ﬁ{log(a)}

and

. (0) { V1+mn/a if imn| < Va/log(a), (12)

1 otherwise,

with I%N = Ii(é]\l) and mN = m(éN)

Theorem 2.1 Let h be a bounded function. Suppose that p(6) is almost dif-
ferentiable with respect to 61 and 2. If (6) holds with ¢ = 1 and £ € Zg, then
Ec{h(Z)} = ®'h + o(1/a).

The proof is in Appendix A.3. Theorem 2.1 shows that under mild conditions

Zz(\(/)) is approximately standard normal to order o(1/a) in the very weak sense

of Woodroofe (1986). It extends Theorem 14 of Weng and Woodroofe (2000)

by not requiring h to be symmetric and not assuming V2¢ to be continuous.
So, an asymptotic level 1 — « confidence interval for 6, is

In = {61 :12Y)] < 2a)2}s (13)

where 2,/ is the 100(cr/2)-th percentile of the standard normal distribution.

2.2 The bivariate normal model with known covariance
matrix

Suppose that X; = (X1, Xs;)" for j = 1,...,n are independent random vec-
tors from a bivariate normal distribution with mean vector 8 = (6, 6,)" and

covariance matrix )
2 o o7 Y0102
= 2 .
Y0102 05

Let ¢ = (07,02,7)". As before, let N = N, be the stopping time depending on
a. Then, since the likelihood function is not affected by the use of a stopping
time (e.g. Berger and Wolpert, 1984), the density of Xy is

paitd) = exp | -Niog(zm) - Glo{atod(1 — %)
1 N 2 ) N
_W a 2 (1 —01) +01; .%'2]—92
N
—2y0102 Y _(21; — 01) (225 — 02) ¢ | - (14)



If we assume that 6 is unknown and v is known, then this model is a two-
parameter exponential family with density that satisfies

logp(z;0) = c(x)+ Nbit1 + Nbata — Nb(6),

where t; = 71/{0}(1 = %)} — y22/{0102(1 = 7*)}, t2 = 72/{03(1 — 7*)} —
vZ1/{o102(1 — ¥?)} and b(f) = §’X716/2. Since b(f) is quadratic in @, both
i1(0) and i5(0) defined in Section 2.1 are constants; and therefore x(6) in (9)

reduces to (—bos. bir) - V()
K(0) = 02, 011 = P = —a1p10, (15)

boziy
where p;; = 8" p/96196) and the second equality in (15) follows since the stop-
ping time N is assumed to depend only on Xii,..., X n. Simple calculations
show that the maximum likelihood estimator of 6 is (él, ég) = (Xn1, Xn2) and
that the restricted maximum likelihood estimator of 65 given 6, is Gy = B (6,) =
0y — yo3 (61 — 01)/o1. By (1) and (2), it is straightforward to obtain

(Zn1, Zn2) = (VNoy (01 —01), VNoy ' (1=2) "2 {0,— 02 —v02(01 —01) /o1 }).

Furthermore, since the stopping time depends only on the first population, it
can be shown that m(6) in (8) satisfies

m(6) = &*(0) = (01p10)*.

Then, substituting these Zy1, £ and m into (10), (11), and (12), by Theorem
2.1, the approximate level 1 — « confidence interval for ¢; is as in (13).

For inference about the secondary parameter 65, it is not appropriate to use
Zno as it depends on both #; and 6. So, we consider the transformation

ZNl = ZN1(0) = \/Q{LN(éNl,éNg) — LN(§N1792)}Sign(92 — éNg), (16)

where Oy1 = On1(6s) is the restricted maximum likelihood estimator of #; given
0>. Then Zn1 = \/N(HQ —05)/02. To obtain the mean correction term, we need
to replace b;; and p;; in (15) with b,; and pj;. So,

(—boo, br1) - | P
Eo(Zn1) ~ ——n(0) = = ( P10 )(9) -1 (17)

== g17p10-
va Va  byg(bos — %)1/2 va
Using a similar trick, we obtain
m(0) = &*(0) = (017p10)°- (18)

With this Zy and its corresponding mean and variance corrections, we ob-

tain a renormalised pivot ZI(\?) as in (10). Then, by Theorem 2.1, an asymptotic
level 1 — « confidence interval for 65 is

A 02 .(0) 02 .(0)
Ona + —=p\ + —=7D 2, /o 19
N2 \/N/’LN \/N N /2 ( )



This interval is of the same form as the one obtained by Whitehead, Todd and
Hall (2000). However, they use recursive numerical integration to calculate the
correction terms instead of asymptotic approximations.

3 Extension to unknown covariance matrix case
In this section, we consider the following three cases:

Cl. o7 and o9 are known, but ~ is unknown;

C2. o1 and o9 are unknown, but « is known;

C3. 01, 09 and « are all unknown.

When the parameters are unknown, we estimate them by 62 = Z;-VZI(XZ»J» —
0:)%/(N —1) for i = 1,2 and

. S (X1 — 01)(Xo; — 02)
A= - —
\/Z;'V:I(le —61)2 300 (X5 — 0,)?

As the main interest of this paper concerns inference about the secondary
parameter s, in the rest of the paper we let Zy; be as in (16). So the corre-
sponding x(o71,7, p10) and m(o1,7, p1o) are as in (17) and (18). For cases C1-C3,
we consider /%53) = x(01,%9, p10), /%5\2,) = k(61,7, p10) and 1%53) = k(61,%, p10), re-
spectively; and correspondingly define ﬂg\l;) and %](f) for kK = 1,2,3 as in (11)
and (12). Then, let

1)

P
Z(P) =2 N (20)
)
N
and
NN
(k) _ ZN1(02) — fuy
24y = P (21)
N

for k = 2,3, where Zn1(62) = VN(6 — ég)/&g. We will use Z](\l,c) for k=1,2,3
as pivotal quantities for cases C1, C2 and C3, respectively.
Define Oy = 63/03. Then we can rewrite ZJ(\];) for k=2,31in (21) as

o ~ (k) ~ (k)
) _ (22)Zn1 — iy N1 — ug\’?)w}f (22)
N= Q) SV (S B
™~ WN TN

In the rest of the paper, let = denote the collection of all prior densities £(v, 6) =
&1 (1)&(0) with compact support in (0,00)? x (—1,1) x Q for which ¢ is twice
differentiable almost everywhere under P and V¢ is bounded on its support.



Theorem 3.2 Suppose that & € E and that (6) holds with ¢ = 1. Then, for
k=23,

= o)

(23)

/ [ [Beatuz)) - 2t - Laanygo)| ev.opwas
(0,00)2x(=1,1) JQ a

for all bounded functions h.

The definition of ®4 and the proof are in Appendix A.4. Theorem 3.2 shows
that Zj(f) for k = 2, 3 are asymptotically distributed according to a ¢ distribution
with N degrees of freedom to order o(1/a) in the very weak sense, since ®'h +
(®4h)p?(0)/a represents the first two terms in an Edgeworth-type expansion for
the t distribution (e.g. Barndorff-Nielsen and Cox, 1989, Chap.2; Hall, 1992,
Chap.2). Hence,

Pyo{]Z2®)] < 2} = 2Gn(2) — 1+ o(1/a) (24)

very weakly, where G denotes the ¢ distribution with N degrees of freedom.
So, an asymptotic level 1 — « confidence interval for 65 is

G2 (k) , 02 .(k

— + —7x'CN.a/2,

\/NMN \/ﬁ N CN,a/2

where ¢y o /2 is the 100(c/2)-th percentile of the ¢ distribution with N degrees
of freedom. Note that the form of the above interval is similar to one obtained
by Keener (2005) using fixed 6 expansions. However, his interval is only valid
up to order o(1/y/a) and only applicable to linear stopping boundaries.

The proof of Theorem 3.2 reveals that the correction term (®4h)p?(6)/a in

(23) arises from the use of @n. Since og is known for Z](\}) in (20), this correction

éN2 +

term vanishes in the asymptotic expansion for Z](\}) and an immediate corollary
to Theorem 3.2 is the following result.

Corollary 3.1 Suppose that £ € E and that (6) holds with ¢ = 1. Then

/ / B0 {h(Z0)} — 'hIe(w, 0)dbdy| = o L)
(0,00)2x(—1,1) JQ a

for all bounded functions h.

Therefore, Z](\}) is asymptotically standard normal to order o(1/a) in the
very weak sense, and consequently

Pyo{|Z)| < 2} =20 (2) — 1+ o(1/a)

very weakly. From this, one can set confidence intervals for 2 as in (19), but

A~

with 4 and 7\ replaced by ) and #{.



4 Simulation results

4.1 General

Section 3 considers asymptotic results for Z](\];) for a class of stopping times

N = N, depending only on the first population. Specifically, let ¢ denote a
measurable function on R which is almost differentiable; let 6,,; = Z?Zl Xi;/n
and

N = N, = inf{n > mg : ng(6,1) > a} Am, (25)
where mg and m denote the initial sample size and the maximum size, respec-
tively; mg = |a/e2] and m = |a/€?], |z] is the greatest integer less than or
equal to x, a > 1 is a boundary parameter, € a truncation parameter and ¢
controls the initial sample size. In this section, we assess the accuracy of the
method for two simulated examples, the truncated sequential probability ratio
test and the repeated significance test. The actual coverage probability and
expected stopping time are assessed through simulation for 0; = 09 = 1 and
selected values of (61, 62,7).

4.2 Truncated sequential probability ratio test
The stopping time (25) with ¢(y) = |y| is equivalent to

N =inf{n > mg : |Sn1| = a} Am,

where S,1 = Z;L:1 X1; is the partial sum from the first population. This is
the truncated probability ratio test depending on three parameters, a > 1, ¢
and e. Simple calculations yield a/N — p?, where p = max{min(eg, \/|01]), €}.
The parameter values are taken as a = 10, € = /0.1 and ¢ = v/5.0. So,
mo = a/e2 =2 and m = a/e?> = 100. Tables 1 and 2 contain results for known
o1 and oy, but unknown -, that is, case C1, and for unknown o1, o2 and +y, that
is, case C3, respectively.

In Table 1, we report the expected sample size and the lower and upper 0.05,
0.025 noncoverage probabilities for Zxq and Z](\}). The results show that ZI(\}) is
very accurate for all selected parameter values, but Zy; is negatively skewed.
Table 2 compares the coverage probabilities using Zxn1 and Z](\‘;'). The coverage
probabilities for Py ¢(|Zn1| < zay2) for a = 0.05 and 0.1 are in the columns

with the title ‘Zn1’. The results using (24) for the pivotal quantity ZJ(\?) are

given under the title ‘ZJ(\?) :tn’. As (23) suggests that Z](\?) can be approximated
by a t distribution with a/p? degrees of freedom, we give the results in the last
two columns ‘Zj(\?) : tq/p2’. Apparently, the coverage probabilities for the naive
statistic are all significantly less than the nominal values. The results using a/p*
degrees of freedom are slightly better than those with N. The distribution of

Z](\:,)’) shows no appreciable skewness.

Table 1. Truncated sequential probability ratio test with known o1 and o2, but unknown ~;
replicates=10,000
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( £+ means 1.96 standard deviations )

Zn1 7y

(01,02,7) Eyo(N) | £L0.05 | U0.05 | L0.025 | U0.025 | £0.05 | U0.05 | L0.025 | U0.025
(0.30, 1.00, 0.40) | 3542 | 0.050 | 0.040 | 0.031 | 0.019 | 0.048 | 0.049 | 0.025 | 0.025
(0.60, 1.00, 0.40) | 17.87 | 0.057 | 0.030 | 0.028 | 0.020 | 0.048 | 0.048 | 0.024 | 0.025
(0.80, 1.00, 0.40) | 1354 | 0.056 | 0.043 | 0.027 | 0.022 | 0.048 | 0.050 | 0.024 | 0.025
(0.30, 1.00, 0.80) | 3520 | 0.070 | 0.030 | 0.036 | 0.017 | 0.050 | 0.050 | 0.023 | 0.024
(0.60, 1.00, 0.80) | 17.87 | 0.064 | 0.036 | 0.034 | 0.017 | 0.049 | 0.052 | 0.025 | 0.026
(0.80, 1.00, 0.80) | 13.55 | 0.058 | 0.040 | 0.029 | 0.010 | 0.046 | 0.055 | 0.023 | 0.027
I 0.004 | 0.004 | 0.003 | 0.003 | 0.004 | 0.004 | 0.003 | 0.003

Table 2. Truncated sequential probability ratio test with unknown o1, o2 and ~;
replicates=10,000
( £ means 1.96 standard deviations )

Zn 79 i Z0 b,
(61,02,7) Eye(N) | 90% | 95% | 90% | 95% | 90% | 95%

(0.30, 1.00, 0.40) 35.42 0.885 | 0.934 | 0.892 | 0.944 | 0.896 | 0.947
(0.60, 1.00, 0.40) 17.87 0.871 | 0.923 | 0.884 | 0.941 | 0.892 | 0.947
(0.80, 1.00, 0.40) 13.54 0.863 | 0.917 | 0.885 | 0.936 | 0.895 | 0.945

)

)

)

(0.30, 1.00, 0.80 35.20 0.877 | 0.929 | 0.891 | 0.944 | 0.896 | 0.947
(0.60, 1.00, 0.80 17.87 0.865 | 0.918 | 0.879 | 0.936 | 0.888 | 0.942
(0.80, 1.00, 0.80 13.55 0.859 | 0.911 | 0.878 | 0.935 | 0.888 | 0.944

+ 0.006 | 0.004 | 0.006 | 0.004 | 0.006 | 0.004

4.3 Repeated significance test

The stopping time (25) with ¢(y) = y? is equivalent to
N =inf{n > myg : |Sn1| > Vna} A m.

This is the repeated significance test depending on three parameters, a > 1, €
and e. It is easily seen that a/N — p?, where p = max{min(eg, |61]),e}. We
take a = 10, e = /0.1 and ¢y = v/2.0. So, mg = a/e% =5and m = a/e® = 100.
Tables 3 and 4 contain results for known o7 and o9, but unknown +, that is,
case C1, and for unknown o1, o2 and =, that is, case C3, respectively.

In Table 3, we see that Zy; is slightly more negatively skewed than in
Table 1, but ZJ(\%) is again very accurate for all selected parameter values. The
coverage probabilities in Table 4 show that the use of Zy; leads to significantly
lower coverage probabilities than the nominal values, but using ZJ(\Z;’) and a t
distribution with a/p? degrees of freedom also works very well for this test. As
before, the distribution of Z](\‘;’) shows no appreciable skewness.

Table 3. Repeated significance test with known o1 and o2, but unknown ~;
replicates=10,000.
( £ means 1.96 standard deviations )
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Zn1 zQ

(01,02,7) Ey.0(N) | L0.05 | U0.05 | L0.025 | U0.025 | L0.05 | U0.05 | L0.025 | U0.025
(0.30, 1.00, 0.40) | 75.18 | 0.064 | 0.045 | 0.034 | 0.023 | 0.052 | 0.047 | 0.026 | 0.024
(0.60, 1.00, 0.40) | 27.53 | 0.061 | 0.037 | 0.031 | 0.018 | 0.047 | 0.045 | 0.023 | 0.023
(0.80, 1.00, 0.40) | 16.16 | 0.060 | 0.041 | 0.032 | 0.019 | 0.050 | 0.052 | 0.024 | 0.025
(030, 1.00, 0.80) | 74.88 | 0.093 | 0.047 | 0.049 | 0.024 | 0.052 | 0.047 | 0.025 | 0.024
(0.60, 1.00, 0.80) | 27.26 | 0.083 | 0.020 | 0.041 | 0.014 | 0.051 | 0.044 | 0.025 | 0.023
(0.80, 1.00, 0.80) | 16.20 | 0.067 | 0.030 | 0.032 | 0.016 | 0.040 | 0.047 | 0.025 | 0.024
I 0.004 | 0.004 | 0.003 | 0.003 | 0.004 | 0.004 | 0.003 | 0.003
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Table 4. Repeated significance test with unknown o1, o2 and +; replicates=10,000.
( £ means 1.96 standard deviations )

Zn1 zP ity 2ty
(01,62,7) Eyo(N) | 90% | 95% | 90% | 95% | 90% | 95%

(0.30, 1.00, 0.40) 75.18 0.880 | 0.934 | 0.897 | 0.947 | 0.900 | 0.948
(0.60, 1.00, 0.40) 27.53 0.872 | 0.925 | 0.891 | 0.939 | 0.896 | 0.946
(0.80, 1.00, 0.40) 16.16 0.854 | 0.907 | 0.875 | 0.933 | 0.886 | 0.942

)

)

)

(0.30, 1.00, 0.80 74.88 0.847 | 0.911 | 0.891 | 0.945 | 0.896 | 0.948
(0.60, 1.00, 0.80 27.26 0.850 | 0.908 | 0.883 | 0.938 | 0.893 | 0.945
(0.80, 1.00, 0.80 16.20 0.850 | 0.904 | 0.876 | 0.934 | 0.887 | 0.945

+ 0.006 | 0.004 | 0.006 | 0.004 | 0.006 | 0.004

5 A practical example

In this section, we illustrate the proposed confidence interval method using the
data obtained by Bellissant et al. (1997). This study was concerned with the
treatment of infants of up to eight years of age suffering from gastroesophageal
reflux. The infants were randomised between metoclopramide and placebo,
which they received for a two-week period. The pH level in the oesophagus
was measured continuously using a flexible electrode secured above the lower
oesophageal sphincter. The primary response variable was the percentage re-
duction in acidity, measured by the proportion of time that pH < 4, over the
two weeks of treatment.

The above variable was taken to be normally distributed and the triangular
test (Whitehead, 1997, Chap.4) was used to monitor the study. Inspections
were made after groups of about four patients and the trial was stopped after
the seventh interim analysis, with the conclusion that metoclopramide is not an
improvement over placebo. Although Bellissant et al. (1997) mention various
normally distributed secondary response variables of interest, only standard
analyses of them are carried out. For example, uncorrected confidence intervals
are given for secondary parameters of interest. Thus, it is interesting to apply
the corrected confidence intervals presented in Section 3 in this case.

In order to illustrate the confidence interval method, we assume that there
is a single secondary response variable, the proportion of time that pH < 4 on
day 14, and that the patients arrive in pairs, with one patient in each pair being
assigned to metoclopramide and the other to placebo. The trial data give the
estimates 91 = 0.3, 92 = 0.07, 61 = 0.5 and 69 = 0.1. To simulate the trial, we
treated these values as the true values for the parameters. Further, since the
sample covariance matrix was not available, we simulated the trial when v = 0.4
and v = 0.8, as for the two sequential tests in Section 4. As in the original trial
of Bellissant et al. (1997), we use a one-sided triangular test to test Hy : 61 = 0
against H; : 6; > 0 and choose the design parameters so that it has significance
level 5% and 95% power for 6; = 0.5.

Let m, denote the group size, possibly depending on a > 0. Then the
stopping time for the above triangular test is essentially of the form

N =inf{n > 1:mgln, Sp1/61 > a+bn—0.583 or S,1/61 < —a+3bn-+0.583},
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where m,|n means that m, divides n and S,; denotes the sum of the first n
differences in response between metoclopramide and placebo. Values are chosen
for the parameters ¢ > 0 and b > 0 in order to satisfy the error probability
requirements, and the number 0.583 is a correction for overshoot of the stopping
boundaries due to the discreteness of the inspection process (e.g. Whitehead,
1997, Chap.4). Upon termination of the test, Hy is rejected if Sy1/61 > a +
bN —0.583 and accepted if Sy1/61 < —a+3bN+0.583. Now, the above stopping
time may be rewritten as

N =inf{n >1:muln and ng(0,:/61) > a — 0.583}, (26)

where ¢(y) = max(y —b,3b—y). Note that (26) is a special case of more general
stopping times studied by, for example, Morgan (2003). So we have a/N — p2,
where p = max(y/01/01 — b, \/3b— 01 /01), provided that m, = o(a). As in
Bellissant et al. (1997), we take a = 5.495 and b = 0.2726. These values may
be obtained using PEST 4 (Brunier and Whitehead, 2000). Since the data are
being monitored after groups of four patients, we have m, = 2.

In Table 5, we report the probabilities of rejecting Hy, that is, the power,
the expected numbers of pairs of patients, and the coverage probabilities using
Zn1 and Z](\?), all of the results being based on 10,000 replications. Although
the simulated sequential test satisfies the power requirement for ; = 0.5, it
is a little conservative. This is because the above stopping time is not exactly
the same as the original. Now, we know from Section 4 that the confidence
intervals based on Zxi1 have coverage probabilities below the nominal values

and that those based on Z](\?) have roughly the correct coverage probabilities.

The results in Table 5 show that the use of Z](\?) leads to coverage probabilities
which are usually quite close to the nominal values, especially given the small
sample sizes. Note that, since our theory has been developed for the case where
p = p(01), when calculating the correction terms, oy has been replaced with its
estimate except in terms involving p, when its true value is used. We return to
this point in Section 6.

Table 5. Triangular test with unknown o1, o2 and ~; replicates=10,000.
( £ means 1.96 standard deviations )

Zn1 ZP ity 79t
@1, 02, 7) Power | Byo(N) | 90% | 95% | 90% | 95% | 90% | 95%

(0.00, 0.07, 0.40) | 0.021 7.43 0.807 | 0.864 | 0.848 | 0.921 | 0.892 | 0.935
(0.00, 0.07, 0.80) | 0.021 7.43 0.815 | 0.867 | 0.857 | 0.919 | 0.896 | 0.936
(0.30, 0.07, 0.40) | 0.574 10.49 0.826 | 0.885 | 0.866 | 0.927 | 0.894 | 0.949
(
(
(

0.30, 0.07, 0.80) | 0.574 10.49 0.780 | 0.849 | 0.860 | 0.921 | 0.892 | 0.956
0.50, 0.07, 0.40) | 0.956 8.17 0.818 | 0.877 | 0.860 | 0.926 | 0.893 | 0.942
0.50, 0.07, 0.80) | 0.956 8.17 0.812 | 0.867 | 0.859 | 0.923 | 0.896 | 0.945

+ 0.006 | 0.004 | 0.006 | 0.004 | 0.006 | 0.004

Returning to the actual trial, a standard analysis gives an uncorrected confi-
dence interval for 6 of (0.018, 0.122), whereas the corrected confidence interval
is (0.008, 0.124) when v = 0.4 and (0.002, 0.122) when v = 0.8. So the approach
is useful in practice, especially if the correlation coefficient is large.
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6 Discussion

In this paper, we have shown how corrected confidence intervals for secondary
parameters may be constructed following a sequential test in which one com-
ponent of a bivariate normal process is being monitored. The intervals have a
simple form and very weak expansions are used to justify them. Simulation of
two well-known sequential tests show that the approximations are very accurate.
We have also illustrated the approach using a real-life example.

We have only considered sequential tests based on the mean of the first
component of a bivariate normal process. As we have seen in Section 5, a
sequential test may also depend on the variance of the first component, so
that p = p(61,01). The derivation of the variance correction term is more
complicated in this case, since the sampling variation in 6% needs to be allowed
for. For some related work in this direction, see Woodroofe and Coad (1999).

There may be several primary response variables in practice. So a natural
extension would be to generalise the ideas in Sections 2 and 3 to a p-variate
normal process, where p > 2. Such a development would require consideration
of the multivariate version of the signed root transformation and an application
of the results of Weng and Woodroofe (2000) for the p-parameter exponential
family in order to determine the analogues of the mean and variance correction
terms in (17) and (18).

Although we have considered both the known and unknown covariance ma-
trix cases in this paper, one assumption that we have made is that the correlation
coefficient between the two components of the response vector is constant over
time. This is called the proportionality case by Hall and Yakir (2003). Another
natural extension would be to generalise the ideas in Sections 2 and 3 to the
non-proportional case where the correlation coefficient is a function of time.

A further possible extension is to consider two binary streams of data, where
the primary parameter is the log odds ratio and the secondary parameters are
the individual success probabilities. Although approximations may be obtained
using the results of Weng and Woodroofe (2000), they do not lead to simple
formulae. However, it would be interesting to compare this approach with that
of Todd and Whitehead (1997), and also to consider unequal sample sizes.

A

A.1 Wald-type equations for bivariate normal models

In this subsection, we provide some results on randomly stopped sums for the
bivariate normal models. Recall the definitions of 4 and 62, i = 1,2, in Section
3. Now define 62 = (N — 1)67/N, i = 1,2. So,

N
(X —6;)? A
R e (21)
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and 4 defined in Section 3 can be rewritten as

(X = 00) (X — 6y) (28)
7= Né16 '

Let Lin denote the likelihood function based on the first population and let
L' denote the partial derivative of L;y with respect to 0%, so that

N N
Lin = exp{—— 10g(27r) — —log 01 Z (15 — 91
and
N
0 N
/ — —
1IN = ?‘%LlN = :E L1y — 91 - ﬁ LlN. (29)

Then we also have

a (QUlLllN)

N
1
= —-N+—— E: i —01)2—0?N 3 .
Lin T 20‘1l j:1(z1J 1) 01 (30)

Let p be as in (14). Some of the derivations in Lemma A.3 below rely on
the identity (e.g. Woodroofe, 1982, Chap.1)

0 0
952 Bvo(My) = /MN (%2 10gp) dPy.6 (31)
for i = 1,2, where
0 N 1 o2 N
—logp = ——5+-—s5—-"1L 2 (z1;—6,)*
do? 207 20%203(1 —~2) | o ; J
o N
2
- ’YUT ;(Ilj —01)(z2; —02) o,

and 0logp/do3 has a similar form.

Lemma A.3 Suppose that £ € E, My = My(X11,...,Xan, Xo1,- -, Xon),
b(v,0) is twice differentiable and V?b is bounded. Then the following hold:

(i) Ee{b(t,0)My'} = Ee{b(t, ) Eg(My), where € = £b/ B (b) € ;

(ii) Be{3 3=y (Xij — 0:)*/N} = Ee(o?) for i =1,2;

(iii) Ee[{Y 0 (X3 —Hi)2}2/N] Ee(20% + 0*N) fori=1,2;

(iv) Be{3232,(X1; = 01)° 232, (Xaj — 02)°/N} = E¢(29°0%03 + 0103 N).
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Proof. The proof of (i) is straightforward and hence omitted. Consider (ii).
Taking My = 1/N in (31) for i = 1,2 leads to

{Zé\’—l(le —61)(Xa; — 02) }

= —0102(1 %)

N 2
+§Ew,e {Zj_l(le B 91) }
1

YEy.0 N

N

0 1
—20}02(1 — 72)@E¢,9(ﬁ)
1

and a similar equation with oy and o9 switched, where 0E,, ¢(1/N)/do? = 0,
since N defined in (25) does not depend on o;; and therefore,

N 2 N ; — 02)?
vae {Zjl(le - 91) } _ ng’e {Zjl(XQJ 92) } ) (32)

N 3 N
By (29),
Yo (X1, — 01)? r
E J= — E 2 4 1N 2
3 { N 3 < 01 NL]N + 0.1 )
where
2 Ly 400 2 Lin 2
B2 = 2 0)E, doydf
3 ( 01 NL1N> // 016(017 1) 1,01 <NL1N> 014,

0 1

- [ [{aotetotn + 20t a0t 60} B (ot
003 N

- [ [ 16360000 Eay o, (ot

0 1
+//2§(0’%a91)&'% {U%Edl«,@l(N)}dU%del
//245(29)£ (l)ddG

01601, %1 60’% 01,01 01001,

where the third line follows by an integration by parts and the fact that £ is
defined on a compact set and vanishes on the boundaries, and the last line is
zero since Eq, 9, (1/N) does not depend on o7. So, Eg{zy:l(le —61)?/N} =
E¢(0?), and then by (32), we have Eg{ij:l(ng — 02)?/N} = E¢(03).

Now consider (iii) and (iv). First, by (30),

N 212 1 N
S (Xq;,—0 881/ 403 L
2l Jl\/{ Y 8 1N;NC’1 N 1 90} + 203 > (X1; — 61)? — Not,
Jj=1
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where Ee{(80$ L)y +408L]y)/(NLix)} = 0 can be proved in the same way as

in the preceding paragraph, and F¢{c? Z 1(X1;—601)?} = E¢(61N) by Wald’s
equation. Hence,

1 N

Ee | % > (X1, —61)° = E¢(201 + oN). (33)
j=1

Next, taking My = Z;V:1(X1j —61)%/N in (31) for i = 1,2 leads to

0 Eye {E;Vﬂ(le —01)° }

do? N

- o) L SN - o)
B Z 15~ 0) +2O’il(1—’}/2) e N

N
v > m (X1y = 01)2 300 {(Xny — 01)(Xo; — 92)}}34)

" 20505(1 - 1?)

E¢79 N

and a similar equation. Taking My = Z;.VZI(ng —63)?/N in (31) for i = 1,2
leads to two further equations. By (ii), (33), (34) and the other three equations,
we obtain (iii) and (iv). a

A.2 Biases and variances of estimators

We now give some properties of the estimators for the bivariate normal mod-
els. Similar calculations are carried out by Coad and Woodroofe (1998) for an
adaptive normal linear model.

Lemma A.4 Suppose that & € E and that (6) holds with ¢ = 1. Then the
following hold:

(i) Eg(6; — 0:) = o(1//a) fori=1,2;
(ii) E¢(62 —02) = o(1/a) fori=1,2.

Proof. Consider (i). First, by (6), E¢[(d; — 0i)1{a/N,>1/9}] = o(1/a). Then,
observe that

A a ~
\/6(91' — Gi)l{a/Na<1/n} = 1 / NNl/Q(ei — ei)l{a/Na<1/n} = N(O,U?pQ).

Since a/N, < 1/n and N/2(; — 6;) is uniformly integrable by Lemma 2.2, the
left side converges in the mean. Hence (i) follows.

Next, consider (ii). From (27) and Lemma A.3(ii), aE¢ (62 —0?) = —aFEe{(fi—
0;)?}. Then, since 62 — 02 =62 — 02 +52/(N — 1), we have

aBe(67 —07) = —aBe{(0; — 0;)%} +E§( +o(1),

N Z)
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where a(éi —0;)? = p*o?x? and is uniformly integrable, by a similar argument
to the preceding paragraph, and hence converges in the mean, and the second
term is E¢(p®0?) + o(1). So the result follows. m|

A simple consequence of Lemma A.4(ii) is
Ef(LA«)N — 1) = 0(1/&). (35)
The derivation of Lemma A.5(iii)(iv) below relies on the identity

0 0
%Ew,G(MN) = /MN (mlogp> dPy g, (36)

where p is as in (14) and

O Ny (1497 XL (K~ 0) (X — 0a)
il #r 1= (1-77)? 0102
" E?;(le —61)* N Z;-V:l(X%' — 65)?
(1—72)? of o2
_ Ny (497 [ NGGi6s N(f; — 01)(0; — 02)
1—92  (1-7%)2| o102 0102

2 2

8] N&? +N(fy — 61)° | No3 + N(6 — 6:)°
01 02 ‘

Lemma A.5 Suppose that & € E. Then the following hold:
(i) Be{N(57 — 07)*} = 2E¢(0}) + 0(1) fori=1,2;

(i) E¢{N (57 — 07)(63 — 03)} = 2E¢(y*0i03) + o(1);

(iit) Be(Y =) = —Ee{v(1 —7%)/(2N)} + o(1/a);

(iv) Ee{(7 —7)%} = o(1/Va).

Proof. For (i), first from Wald’s equation,

N
0=FEyyg Z(XZ-- —0,)> — No? 3 = Eyg{N(5? — 02) + N(6; — 6,)*}. (37)
j=1

Next, by (27) we can write

{1 (X — 0:)%)

~ —2N(52-02) {02 +(0:—0,)*}—N{o?+(0;—0;)*}*,

N(o?-02)? =

where E¢{N (52 — 02)(0; — 6;)?} and Ec{N(6; — 0;)*} are both o(1). Then,
together with Lemma A.3(iii) and (37), we obtain the desired result.
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For (ii), by (27),

N N N

- - 1

N(67 —0})(65 —03) = NE X1]—912E (Xoj — 02)? — 0f E (X — 62)?
j=1 Jj=1

Jj=1

N N
O'SZ X1J701) 9179122 ngfog
Jj=1

j=1
N A ~
92—92 QZ X1]—91 +N(91—91)2(92—92)2
=1
+N0'1(92 — 2)2 +NO‘2(91 — (91)2 + NO’%O‘%,

where we have Eg{ZN (X1; — 01)? ZN (X9 — 02)?/N} = E¢(27%0%03 +
0203 N) by Lemma A.3(iv), E¢{o} E ((Xa; — 02)% + 02 E;y:l(le —6)?} =
2E¢(0202N) by Wald’s equation, E¢{N (6; — 0;)%(62 — 05)%} = o(1) because the
integrand approaches zero and is uniformly integrable, and

N
E§ (92—92 {N0'1 Zle_el }:|
j=1

N
= E& 92—92 QZ{ le —01 —O'%}/N :0(1)
Jj=1

because N (02 — 02)% = O,(1) and Y% {(X1; — 61)? — 03} /N = 0,(1) are both
uniformly square integrable. Similarly, £ [(01—61)2{No?2 —ijl (Xo;—02)%} =
o(1). Hence (ii) follows.

Consider (iii). Taking My = 1/(N&162) in (36), and then multiplying both
sides by (1 —~?2)?2 leads to

0 1 1
242 E - E 2
(=77 oy .0 <N5'15'2> .0 {7(1 1) (&1&2>

L (1+7?) {7 (61— 01)(6> — 02)}

0102 0102

o e+ 66
O’% 5’152
~2 J. 2
B ’;/2{02+(~92~ 62) }] (38)
g5 01092

From (28), the distribution of 4 does not depend on the values of o1 and os.
So, without loss of generality, we take o1 = 02 = 1 in the evaluation of Ey o(%).
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Letting ¢9 = (1,1,7)’, then together with (38) we have
Epo(7) = Eupoo(?)
(1-9%)?20 1
1 +’72 67 ¢0 N(710'2 woﬂ 615’2

(61 — 61) (82 — 6y) o1, 02
—E T
Yo,0 { 0109 + 1 —|— 2 Bvos op) * 01
Y (91 - 91 92 - 92
—F .
+1 +’Y2 7110,9{ 0'10'2 + 0'10'2

Now we claim that

0 1 1
5 F (MMJ =o(-), (39)
Be (55 ) =1+ SOBGD) + (B atod) +ol) (10
Q(Tl+?)2+1ﬂ%@%§&@%%%%}+457 (41)
09 o1 a a
&{@T?” (%‘%)}=2&@%+d5 (42
0102 0102 a a
and
Q{%—gf—@} L) + o). (43)

Since the verifications of (39)-(43) are similar, here we only sketch the proof for
(40). A Taylor series expansion about the point o3, = 03, = 1 gives
1 1, 1 3

1 (6 - 1) - 5(6F - 1)+ 56T - 1P+ 563 - P+ (6F - 1)(6E - 1),

Then, by (i) and (ii), we obtain (40).
For (iv), we take My = 1/(NG162)? in (36), multiply both sides by (1—+2)2,
and then take the derivative of both sides with respect to v. We obtain

1 14 ~2 4 (é1 —91)(é2 —0s)
(1 =7%) {N(&1&2)2 } t o, {N&@ T NG5 }
_ l 5’%4‘(@1—01)2 71 5%4‘(@2—92)2
0'% N(5'15'2)2 0'% N(&152)2

2 1 1442 0 (élfal)(ézf‘%)
+Eyp.0 ([V(l - >{N(51&2)2} + p {N61&2 + NCTESE }




D K U7l W e R Rl | N
U%{ N(G162)? } U%{ N(6162)? H (6’Ylgp>>

Ew,e{(l +72)2(?7)2} LI

(0109)%(1 —~?)?

where E¢(I,) = O(1/a) and the last equality follows from tedious calculations,
which are omitted here. Since

(i |07 0 { e }]) = o5

the required result follows. O

Note that, in the absence of a stopping time, Lemma A.5(iii) reduces to the

usual bias formula for the sample correlation coefficient in the fixed-sample case
(e.g. Muirhead, 1982, Chap.5).

Lemma A.6 Suppose that ¢ € Z. Then VN(on — 1) = N(0,2). Moreover,
N(&n — 1)? is uniformly integrable with respect to Pe.

Proof. The first statement follows since

N 2_ 42 AT
VN(@n—1) = \/N(5§—U§) _ \/sz:1{(x2j —62) 3} VN VN(0y—65)

o3 (N —1)02 N-1 o3

where the first term on the right-hand side converges in distribution to N (0, 2)
by Anscombe’s theorem and the last two terms are o,(1).

For the second statement, it suffices to show that N(&yx — 1)? converges to

2x? in the mean. From Lemma A.5(i) and the relationship between &5 and &5,

we have E¢{N(&n — 1)?} — 2. So the result follows. 0

Two additional results are needed for Lemma A.7. By (6) with ¢ > 1/2 and
Lemma A.5(i), we have

a

Eela(67 — 07)*1(N,>na}] = Ee [N

N2 = 02w, | =00)  (44)
for i = 1,2, and, by (37), we have

Eelal|f = 01*1 (x> na) = Ee [%NHé - 9||21{Na>na}} =0(1). (45
Lemma A.7 Let g(v,0) be twice continuously differentiable on a compact set

K C (0,00)? x (—=1,1) x Q. Suppose that £ € Z and (6) holds with ¢ > 1/2.
Then

E¢[{9(4,0) = 9(4,0)}1 (v, 5na)] = o(1/Va).

Proof. By compactness and continuity, there exists C' > 0 such that

l9(¥,0) = g(,60) — (& = $,0 = 0)Vg(4),8)] < C(I[d— o>+ 16— 6]).
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Now, since Eg[(\|1/AJ—1/J||2+||6‘A—9||2)1{Na>na}] = o(1/+y/a) by Lemma A.5(iv), (44)
and (45), and || E¢(0 — 0)|| + || Ec(¢) — ¥)|| = o(1/+y/a) by Lemma A.4(i)(ii) and
Lemma A.5(iii), the statement follows by using the arguments in Proposition
6.13 of Weng and Woodroofe (2006). |

Note that, if K = U!_, K;, K, are compact sets, K? N Ky = () for i # j,
where K? denotes the interior of K;, and g is twice piecewise continuously
differentiable on K;, then we can write

Pelo(0.0) =900} = 3 [ €0.00B0la(w.0) - o(5,0)}aav

_ Zl /K &0 By o{g(w,0) — (), 0) }dbds

q

= 0 B do(w.0) — 90,0},

i=1 "
where ¢; are normalising constants and &; = ¢;¢1k,. Thus, Lemma A.7 holds

for such g. In particular, it applies to x and yields Eg[{/%g\];) — K} N, sna}] =
o(1/+/a) for k =10,1,2,3.

A.3 Proof of Theorem 2.1

Three lemmas are required for the proof.

Lemma A.8 Let h be a bounded function, and let

Hy(o,p) = /m h(E—)g(2)dz

g

and

Hy(o,p) = /%zh(z 1y (2)dz

a

for o >0 and —co < pu < co. Then Hy and Hy have continuous derivatives of
all orders. Further, at p =0 and o = 1, we have Hy = ®'h, 0Hy/0p = —PU,
OHy /0o = =20V h, 0°H,y/0u* = 20'Vh, H; = ®'Uh, OH,/0p = —2®'Vh,
OH1 /00 =0 and 0*H; /Ou* = 0.

This lemma is a simple extension of Lemma 13 of Weng and Woodroofe
(2000) and can be proved analogously. Note that, if h is symmetric, then
®1Uh = 0, and hence dHy/Opu = H; = 0, and Lemma A.8 reduces to their

Lemma 13.
Now define

By
\/N
- LulaVREN (O)TS(6.0)]).

Raat) = o B (hZw) ~ 9%~ (@200 EX (T5(6,0)
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Then, by Proposition 2.1, we have

Realt) = Va[\[ @y BY r5.0) - 150.0)
+%tr[EéV {(VA(ZN)T5(0,0)}] — tr[@2VREN {p*(0)T'5(6,0)}]
= R{)(h)+ RE)(h).

Lemma A.9 below is similar to Theorem 7 of Weng and Woodroofe (2000), but
here we consider Ry ,(h) for all bounded h, not necessarily symmetric.

Lemma A.9 If (6) holds withq =1 and § € Zq, then limg—.oo| Ee[R2 o (h)1{N, >na}]| =
0 for all bounded h.

Proof. First, limaéoo|E§{Ré?()L(h)}\ = 0 follows by the same argument used to
prove Theorem 7 of Weng and Woodroofe (2000). Next, since

B0 x| = Va | Be(@200) B [\ [540506.0) = 150,01 1w, o)
CLVaB{I5(0.6)  T5(0.6)])

for some constant C1, the right-hand side is o(1) by Lemma A.7. a

IN

Proof of Theorem 2.1. Since h is bounded and both P¢(N, < na) and P¢(BY)
are o(1/a), it suffices to show that Eﬁ[h(Z](\?))l{Na>na}ﬁBN] = ®'h + o(1/a).
Write h(Z) = hq(Zn1). Then, by the definition of Ry 4,

EN Mz} = EN{hi(Zn)}

= OMh, (@ U EY (0)T1(0.6))

1 1
@R BN PO 1, (0,0} + - Raalha), - (46)
where E¢[Ra o (ha)l{n,>na}] — 0 as a — oo by Lemma A.9. Since h here may

not be symmetric, by Lemma A.8 two additional terms arise in the analysis of
(46), namely,

1

A(h) = S= (@ UM ES (O 1(0.0)} — (@' TR,
To show that the effect of non-symmetry of h vanishes, observe that
Bl AW in,5n0)) = %(@Wh)ffg[{p(e)rilw,e)fff»§8>}1{Na>m}]
= ZH@UREHRO) — 5 Yv. o]
where the last line is o(1/a) by Lemma A.7. So, the theorem follows. ad
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A.4 Proof of Theorem 3.2

Given a measurable function h, s >0, ¢ > 0 and v € R, let

h*(2) = hi{s 2¢ Yz — )}, (47)
Uo(h;v,s) = —(PUR)w + (P'VRh)WW? —2('Vh)(c—1)
—(®'WVh)(s — 1) — (Pzh)v(s — 1) + %(®4h)(s —1)?
and
Uy (h;v,s) = —2(®'Vh)v 4 (P3h)(s — 1),
where
D3h = %/%(2 — 2%)zh(2)®'{dz}

and

1 1
Ouh = /{7(22 —1)% = Z}h(2)®'{dz}.
o 4 2
Lemma A.10 There is a constant C' for which
@187 — @h— Wo(hiv, )] < C{pf* + |s = 11° + e = 11°/%),

|®'UR* — ' UR — Wy (hyv,8)| < C{ V| + |s — 1> + |c — 1|}

and
| VA" — 'Wh| < C{|ly|+ |s — 1] + |c — 1]},

forall lv| <1,|s—1| <1/2,|c—1| <1/2 and bounded h.

We omit the proof of this lemma since it can be derived in a similar manner to
Lemma 1 of Woodroofe and Coad (1997).

Proof of Theorem 3.2. We shall only consider Z](\?), as the same argument
applies to ZI(?). From (22), we can write h{Z](\?)} = h*(Zn1), where Zy is
defined in (16) and h*(z) is as in (47). As in the proof of Theorem 2.1, we
only need to consider the set {N, > na} N By. If ¥ = (0?,03,7) is known,
the bivariate normal model is a two-parameter exponential family. Let Eé\; v
denote the conditional expectation given ¢ and the data by time N. So, by
Proposition 2.1,

ELU{h*(Zn1)} = @'h = EJV{h*(Zn1)} — ®'h* + &'h* — @'k
1 * s
= E@URIES PO, (0.0)

1 *
S (BUVR) B O)T,11(0,0)}

1
+ER27a{h*(ZN)} + ®'h* — d'h, (48)

25



where E¢,[Ra o(h*)1{n,>na}] — 0 as a — oo by Lemma A.9. Then, by Lemma
A.10 we can write the last two lines of (48) as

f{cb Uh—2(@'Vh)oy i + (@sh) (@ — D} {p(O)T5 1 (6,0)}

L@ VBB POT0,0)) — (@ URYD + @ VI NP
<<I> Vi) —1} — (Vh)(on — 1) — (@sh)o 2P (on — 1)
(@4}1)( N*l) +o(é)

1
- Liounmy+2 (<I> VI Iy + ——(®5h) [Ty + (®ah) Vi + o).

Va Va
where
Iy = EYY{p(0)TS 1(0.0)} — o)/
Iy = EX{pA00T51,(0.0)) — 20\ a0 EL Y {p(0)15 1 (0.0)} + {0y i)y
—2a{#) — 1} — al@ny — 1),
Iy = EY"[(@y — D){p(O)T5 1(0,0) — &y 55}
and

1

To prove (23), it suffices to show that E¢[Inl{n,>na}] = o(1/y/a), that
Eg [I[Nl{Na>na}] = 0(1), that Eg [I[INl{Na>17a}] = 0(1/\/5) and that GJE§ [IVNI{NG>77¢1}} =
Ee{p?(0)}+0(1). For Iy, recall from (7) that we may write E&{p(G)Fil(ﬁ, 0} =
Ee¢,{k(01,7, p10)}, which together with Lemma A.7 yields

~1/2 (2
VaEe[IN1(x,5na)] = VaBel{r — 0340 1, 5na)] = o(1).
Next, consider I1y. By consistency of 2 and /%5\2,), and (18),

Ee[p*(0)T5.1,(0.9) — 2p(0)2% 0N TS 1 (0,0) + {A{ 0N}
= EE{P (Q)Fg 11(0,0) — 2p(9)nf§,1(9, 0) + “2} +o(1)
Ee(k2) + o(1).

So, by definition of %J(VQ) and (35),

Eels? — 2a{#{¥) — 1}] — aBe(@on — 1) + o(1)
7(1E§((DN — 1) + O(l)
= o(l).

Ec(I1y)
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For II1y, write

Va(IIIy) = va(@on — D{pO)T 1(6,0) — ox k(Y

where |p(t9)l“i1 —cIJJIV/Q/%g” is bounded, and /a(@wy —1) converges to a limit with
mean zero and is uniformly integrable by Lemma A.6. So E¢(IIIx) = o(1/+/a).

For IVy, first observe by (6) that E¢[IVN1{n,<na}] = 0(1/a). Then, note
that we have alVN1{n,>ne} = a(@n — 1)*1{n,>na}/2, Which is uniformly in-
tegrable and approaches p?x? by Lemma A.6. So, the desired result follows.
O
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