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CORRECTED CONFIDENCE INTERVALS FOR
SECONDARY PARAMETERS FOLLOWING SEQUENTIAL

TESTS

1 Introduction

Suppose that a sequential test is carried out to compare two treatments. Then,
following the test, there is interest in making valid inferences about the different
parameters. For example, the primary parameter will typically be some measure
of the treatment difference and there may be several secondary parameters
too. These could be the individual treatment effects or the effects of baseline
covariates, such as age, gender, disease stage, and so on. However, the use of a
sequential design leads to the usual maximum likelihood estimators being biased
and associated confidence intervals having incorrect coverage probabilities. One
approach to the estimation problem is to study the approximate bias and
sampling distributions of the maximum likelihood estimators.

Until recently, much of the research on estimation following sequential tests
focussed on primary parameters. For example, an approach based on approximately
pivotal quantities was developed by Woodroofe (1992) in the context of a single
stream of normally distributed observations. Here, interest lay in providing an
approximate confidence interval for a mean. The work in the present paper
extends this approach in several respects. We consider bivariate normal data,
where interest lies in estimating the mean of the second component of the process
when the first is being monitored sequentially. Further, we consider the case of
an unknown covariance matrix for the process.

One of the first papers to address the problem of estimation of secondary
parameters following a sequential test was Whitehead (1986). For large samples,
he showed how the bias of the estimator of the secondary parameter is related to
that of the primary parameter, and then showed how a bias-adjusted estimator
of the secondary parameter could be constructed. Gorfine (2001) has shown
how a theorem of Yakir (1997) may be used to define an unbiased estimator
of the secondary parameter. Related work has been carried out by Liu and
Hall (2001). More recently, Hall and Yakir (2003) develop tests and confidence
procedures in a very general context.

Several authors have developed methods for the construction of confidence
intervals based on approximately pivotal quantities. Whitehead, Todd and
Hall (2000) show how approximate confidence intervals may be obtained for
a bivariate normal process when the covariance matrix is known and then show
how these may be applied to problems in which approximate bivariate normality
can be assumed. Liu (2004) considers a similar problem and shows how the
appropriate corrections may be obtained using moment expansions, though the
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method developed appears to be somewhat restricted. In the present paper, we
consider both the known and the unknown covariance matrix cases.

The approximately pivotal quantities are constructed by considering the
bivariate version of the signed root transformation, and then using a version of
Stein’s (1981) identity and very weak expansions to determine the correction
terms. The results in the known covariance matrix case are obtained by applying
those of Weng and Woodroofe (2000) for the two-parameter exponential family.
In the unknown covariance matrix case, similar ideas to those used by Weng and
Woodroofe (2006) in the context of stationary autoregressive processes are used
to establish the asymptotic sampling distribution of the renormalised pivotal
quantity. The resulting correction terms have a simple form and complement
the results of Whitehead (1986).

2 The general method for two-parameter exponential
families

LetXj = (X1j , X2j)′ for j = 1, . . . , n be independent random vectors distributed
according to a two-parameter exponential family with probability density

pθ(x) = eθ
′x−b(θ),

where θ = (θ1, θ2)′ ∈ Ω and Ω is the natural parameter space, assumed to be
open. Let Ln(θ) denote the log-likelihood function based on x1, . . . , xn, and
consider the bivariate version of the signed root transformation (e.g. Bickel and
Ghosh, 1990) given by

Zn1 = Zn1(θ) =
√

2{Ln(θ̂n)− Ln(θ̃n)}sign(θ1 − θ̂n1) (1)

and

Zn2 = Zn2(θ) =
√

2{Ln(θ̃n)− Ln(θ)}sign(θ2 − θ̃n2), (2)

where θ̂n = (θ̂n1, θ̂n2)′ is the maximum likelihood estimator and θ̃n = (θ1, θ̃n2)′

is the restricted maximum likelihood estimator for fixed θ1. Then we have
Ln(θ) = Ln(θ̂n)− ||Zn||2/2, where Zn = (Zn1, Zn2)′.

Consider a Bayesian model in which θ has a prior density ξ with compact
support in Ω. Let Eξ denote expectation in the Bayesian model in which θ is
replaced with a random vector Θ and let Enξ denote conditional expectation
given {Xj , j = 1, . . . , n}. Then the posterior density of Θ given X1, ..., Xn is
ξn(θ) ∝ eLn(θ)ξ(θ), and the posterior density of Zn is

ζn(z) ∝ J(θ̂n, θ)ξn(θ) ∝ J(θ̂n, θ)ξ(θ)e−
1
2 ||z||

2
, (3)

where z and θ are related by (1) and (2), and J is a Jacobian term. From (3),

ζn(z) = fn(z)φ2(z), z ∈ <2, (4)
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where φ2 denotes the standard bivariate normal density and

fn(z) ∝ J(θ̂n, θ)ξ(θ).

Let N = Na be a family of stopping times, depending on a design parameter
a ≥ 1. Suppose that

a

Na
→ ρ2(θ)

in Pθ-probability for almost every θ ∈ Ω, where ρ is a continuous function on
Ω. Suppose also that, for every compact set K ⊆ Ω, there is an η > 0 such that

Pθ(Na ≤ ηa) = o(a−q), (5)

uniformly with respect to θ ∈ K as a→∞, for some q ≥ 1/2. Lemma 3 below
follows from Theorem 12 of Weng and Woodroofe (2000). Moreover, by their
Lemma 5 and (5) above, we have Pθ(BcN ) = o(1/a).

Lemma 2.1 The random vector ZN = (ZN1, ZN2)′ is uniformly integrable with
respect to Pξ.

In what follows, suppose that θ1 is the primary parameter and that θ2 is a
nuisance parameter. Then, for inference about θ1, it is appropriate to use ZN1.
Now, from Proposition 2,

ENξ {h(ZN1)} = Φ1h+
1√
N

(Φ1Uh)ENξ {Γ
ξ
1,1(θ̂N , θ)}+

1
N
ENξ {V h(ZN1)Γ

ξ
2,11(θ̂N , θ)}.

To determine the mean correction term for ZN1, we take h(z) = z, in which
case Φ1h = 0, Φ1Uh = 1 and V h(z) = 0. Similarly, for the variance correction
term, we take h(z) = z2, in which case Φ1h = 1, ΦUh = 0 and V h(z) = 1.
Denote by bij the partial derivatives bij(θ) = ∂i+jb(θ)/∂θi1∂θ

j
2, and similarly for

ξij . Let i1(θ) = (b20 − b211/b02)(θ), i2(θ) = b02(θ), Γξ1,1(θ, θ) = limω→θ Γξ1,1(ω, θ)
and Γξ2,11(θ, θ) = limω→θ Γξ2,11(ω, θ), and let κ(θ) and m(θ) be such that

Eξ{ρ(θ)Γξ1,1(θ, θ)} =
∫ ∫

Ω

ξ(θ)κ(θ)dθ1dθ2 (6)

and

Eξ{ρ2(θ)Γξ2,11(θ, θ)− 2ρ(θ)κ(θ)Γξ1,1(θ, θ)+κ2(θ)} =
∫ ∫

Ω

m(θ)ξ(θ)dθ1dθ2. (7)

Then some algebra yields

κ(θ) =
(−b02, b11) · ∇ρ

b02i
1/2
1

(θ)+ ρ(θ)

{
(b02,−b11) · ∇i1

6b02i
3/2
1

(θ) +
(b02,−b11) · ∇i2

2b202i
1/2
1

(θ)

}
.

(8)
A similar, but more complicated expression, may also be obtained for m(θ).
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Now, define

Z
(0)
N =

ZN1 − µ̂
(0)
N

τ̂
(0)
N

, (9)

where

µ̂
(0)
N =


κ̂N/

√
a if |κ̂N | ≤ a1/6{log(a)}−1,

a−1/3{log(a)}−1 if κ̂N > a1/6{log(a)}−1,
−a−1/3{log(a)}−1 if κ̂N < −a1/6{log(a)}−1,

(10)

and

τ̂
(0)
N =

{ √
1 + m̂N/a if |m̂N | ≤

√
a/log(a),

1 otherwise,
(11)

with κ̂N = κ(θ̂N ) and m̂N = m(θ̂N ).

Theorem 2.1 Let h be a bounded function. Suppose that ρ(θ) is almost differentiable
with respect to θ1 and θ2. If (5) holds with q = 1 and ξ ∈ Ξ0, then

Eξ{h(Z(0)
N )} = Φ1h+ o(1/a).

So, an asymptotic level 1− α confidence interval for θ1 is

IN = {θ1 : |Z(0)
N | ≤ zα/2}, (12)

where zα/2 is the 100(α/2)-th percentile of the standard normal distribution.

3 The bivariate normal model with known covariance
matrix

Suppose that Xj = (X1j , X2j)′ for j = 1, . . . , n are independent random vectors
from a bivariate normal distribution with mean vector θ = (θ1, θ2)′ and covariance
matrix

Σ =
(

σ2
1 γσ1σ2

γσ1σ2 σ2
2

)
.

Let ψ = (σ2
1 , σ

2
2 , γ)

′. As before, let N = Na be the stopping time depending on
a. Then, since the likelihood function is not affected by the use of a stopping
time (e.g. Berger and Wolpert, 1984), the density of XN is

p(x; θ, ψ) = exp
[
−N log(2π)− N

2
log{σ2

1σ
2
2(1− γ2)}

− 1
2σ2

1σ
2
2(1− γ2)

σ2
2

N∑
j=1

(x1j − θ1)2 + σ2
1

N∑
j=1

(x2j − θ2)2

−2γσ1σ2

N∑
j=1

(x1j − θ1)(x2j − θ2)


 . (13)
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If we assume that θ is unknown and ψ is known, then this model is a two-
parameter exponential family with density that satisfies

log p(x; θ) = c(x) +Nθ1t1 +Nθ2t2 −Nb(θ),

where t1 = x̄1/{σ2
1(1 − γ2)} − γx̄2/{σ1σ2(1 − γ2)}, t2 = x̄2/{σ2

2(1 − γ2)} −
γx̄1/{σ1σ2(1 − γ2)} and b(θ) = θ′Σ−1θ/2. Since b(θ) is quadratic in θ, both
i1(θ) and i2(θ) defined in Section 2.1 are constants; and therefore κ(θ) in (8)
reduces to

κ(θ) =
(−b02, b11) · ∇ρ(θ)

b02i
1/2
1

= −σ1ρ10, (14)

where ρij = ∂i+jρ/∂θi1∂θ
j
2 and the second equality in (14) follows since the

stopping timeN is assumed to depend only onX11, . . . , X1N . Simple calculations
show that the maximum likelihood estimator of θ is (θ̂1, θ̂2) = (X̄N1, X̄N2) and
that the restricted maximum likelihood estimator of θ2 given θ1 is θ̃2 = θ̃2(θ1) =
θ̂2 − γσ2(θ1 − θ̂1)/σ1. By (1) and (2), it is straightforward to obtain

(ZN1, ZN2) = (
√
Nσ−1

1 (θ1−θ̂1),
√
Nσ−1

2 (1−γ2)−1/2{θ2−θ̂2−γσ2(θ1−θ̂1)/σ1}).

Furthermore, since the stopping time depends only on the first population, it
can be shown that m(θ) in (7) satisfies

m(θ) = κ2(θ) = (σ1ρ10)2.

Then, substituting these ZN1, κ and m into (9), (10), and (11), by Theorem
2.1, the approximate level 1− α confidence interval for θ1 is as in (12).

For inference about the secondary parameter θ2, it is not appropriate to use
ZN2 as it depends on both θ1 and θ2. So, we consider the transformation

ZN1 = ZN1(θ) =
√

2{LN (θ̂N1, θ̂N2)− LN (θ̃N1, θ2)}sign(θ2 − θ̂N2), (15)

where θ̃N1 = θ̃N1(θ2) is the restricted maximum likelihood estimator of θ1 given
θ2. Then ZN1 =

√
N(θ2− θ̂2)/σ2. To obtain the mean correction term, we need

to replace bij and ρij in (14) with bji and ρji. So,

Eθ(ZN1) '
1√
a
κ(θ) =

1√
a

(−b20, b11) ·
(
ρ01

ρ10

)
b20(b02 − b211

b20
)1/2

(θ) = − 1√
a
σ1γρ10. (16)

Using a similar trick, we obtain

m(θ) = κ2(θ) = (σ1γρ10)2. (17)

With this ZN1 and its corresponding mean and variance corrections, we
obtain a renormalised pivot Z(0)

N as in (9). Then, by Theorem 2.1, an asymptotic
level 1− α confidence interval for θ2 is

θ̂N2 +
σ2√
N
µ̂

(0)
N ± σ2√

N
τ̂

(0)
N zα/2. (18)
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This interval is of the same form as the one obtained by Whitehead, Todd and
Hall (2000). However, they use recursive numerical integration to calculate the
correction terms instead of asymptotic approximations.

4 Extension to unknown covariance matrix case

In this section, we consider the following three cases:

C1. σ1 and σ2 are known, but γ is unknown;

C2. σ1 and σ2 are unknown, but γ is known;

C3. σ1, σ2 and γ are all unknown.

When the parameters are unknown, we estimate them by σ̂2
i =

∑N
j=1(Xij −

θ̂i)2/(N − 1) for i = 1, 2 and

γ̂ =

∑N
j=1(X1j − θ̂1)(X2j − θ̂2)√∑N

j=1(X1j − θ̂1)2
∑N
j=1(X2j − θ̂2)2

.

As the main interest of this paper concerns inference about the secondary
parameter θ2, in the rest of the paper we let ZN1 be as in (15). So the
corresponding κ(σ1, γ, ρ10) and m(σ1, γ, ρ10) are as in (16) and (17). For cases
C1-C3, we consider κ̂(1)

N = κ(σ1, γ̂, ρ̂10), κ̂
(2)
N = κ(σ̂1, γ, ρ̂10) and κ̂(3)

N = κ(σ̂1, γ̂, ρ̂10),
respectively; and correspondingly define µ̂(k)

N and τ̂
(k)
N for k = 1, 2, 3 as in (10)

and (11). Then, let

Z
(1)
N =

ZN1 − µ̂
(1)
N

τ̂
(1)
N

(19)

and

Z
(k)
N =

ZN1(σ̂2)− µ̂
(k)
N

τ̂
(k)
N

(20)

for k = 2, 3, where ZN1(σ̂2) =
√
N(θ2 − θ̂2)/σ̂2. We will use Z(k)

N for k = 1, 2, 3
as pivotal quantities for cases C1, C2 and C3, respectively.

Define ω̂N = σ̂2
2/σ

2
2 . Then we can rewrite Z(k)

N for k = 2, 3 in (20) as

Z
(k)
N =

(σ2
σ̂2

)ZN1 − µ̂
(k)
N

τ̂
(k)
N

=
ZN1 − µ̂

(k)
N ω̂

1/2
N

ω̂
1/2
N τ̂

(k)
N

. (21)

In the rest of the paper, let Ξ denote the collection of all prior densities ξ(ψ, θ) =
ξ1(ψ)ξ2(θ) with compact support in (0,∞)2 × (−1, 1) × Ω for which ξ is twice
differentiable almost everywhere under Pξ and ∇2ξ is bounded on its support.
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Theorem 4.2 Suppose that ξ ∈ Ξ and that (5) holds with q = 1. Then, for
k = 2, 3,∣∣∣∣∣

∫
(0,∞)2×(−1,1)

∫
Ω

[
Eψ,θ{h(Z(k)

N )} − Φ1h− 1
a
(Φ4h)ρ2(θ)

]
ξ(ψ, θ)dθdψ

∣∣∣∣∣ = o(
1
a
)

(22)
for all bounded functions h.

The definition of Φ4 and the proof are in Appendix A.4. Theorem 4.2 shows
that Z(k)

N for k = 2, 3 are asymptotically distributed according to a t distribution
with N degrees of freedom to order o(1/a) in the very weak sense, since Φ1h+
(Φ4h)ρ2(θ)/a represents the first two terms in an Edgeworth-type expansion for
the t distribution (e.g. Barndorff-Nielsen and Cox, 1989, Chap.2; Hall, 1992,
Chap.2). Hence,

Pψ,θ{|Z(k)
N | ≤ z} = 2GN (z)− 1 + o(1/a) (23)

very weakly, where GN denotes the t distribution with N degrees of freedom.
So, an asymptotic level 1− α confidence interval for θ2 is

θ̂N2 +
σ̂2√
N
µ̂

(k)
N ± σ̂2√

N
τ̂

(k)
N cN,α/2,

where cN,α/2 is the 100(α/2)-th percentile of the t distribution with N degrees
of freedom. Note that the form of the above interval is similar to one obtained
by Keener (2005) using fixed θ expansions. However, his interval is only valid
up to order o(1/

√
a) and only applicable to linear stopping boundaries.

The proof of Theorem 4.2 reveals that the correction term (Φ4h)ρ2(θ)/a in
(22) arises from the use of ω̂N . Since σ2 is known for Z(1)

N in (19), this correction
term vanishes in the asymptotic expansion for Z(1)

N and an immediate corollary
to Theorem 4.2 is the following result.

Corollary 4.1 Suppose that ξ ∈ Ξ and that (5) holds with q = 1. Then∣∣∣∣∣
∫

(0,∞)2×(−1,1)

∫
Ω

[Eψ,θ{h(Z(1)
N )} − Φ1h]ξ(ψ, θ)dθdψ

∣∣∣∣∣ = o(
1
a
)

for all bounded functions h.

Therefore, Z(1)
N is asymptotically standard normal to order o(1/a) in the

very weak sense, and consequently

Pψ,θ{|Z(1)
N | ≤ z} = 2Φ1(z)− 1 + o(1/a)

very weakly. From this, one can set confidence intervals for θ2 as in (18), but
with µ̂(0)

N and τ̂ (0)
N replaced by µ̂(1)

N and τ̂ (1)
N .
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5 A practical example

In this section, we illustrate the proposed confidence interval method using the
data obtained by Bellissant et al. (1997). This study was concerned with the
treatment of infants of up to eight years of age suffering from gastroesophageal
reflux. The infants were randomised between metoclopramide and placebo,
which they received for a two-week period. The pH level in the oesophagus
was measured continuously using a flexible electrode secured above the lower
oesophageal sphincter. The primary response variable was the percentage reduction
in acidity, measured by the proportion of time that pH < 4, over the two weeks
of treatment.

The above variable was taken to be normally distributed and the triangular
test (Whitehead, 1997, Chap.4) was used to monitor the study. Inspections
were made after groups of about four patients and the trial was stopped after
the seventh interim analysis, with the conclusion that metoclopramide is not an
improvement over placebo. Although Bellissant et al. (1997) mention various
normally distributed secondary response variables of interest, only standard
analyses of them are carried out. For example, uncorrected confidence intervals
are given for secondary parameters of interest. Thus, it is interesting to apply
the corrected confidence intervals presented in Section 3 in this case.

In order to illustrate the confidence interval method, we assume that there
is a single secondary response variable, the proportion of time that pH < 4 on
day 14, and that the patients arrive in pairs, with one patient in each pair being
assigned to metoclopramide and the other to placebo. The trial data give the
estimates θ̂1 = 0.3, θ̂2 = 0.07, σ̂1 = 0.5 and σ̂2 = 0.1. To simulate the trial, we
treated these values as the true values for the parameters. Further, since the
sample covariance matrix was not available, we simulated the trial when γ = 0.4
and γ = 0.8, as for the two sequential tests in Section 4. As in the original trial
of Bellissant et al. (1997), we use a one-sided triangular test to test H0 : θ1 = 0
against H1 : θ1 > 0 and choose the design parameters so that it has significance
level 5% and 95% power for θ1 = 0.5.

Let ma denote the group size, possibly depending on a > 0. Then the
stopping time for the above triangular test is essentially of the form

N = inf{n ≥ 1 : ma|n, Sn1/σ̂1 ≥ a+bn−0.583 or Sn1/σ̂1 ≤ −a+3bn+0.583},

where ma|n means that ma divides n and Sn1 denotes the sum of the first n
differences in response between metoclopramide and placebo. Values are chosen
for the parameters a > 0 and b > 0 in order to satisfy the error probability
requirements, and the number 0.583 is a correction for overshoot of the stopping
boundaries due to the discreteness of the inspection process (e.g. Whitehead,
1997, Chap.4). Upon termination of the test, H0 is rejected if SN1/σ̂1 ≥ a +
bN−0.583 and accepted if SN1/σ̂1 ≤ −a+3bN+0.583. Now, the above stopping
time may be rewritten as

N = inf{n ≥ 1 : ma|n and nq(θ̂n1/σ̂1) ≥ a− 0.583}, (24)
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where q(y) = max(y− b, 3b−y). Note that (24) is a special case of more general
stopping times studied by, for example, Morgan (2003). So we have a/N → ρ2,
where ρ = max(

√
θ1/σ1 − b,

√
3b− θ1/σ1), provided that ma = o(a). As in

Bellissant et al. (1997), we take a = 5.495 and b = 0.2726. These values may
be obtained using PEST 4 (Brunier and Whitehead, 2000). Since the data are
being monitored after groups of four patients, we have ma = 2.

In table below, we report the probabilities of rejecting H0, that is, the power,
the expected numbers of pairs of patients, and the coverage probabilities using
ZN1 and Z

(3)
N , all of the results being based on 10,000 replications. Although

the simulated sequential test satisfies the power requirement for θ1 = 0.5, it
is a little conservative. This is because the above stopping time is not exactly
the same as the original. Now, we know from Section 4 that the confidence
intervals based on ZN1 have coverage probabilities below the nominal values
and that those based on Z

(3)
N have roughly the correct coverage probabilities.

The results in table show that the use of Z(3)
N leads to coverage probabilities

which are usually quite close to the nominal values, especially given the small
sample sizes. Note that, since our theory has been developed for the case where
ρ = ρ(θ1), when calculating the correction terms, σ1 has been replaced with its
estimate except in terms involving ρ̂, when its true value is used.

Table 5. Triangular test with unknown σ1, σ2 and γ; replicates=10,000.
( ± means 1.96 standard deviations )

ZN1 Z
(3)
N : tN Z

(3)
N : ta/ρ̂2

(θ1, θ2, γ) Power Eψ,θ(N) 90% 95% 90% 95% 90% 95%
(0.00, 0.07, 0.40) 0.021 7.43 0.807 0.864 0.848 0.921 0.892 0.935
(0.00, 0.07, 0.80) 0.021 7.43 0.815 0.867 0.857 0.919 0.896 0.936
(0.30, 0.07, 0.40) 0.574 10.49 0.826 0.885 0.866 0.927 0.894 0.949
(0.30, 0.07, 0.80) 0.574 10.49 0.780 0.849 0.860 0.921 0.892 0.956
(0.50, 0.07, 0.40) 0.956 8.17 0.818 0.877 0.860 0.926 0.893 0.942
(0.50, 0.07, 0.80) 0.956 8.17 0.812 0.867 0.859 0.923 0.896 0.945

± 0.006 0.004 0.006 0.004 0.006 0.004

Returning to the actual trial, a standard analysis gives an uncorrected
confidence interval for θ2 of (0.018, 0.122), whereas the corrected confidence
interval is (0.008, 0.124) when γ = 0.4 and (0.002, 0.122) when γ = 0.8. So the
approach is useful in practice, especially if the correlation coefficient is large.
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