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Abstract

In Huang [7], a test of conditional independence based on maximal
nonlinear conditional correlation is proposed and the asymptotic distri-
bution for the test statistic under conditional independence is established
for IID data. In this paper, we derive the asymptotic distribution for
the test statistic under conditional independence for a-mixing data. The
results of simulation show that the test performs reasonably well for de-
pendent data. We also apply the test to stock index data to test Granger
noncausality between returns and trading volume.
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1 Introduction

The testing of conditional independence is important in statistics; one interest-
ing application of such testing is variable selection. For instance, consider the
following regression problem:

Y = f(Z.X) +e, (1)

where € is independent of (Z, X) and f is a real-valued function. If Y and X
are conditionally independent given Z, the variable X can be excluded from the
model in (1).

Suppose that X, Y and Z are continuous random vectors of dimensions d1, do
and d respectively. For testing whether X and Y are conditionally independent
given Z, most tests in the literature deal with the case where the observations



for (X,Y,Z) are IID. See, for example, Linton and Gozalo [10], Delgado and
Manteiga [2], Li, Cook and Nachtsheim [8], Huang [7], etc.

When the observations for (X,Y, Z) are weakly dependent, fewer tests are
available in the literature. Su and White [12, 13] developed nonparametric tests
based on a weighted Hellinger distance between conditional densities or the
difference between conditional characteristic functions. Bouezmarni, Rombouts
and Taamouti [1] also proposed a nonparametric test based on the Hellinger
distance of copula densities.

In [12], [13] and [1], one motivation for constructing conditional indepen-
dence tests for dependent data is to test Granger noncausality, which, according
to Florens and Mouchart [4] and Florens and Fougere [3], is a form of condi-
tional independence. Specifically, a series {U;} does not Granger cause series

Vit it
‘/t L (Utflu Ut727 RS Ut*p)|(‘/;717 ‘/15723 AR ‘/tfp) for every p > ]-7

where | denotes an independent relationship.

In this paper, we consider Huang’s test statistic and derive its asymptotic
distribution for a-mixing data. In order to measure the conditional associa-
tion between X and Y given Z, Huang [7] uses a measure called the maximal
nonlinear conditional correlation, which is defined as

sup Corr(f(X7Z),g(Y7Z)|Z)7 (2)
f,9€55

where S is the collection of (f, g)’s such that E(f%(X, Z)) < oo and E(¢*(Y, Z)) <
oo. Huang’s test statistic is an estimator for a weighted average of estimators of
maximal nonlinear conditional correlation at different evaluation points for the
given variable Z. The test statistic also involves certain basis functions used
to approximate the f and g in (2). We show that the asymptotic distribution
of Huang’s test statistic for a-mixing data is the same as that for IID data
if the number of evaluation points and the number of basis functions are held
constant.

This paper is organized as follows. In Section 2, we review the definition
of maximal nonlinear conditional correlation and certain approximation results
given in [7], and state the asymptotic properties of the test statistic that we
derive under a-mixing condition. Some simulation results and an application
are in Section 3. Proofs are given in Section 4.

2 Review and main results

In this section, we review the definition of the maximal nonlinear conditional
correlation p;(X,Y|Z), the approximation of p;(X,Y|Z) and the proposed es-
timator for p1(X,Y|Z = z) in [7]. Then, we consider Huang’s test statistic
for testing Hy : p1(X,Y|Z) = 0 and present its asymptotic properties that we
derive under a-mixing condition.



2.1 Definition, approximation, and estimation for maxi-
mal nonlinear conditional correlation

The maximal nonlinear conditional correlation p;(X,Y]Z) is essentially the
maximum of E(f(X, Z)g(Y, Z)|Z) over Sy, where Sy is the collection of (f,g)’s
that satisfy the following conditions:

E(f*(X, 2)|1Z) 0,00 (E(f}(X, Z2)|Z)) = L0.00) (E(f*(X, Z)|Z)) )
E(g*(Y, 2)| 2)1(0,00)(E(6* (Y, 2)|2)) = L0,00)(E(° (Y, Z)| Z))

and
E(f(X,2)|2) = E(g(Y, 2)|Z) = 0. (4)
To avoid dealing with the existence of the maximum and the measurability of
p1(X,Y|Z), in [7], p1(X,Y|Z) is defined as
sup  E(f(X,Z)g(Y, 2)|Z),
(f,9)€S0

where the supremum is defined as

n-sco
where {(ayn, 8,)} is a sequence in Sy that satisfies the following conditions:
(i) The sequence {E(a, (X, Z)B,(Y, Z)|Z)} is non-decreasing.
(ii) For every (f,g) € So,
B(f(X. 2)9(Y. 2)|Z) < lim_E(an(X. Z)5,(Y. 2)|2).

To approximate

(£,9)€S0

we consider Sy, 4 the collection of all (f,g)’s in Sp such that f and g are in

the spans of {¢p; : 1 < j < p} and {¢pgk : 1 < k < g} respectively, when Z is
given. That is,

P
F(X,2) =" ap;(Z)¢p,;(X) for some ay, ;(Z)’s
j=1

and
q

9V, Z) = by i(Z)ipg (V) for some by x(Z)’s.
k=1

Suppose that the basis functions ¢, ;’s and 1, ;’s are selected so that there
exists basis functions 6, ;’s such that

2

lim inf E|a(X,2)— > a(i,k)épi(X)0k(2) | =0 (5)

o0 a(ik) 1<i<p,1<k<r
<i<p,1<k<



and

Jim o BAY.Z) = 3, bk (V)8k(Z) | =0 (6)

>J >

for every a and 3 such that E(a?(X, Z)) and E(B?(Y, Z)) are finite. Let X, Y
and Z be the ranges of X, Y and Z respectively. Suppose that for each (p, q),
there exist coefficients a, 0,;’s and b, ;'s such that

Z p,0,iPp,i(x) =1 = Z bg,0.i%q.5(Y) (7)
1<i<p 1<j<q

for every x in X and every y in ). Let

Z)= max F(f(X,2)9(Y,Z)|Z).
pralZ) = | mux  E(f(X.Z)g(¥.2)2)

Then, by Fact 2 in [7], p1(X,Y|Z) can be reasonably approximated by p, 4(2)
if p and q are large. The statement of the fact is given below.

FACT 1. (Fact 2 in [7]) Suppose that (5), (6) and (7) hold and {p,} and {q,}
are sequences of positive integers that tend to oo as n — oo. Then

i E(|pu(X,Y12) = pp, . (7)) = 0.

A remark.

e It is not difficult to find basis functions that satisfy (5), (6) and (7).
If X, Y and Z are bounded regions in R%, R% and R? respectively
and the Lebesgue densities for (X, Z) and (Y, Z) are bounded, then ¢, ;’s
and 1), ;’s can be taken as B-spline basis functions on multidimensional
intervals containing X and ) respectively, where the 6, ’s can be can be

taken as B-spline basis functions on a multidimensional interval containing
Z.

Pp.q(Z) can be found as follows. First, we look for vectors a; = (a1,1(2),...,a1,(2))"
and by = (b11(Z),...,b1,4(2))T such that (ay,by) is the pair (a,b) that maxi-
mizes a’ ¥y y . 4(Z)b subject to

a' Sy p(Z)a=1=0b"% ,(2)b,
where
EYo.p(2) = (E(¢p,i(X)9p,i(X)|Z) — E(¢p,i(X)Z)E(¢p,i(X)|Z)) psps

Yy.q(2) = (E(q.i(Y)hg,;(Y)|Z) = E($q.i(Y)IZ)E(4q,5(Y)|Z))gxq,

and

Eowp.a(Z) = (E(bp,i(X)q,;(Y)|Z) = E(¢pi(X)|Z)E(thg;(Y)Z))pxq-



Take
Zam ) (. (X) = E(¢p,3(X)|2))

and

zm ) (g1 (X) = By 5 (Y)|2).

Then, E(fl(XaZ)gl(AYaZ)‘Z):ffp,q(Z) .

For z € Z, let Xp ppq(2), Lpp(z) and Xy 4(2) be the kernel estimators
of X yp.q(2), Lo p(2) and Xy 4(z) respectively; in other words, every element
E(g(X,Y)|Z =2)in 4 ypq(2), Ly p(2) and y, 4(2) is estimated by

>t 9(Xe, Y ko((Zy — 2) /1)

E(g(X,Y)|Z=z) = 1 ko(Zy — 2)/h)

(8)

in 3y 4 pq(2), Lep(2) and 2y, 4(2), where ko is a kernel function defined on R?
and h > 0. Then, we use pp 4(2) = max, y a” 3y 4,4 (2)b for estimating p, 4(2),
where all pairs (a, b) satisfy

aTS4p(2)a=1=0b"%y, ,(2)b.

Henceforth, the estimator g, ,(z) will be abbreviated as p(z) for each z in Z.

2.2 A test for conditional independence and relative asymp-
totic properties

The conditional independence test that we use in this paper is based on p?(z)
at different z’s. Since each p(z) is determined by the kernel estimators of cer-
tain conditional expectations, we first derive their joint asymptotic distribution.
Then, we use Zle F2(2)p2(2:)’s as our test statistic and establish its consis-
tency and asymptotic distribution. Here the z;’s are selected points in Z and

fz() = D1 kofl(}it —)/h)

is the kernel density estimator of fz: the Lebesgue pdf of Z. In order to avoid
dealing with the boundary bias problem in kernel estimation, we consider a set
29 that is contained in the interior of Z so that points in Z° are away from the
boundary of Z, and choose the z;’s from Z°.

Our first result is with regard to the joint asymptotic distribution of kernel
estimators of some conditional expectations. In order to describe the assump-
tions, we first review the definition for a-mixing coefficients. For a strictly
stationary process {U;}, let F° denote the o-algebra generated by (U, ..., Up).
Then, the a-mixing coeflicient at lag s for {U,} is

sup {|P(ANB) — P(A)P(B)|: —0o <t < 00, A € F*

—00)

Be Fy,}-



{U:} is considered to be a-mixing if its a-mixing coefficient at lag s tends to
0 as s tends to oo. Let a(s) denote the a-mixing coefficient at lag s for the
process {(X¢,Y:, Z;)}. Our assumptions are provided below.

(S0) The basis functions ¢p. 1, ..., ¢pp and Yg 1, ..., Yq4 are bounded and (5),
(6) and (7) hold. For the sake of brevity, ¢p.1, ..., ¢pp and g1, ..., Vg4
will be abbreviated as ¢1, ..., ¢, and 11, ..., P, respectively hereafter.

(S1) {(X,Y:, Z;) € Rftd2td ¢ > (0} is a strictly stationary a-mixing process
that satisfies a(1) = O( 1+6)), where € > max(1,d/2), dy, da and d
denote the dimensions of X;, Y; and Z; respectively.

(S2) Suppose that there exist Z°: an open subset of the interior of Z and u:
o-finite measure such that for every z € Z°, the conditional distribution of
(X,Y) given Z = z has a pdf f(-|z) with respect to p. Further, f(x,y|z)
and fz(z) are twice differentiable with respect to z on Z°.

(S3) There exists a function h on X x ) such that

b 2
sup e 11l o, | - poala)| | 52 o))
< h(z,y)

and [ h(z,y)du(z,y) < co.

(S4) There exist constants ¢y and ¢; such that
82

82’7;323' fZ(Z)’) S €0

fz( ) , ax

0z;

Sup max <|fz(z)| ma

2€ 20 1<t <d

and 1/fz(z) < ¢; for z € Z°.

(S5) k* is a kernel function defined on R', and kg is a product kernel on R?
that satisfies

ko(v17v27 s 7’Ud) = k*(vl)k*(UQ) T k*(vd)v

k* >0, sup, k*(v) < oo, [k*(v)dv =1, [vk*(v)dv =0, [v( ))2dv =
0 and ko = [v?k*(v)dv < .

(S6) As n — oo, the bandwidth h — 0, nh? — co and nh?t* — 0.

Under the above conditions, the joint asymptotic distribution of kernel estima-
tors of conditional expectations can be established, as stated in Lemma 1. The
proof for Lemma 1 is provided in Section 4.1.

LEMMA 1. Suppose that Conditions (S1)-(S6) hold. Suppose that g1, go, - . .,

gm are bounded functions defined on X x Y. Suppose z1, ..., zr are distinct
points in Z0. Fori=1, ..., k, let
3i() = Dot 95(Xe, Yo ko((Ze — i) /h)
’ 21 ko((Z — zi) /h)



be the kernel estimator of gi(zi) = E(g;(X,Y)|Z = z;). Further, let

By j(20) = S (F2(20)0] us (2) + 2£(20)95 1 (20)) (9)
and ;
W, (2) = Vnhd (éj(zi) —g;(zi) — h? Z Bs,j(zi)/fz(zi)>

Jor1 <i<kandl<j<m, wheregj  andg; ., denote the first and the second
partial derivatives of g; with respect to the s-th component respectively and fs
denotes the first partial derivative of fz with respect to the s-th component. Let

uj e = gj(Xe, Y2) — g5 (Z1),
¢jj=(21) = E(ujaug- 1121 = z),
03(2) = E(u3 1|21 = 2),
and
W, =(Win(21), o, Win(z), s Winn(21), - .o, Wi (22)) 7
Then, W,, converges in distribution to a random vector
(Zinse s Zigee s Do Zia) T = 27,

where Z* is multivariate normal with mean 0 and for 1 < i,7* < k and 1 <
J,J* <m,

where k = [(k*(v))*dv.

Now, suppose that the basis functions ¢;’s and ,,~’s are linearly indepen-
dent. For the sake of convenience, for z € {z1,..., 2}, we apply certain linear
transformations to ¢;’s and 1,,,«’s to obtain new basis functions ¢;’s and ;,.’s
(the p(z) remains unchanged under such transformations). Take ¢g1(X,Y), ...,
gm(X,Y) to be the functions ¢; (X)) (X), ¢ (X))« (Y) and 7. (V) (Y),
where 1 <1 <!’ <pand 1< m* <m’ <gq. Then, the consistency of p(z) can
be established and we have Theorem 1. The proof for Theorem 1 is provided in
Section 4.2.

THEOREM 1. Suppose that conditions (S0)-(S6) hold and the basis functions

¢1’s and Yy ’s are linearly independent. Suppose z1, ..., zi are distinct points
in Z9. Then,
k 2 1
2: ~2 2 _ 4
P (p (Z’L) - pp,q(z’i)) - Op <nhd + h )



and

A 2

1

(S iteasted - S sttt ) =0, (ka1

i=1

The following theorem states the approximate distribution of the statistic
¥ L f2(2:)p*(zi) when X and Y are conditionally independent given Z.

THEOREM 2. Suppose that the conditions in Theorem 1 hold and X and Y
are conditionally independent given Z. Then,

k k
Z %(2;) converges in distribution to Z A

=1

as n tends to oo, where the \;’s are IID and have the same distribution as the
largest eigenvalue of a matriz CCT, where C is a (p—1) x (¢ — 1) matriz whose

elements are IID N(0,1).

The proof of Theorem 2 is provided in Section 4.3. Theorem 2 is similar to
Theorem 3.2 given in [7]. The main difference between the two is that Theorem 2
can be applied to a-mixing data. In addition, p and q are held fixed in Theorem
2, while they are allowed to depend on n and tend to co as n tends to oo in
Theorem 3.2 in [7].

According to Theorem 2, a test that rejects Hy if

nhd A
— Z F(z0)p* (=) > Fy_, (10)

Kd

is of approximate level o, where F™* is the distribution function of Ele A; and
Fy_, is the 1 — o quantile of F*. Theorem 3 states that the test with rejection
region in (10) is consistent if p and ¢ are sufficiently large and one of the p(z;)’s
is positive. The proof for this theorem is provided in Section 4.4.

THEOREM 3. Suppose that p(z;) > 0 for some z; and p and q are sufficiently
large so that pp4(2z;) > 0. Then, for 0 < a < 1, the probability that (10) holds
tends to 1 as n — oco.

3 Simulation studies and application to S&P500
index data

3.1 Simulation studies

In this section, we conduct several simulation studies for illustrating the per-
formance of our test. The data generating processes, labeled Datal — Datal3,
are described below. In order to make our simulation results comparable with
those of the test proposed by Su and White [13], some of our data generating
processes (Datal-Datal0) are the same as theirs. Throughout the description
for Datal-Datal0, (€1, €2, €3,¢) are IID N(0, I3).



Datal: (Xy,Y:, Zy) = (€14, €24, €3,0).
Data2: Xt = O-5Xt_1 + €1,t, Yt = O.5Yt_1 + €2t and Zt = Xt—l-

Date3: X; = €1,41/0.01 +0.5X2 ;, Y; =0.5Y;_1 + €24 and Z; = X;_1.

Datad: X; = e1\/hi, Vi = e i/hoy, 24 = Xi—1, b1y = 0.01 +
0.9h1e_1 + 0.05X2_; and hay = 0.01 +0.9ho 1 + 0.05Y2,.

Datad: X; =0.5X;,_1 +0.5Y; + €1, Y, =0.5Y;_1 + €24 and Z; = X; 4.
Data6: X; = 0.5X;-1+ 0.5Y2 + €14, Y; = 0.5Y;_1 + €24 and Z; = X4_1.
Data7: X; =0.5X,_1Y; + €1, Y; =05Y,_1 + e and Z; = X, 1.
Data8: X; =0.5X; 1 +0.5Y;e14, Yz = 0.5Y;_1 + €2, and Z; = X;_ 1.

Data9: X; = el,t\/0.0l +0.5X7% , +0.25Y2,Y; =0.5Y;_1 + €2+ and Z; =
Xi_1.

Datal0: Xt = 61’t\/h1’t, th = 62’t\/h2’t, Zt = thl, hl,t = 0.01 +
0.1h1,t_1 + 04X,5271 + 05}/3 and h2,t =0.01 + O.ghg)t_l + 051@2

Datall: (Xy,Y:, Zy) = (€14, €2,4,€3,¢), Where (€14, €24, €3,¢) are IID LN (0, I3).

Datal2: Xt = €1,t€1,t—1, }/;5 = €2,t€2,t—1 and Zt = thla where (61}15762’75)
are IID LN(0, I5).

Datal3: X; = €1 €2—1, Yz = 6%7t€27t_1 and Z; = €31, where (€14, €2,)
are IID LN (0, I5).

Here, Datal — Data4, Datall and Datal2 are used for examining the level of
the test, and Datab — Datal0 and Datal3 are used for checking the power.

3.1.1 Simulation studies based on asymptotic distribution of the test
statistic

We first apply our test using the asymptotic distribution of the test statistic.

Parameter set-up: In order to apply our test, certain parameters need to
be specified, including the kernel function £*, the kernel bandwidth A and the
basis functions. For the sake of simplicity, in all the simulation experiments,
we take the kernel bandwidth h to be cn=%2%, where n is the sample size and
c €{0.5,1,1.5,2}; we use the following kernel function:

k() = 1l—2 if0<z<1;
Tl 2+1 if —1<2<0.

In addition, the basis functions ¢7,..., ¢; and ¢7,..., 7 are selected in the
following manner. For i =1,...,pand j =1,...,q, let

iei—1 7.
1 1f7§1‘<5,

0 otherwise (11)

¢i(z) = {



and - )

1 if L= <y<i;

) — q — q’ 12

Y3 () { 0 otherwise, (12)

where p = ¢ = 4. Since the basis functions are defined on [0, 1], we transform the

data (X¢, Yz, Z3)} 4 into (F1(Xy), F2(Y:), F5(Z:))7_, before using the test, where

Fy, F» and F5 denote the empirical CDF’s of {X;}},, {Y:}7-, and {Z:}},

respectively. For the choice of the evaluation points, we take z; = 0.78070:2% =
h() and Zi = Zi—1 + 2h() if 4 2 2 and Zi S 1— h().

Table 1 shows that the levels of the test are less than 0.05 for ¢ = 0.5 and

c = 1 and the powers of the test are larger for larger ¢’s. It seems that when

c = 1, the levels of the test are close to 0.05 and the power performance is fine.

n = 500 n = 1000

c=05 ¢c=1 ¢=15 ¢c=2|¢=05 ¢c=1 c¢c=15 c=2
Datal 0.030 0.039 0.053 0.071 0.043 0.048 0.057 0.074
Data2 0.030 0.041 0.058 0.074 0.033 0.048 0.060 0.069
Data3 0.032 0.042 0.055 0.080 0.038 0.049 0.055 0.070
Data4 0.038 0.044 0.057 0.075 0.042 0.048 0.057 0.066
Datab 0.951 1 1 1 1 1 1 1
Data6 0.898 1 1 1 0.997 1 1 1
DataT? 0.918 1 1 1 0.985 1 1 1
Data8 0.995 1 1 1 1 1 1 1
Data9 0.725  0.991 1 1 0.993 1 1 1
Datal0 0.374 0.817 0.959 0.986 0.819  0.996 1 1
Datall 0.036  0.050 0.062  0.079 0.035 0.042 0.049 0.059
Datal?2 0.036  0.0561  0.055 0.072 0.041  0.041 0.053 0.065
Datal3 1 1 1 1 1 1 1 1

Table 1: Power results for different ¢’s when n = 500 and n = 1000

3.1.2 Simulation studies based on local bootstrap

The test based on asymptotic distribution of the test statistic does not work
well for small sample sizes. Figure 1 shows that the distribution of the test
statistic and the asymptotic distribution are quite different for Datall when
n = 100. For Datal — Datad and Datal2, we find similar patterns. When
n = 200, the difference between the distribution of the test statistic and the
asymptotic distribution become smaller but is still visible.

To apply our test for small sample sizes, we consider the local bootstrap
procedure proposed by Paparoditis and Politis [11]. The local bootstrap proce-
dure is described below. For a given sample {(X,Y:, Z;)}/_ 4, a local bootstrap
sample {(X;, Y, Z;)}, is generated according to the following steps.

(a) Draw a random sample (Z7,Z5,...,Z%) from the empirical cumulative

10
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Figure 1: Exact distribution (solid line) versus asymptotic distribution (dashed
line) of the test statistic with different bandwidth choices (h = cn=1/*)

distribution function F, where

n

Fz(Z) = % Zl(foo,zt](z)'

t=1

(b) For 1 <t <mn, we draw X; and Y;" independently from the empirical cu-
mulative distribution functions Fx|z—z; and Fy|z—z- respectively, where
Frr e (1) St K (= 0D ey 0)
7= S k(28 = Z0)/)

and
SSis K = 20D vs)

Fy\Z:Zt* (y) = Sor k*((ZF — Z4)/b)

11



Here, the bandwidth b is taken to be n~%2 and the kernel function k* is
the probability density function for N (0, 1).

In order to determine the rejection region for a given sample, we repeat the
above procedure to obtain bootstrap resamples and compute the test statistic
nhdk =4 Zle f(2)p%(2) for the original sample and each local bootstrap re-
sample. For a given level «, if the test statistic based on the given sample is
larger than the (1 — a) quantile of the test statistics that are computed based
on the local bootstrap resamples, we reject the conditional independence hy-
pothesis at level a. The purpose of using the local bootstrap procedure is to
generate a resample {(X;, Y, Z})} 7, such that the distribution of Z*, the con-
ditional distributions of X* given Z* = z and Y* given Z* = z are close to the
distribution of Z, the conditional distributions of X given Z = z and Y given
Z = z respectively. In addition, since X;* and Y;* are generated independently
given Z; = z, they are conditionally independent given Z; = z, irrespective of
whether or not X and Y are conditionally independent given Z.

In these simulation studies, we choose the basis functions in (11) and (12)
with p = ¢ = 5. The evaluation points are {0.2,0.4,0.6,0.8}, and the kernel
bandwidth h to be cn=%25 where n is the sample size and ¢ € {0.5,1,1.5,2}.

Finally, we present a few experimental results of our test (Test 1) and Su and
White’s test (Test 2). For Test 2, we run the simulations for Datall — Datal3
with the bandwidth h, = ¢*n~1/%5 where ¢* = 1 or 2. Each power estimate
is based on 3000 repetitions, where 1000 local bootstrap resamples are used in
each repetition. For the sake of comparison, we also list some power estimates
for Test 2 for Datal — Datal0, which are taken directly from [13]. They use 250
repetitions with 200 local bootstrap resamples for each repetition.

Tables 2 and 3 indicate the level and power estimates for Test 1 and Test 2
at significance level 5% when the sample sizes are 100 and 200 respectively.

Datal Data2 Data3 Data4 Datab Data6  Data7
Test 2,c* =1 0.096 0.060 0.048 0.072 0.668 0.756 0.388
Test 2,c* =2  0.072 0.036 0.072 0.048 0.952 0.944 0.576
Test 1,c=0.5 0.045 0.061 0.046 0.062 0.525 0.479 0.265
Test 1,c=1 0.046  0.050 0.050 0.047 0.746 0.717 0.400
Test 1,ec=1.5 0.040 0.052 0.056 0.055 0.814 0.779 0.329
Test 1,c =2 0.041  0.050 0.053 0.062 0.852 0.793 0.218
Data8 Data9 Datal0 Datall Datal2 Datal3
Test 2,c* =1 0.860 0.828 0.680 0.034 0.043 0.589
Test 2,c* =2 0.940 0.988 0.912 0.022 0.022 0.859
Test 1,c=0.5 0.692 0.357 0.195 0.058 0.050 1
Test 1,e=1 0.873  0.566 0.320 0.049 0.048 1
Test 1,e=1.5 0.889 0.618 0.341 0.049 0.041 1
Test 1,c =2 0.860  0.631 0.348 0.046 0.045 1

Table 2: Power comparison between Tests 1 and 2 when n = 100
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Datal Data2 Data3 Data4 Datab Data6  Data7
Test 2,c* =1 0.064 0.052 0.080 0.080 0.900 0.960 0.596
Test 2,c* =2  0.044 0.060 0.056 0.048 1 1 0.864
Test 1,c=0.5 0.040 0.061 0.036 0.055 0.827 0.830 0.488
Test 1,e=1 0.049 0.051 0.057 0.054 0.982 0.983 0.831
Test 1,e=1.5 0.046 0.048 0.049 0.053 0.995 0.989 0.827
Test 1,c =2 0.045  0.045 0.047 0.057 0.997 0.995 0.735

Data8 Data9 Datal0 Datall Datal2 Datal3

Test 2,c* =1 0.992  0.968 0.880 0.031 0.036 0.347

Test 2,c* =2 1 1 0.996 0.025 0.032 0.872
Test 1,c=0.5 0.988  0.730 0.392 0.062 0.062 1
Test 1,c=1 1 0.947 0.679 0.048 0.047 1
Test 1,c =1.5 1 0.968 0.738 0.051 0.043 1
Test 1,c =2 1 0.971 0.745 0.058 0.037 1

Table 3: Power comparison between Tests 1 and 2 when n = 200

3.2 Application to S&P500 index data

In this section, we apply the linear Granger causality test (hereafter denoted by
Test LIN) and our conditional independence test (Test 1) in order to check the
interaction between returns and volume for S&P500 index data at one day lag.
There are 2514 observations for daily index returns and trading volume from
January 2000 to December 2009, taken from Yahoo Finance. Here, the return

for day t is defined as
Py
R, =1001
t 0g (Ptl) )

where P; is the index value for day ¢. Moreover, the trading volume for day ¢
(in dollars), denoted by V4, is transformed into

Vi
Vt*:10g<vtt1>.

The above transformations are commonly used in the analysis for financial data;
for example, see Hiemstra and Jones [6] and [1]. The augmented Dickey-Fuller
test reveals that the series {R;} and {V;*} are stationary.

In order to examine whether {R;} is useful for predicting {V;*}, we consider
the effects up to lag 1. Specifically, we test

Hy:V* LR 4|V, (13)
using Test 1. For Test LIN, it is assumed that
E(VI|Ri—1, V) = a1 R + 01V,
and the null hypothesis is

HQ Lap = 0. (14)
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We use the notation R;_1 # V;* to denote the relation expressed in (13) or (14).
The notation V;* ; # R; is defined analogously.

The p-values for Test LIN and Test 1 are provided in Table 4. For Test
1, we use the same parameter set-up as in Section 3.1.1 and find both the
return-to-volume and volume-to-return relationships are significant at the 5%
level. However, for Test LIN, the volume-to-return relationship is not significant.
These findings are consistent with the results obtained in [6] and [1].

Hy Ria# Ve Vil, # Ry
Test LIN 0.000 0.804
Test 1 0.001 0.032

Table 4: p-values for Test LIN and Test 1 for testing the relationship between
returns and volume changes

To illustrate the implementation of our test for the d > 1 case, we also apply
the test to test
Ho: Vi* L (Ri-1, Re—2)[(Vi2q, Vo) (15)

and
Ho: Ry L (V21 V)I(Rio1, Ry—o2). (16)

The empirical CDF transforms are applied component-wisely. For instance, we
transform (VX 1, V5, )i, into (F1 (V% ), Fa(Vi5))} 4, where n = 2512 and F;
is the empirical CDF of V;*, for i = 1, 2. For the basis functions, we use 4
basis functions on [0,1]: é1, ..., ¢4 and 4 basis functions 1, ..., ¥4 on [0,1]2,
where ¢1, ..., ¢4 are given in (11) with p = 4, P1(y1, y2) = Ij0,0.5)(y1)Lj0,0.5) (y2),
Y2(y1,92) = Tj0,0.5) (Y1) Lj0.5,1)(Y2), ¥3(y1,y2) = Ljo.5,1)(Y1)1[0,0.5)(y2) and ¥y =
1—11 —1po—1)3. Here I4(-) denotes the indicator function on A. In addition, the
kernel bandwidth is en=2/(4+9) with ¢ = 1.4 and § = 2.4. The evaluation points
are all the points in S}, where Sy, = {(2k—1)ho : k is an integer }N[ho, 1—hq
and ho = 0.78n /(419 Here ¢ and § are selected from certain candidate values
so that the levels of the test are close to 0.05 when the data are IID U(0,1).
The p-values for (15) and (16) are 0.017 and 0.370 respectively.
Some remarks on the implementation of the test.

e It is recommended to choose evaluation points so that two evaluation
points, z; and z;, are at least 2h away (for each component) when a
compact kernel supported on [—1,1]¢ is used. In such case, the p(z;) and
p(z;) are independent for IID data, which makes the distribution of the
test statistic close to the derived asymptotic distribution. Since nh? — oo,
h cannot be too small, which implies that the number of evaluation points
cannot be too large.

e We apply empirical CDF transforms to our data so that the distribution
of each component of X, Y and Z is supported on [0, 1]. The transforms
are data dependent and it is not clear whether the transformed data can
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be treated as if they were transformed by the true underlying CDF. The
simulation results are fine, but further investigation is needed.

4 Proofs

In this section, we give proofs for Theorems 1 — 3 and Lemma 1. Before giving
the proofs, we first define and recall some notations. Recall that k* is a kernel
on R' and kg is a product kernel on R? defined by

ko(’l)l,’l}g, .. .,”Ud) = k*(’l}l)k*(’l}g) cee k*(’()d),

K= /(k*(v))de
and Ko = [ v2k*(v)dv.

For a (p+q) x (p+ ¢) matrix Vo, let g1,1(Vo), 91,2(Vo), 92,1(Vo) and g2.2(Vo)
denote the matrices of dimensions p X p, p X q, ¢ X p, ¢ X g respectively such

that
Vo = ( 91,1(Vo)  g12(Vo) )
92,.(Vo)  g22(Vo) /-

4.1 Proof of Lemma 1

For simplicity, we prove the lemma only for the case where m = 2 and k = 2.
Fort=1,2,...,n,v=1,2and j = 1,2, let

) - Iy — %
T]jJ( nhd -t Z g] Zt gj Zl))ko (th) b)
t=1

A _ - Zy — Zi
(e = () Sk (2%
t=1
and 7);(z;) = ;1(z) + Mj.2(2:). Then, §;(2:) — g5 (2) = 0;(2:)/ fz(2), where

fz(z) = (1/(nh)) Sori ko((Z¢ — z;)/h). We can complete the proof using the
following results (A1)-(A3):

(A1) Suppose that the conditions in Lemma 1 hold. Then, for 1 <4,j <2,
d
ia(z) = W2 Bog(z) + 0p (¥ + (nh®)72).
s=1

(A2) Suppose that the conditions in Lemma 1 hold. Then,

771,2(21)

Z; = Vand | 22E) 8 g
M ,2(22)
f2,2(22)
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where the distribution of Z is N(0,%) and ¥ is

k0% (z1)fz(z1)  Kcra(z1)fz(z21) 0 0
Hd012(21)fz(21) HdU%(Zl)fZ<Zl) 0 0
0 0 0i(22)fz(z2) & 012( 2)fz(22)
0 0 012(22) fz(z2) & ‘72( 2)fz(22)

(A3) Suppose that (X,1, Xn2, - . Xoi)T 2 (Y1, Ya, ..., Vi)T and (Zn1, Zno - - -, Zoir)T

B (c1,co,...,c,)T, where ¢y, ca, ..., ¢, are constants. Then,
D
(X1 Zn1s Xn2Zn2s - s XokZn)T = (11, ¢2Ya, ., cx Vi) T
From (A1),(A2) and the assumption that nh4t* — 0, we have

1(21) = W 30 Boa(aa)
_ 32
(o) W T Do) |z ) o, (184 =) B 2,
1(z2) — h 215121 B 1(#2) nhd
f2(22) — h? 325 Bs2(22)
where A ~ B means that the distributions of A and B are the same. Apply

(A3) and we have Lemma 1.
The proofs of (A1)-(A3) are given below.

e Proof of (Al). Note that

nhd

S DD

Bl = g [ G0 - gk (257 feode

= / (95 (zi + hw) — g5 () ko(v) fz(zi + hw)dv

= V1y...,V, d
v = ) ) /hzg;s(zi)l/sz(Zi)kO(V)dV

s=1

d d
(o) (z ) i

d d
1 )
3 B2 32 3 e ko + O
s—1s% =1

d
K * *
= hz; > (f2(20)9; 55 (20) + 2f:(21)g] s (21)) + O(h?)
s=1
d
= h? > B, j(zi) + O(h?).
s=1
Let K; ;= h™¢ (g;(Zt) — g;‘(zz)) ko((Zy — z;)/h). Then, we have
Var (7;,1(2)) = Z Var(K; ;) + Z Z Cov(K; jt, K js)

t=1 s=1,s#t
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Since

Var(K; ;) E(K?
1

hd

Yoy Var(K, )

O(h?*Td=84) we have

> Cov(Ki e, Kijs)
s#t

Therefore,

Var (9j1(z)) = O (

oy

/ (9;(22 + hv) — g;(zl))z (ko(y))2 fz(zi + hv)dv

[

1 2 4
—50(h?) = O(n),

O(nh?=%).
and Heyde [5] and the fact that for 2 < 8 < 2(2 4 d)/d, E(‘Kfm

— (B(K; )

p 2
zi)h / Z g5 s (zi)vsko(v)dv + O(h2)>

Note that from Corollary A.2 in Hall

) =

2 Z Z OO’U(K,'JJ, Ki,j,s)

t=1 s>t
< 2”2‘COU(Ki,j,17K’i,j,1+S)|
s=1
< 16no(h2(2+d—ﬁd)/ﬁ)Za(6—2)/5(3)_

s=1

B2 o h2(2+d—pBd)/B
m)* (n )

()

From the above results, 7, 1(z;) = h2 Y%, By j(2;) 4 0p(h3 + (nh®)(1/2)),

e Proof of (A2). By the Cramér-Wold Theorem, it is sufficient to prove that
cl'Z* converges in distribution to ¢! Z for any ¢ = (c1,¢2,c3,c4)T in R
We use “big-small block” arguments to complete the proof. Assume that
there exist positive integers p = p(n), ¢ = ¢(n) and k = k(n) = [n/(p+ q)]
(the integer part of n/(p + ¢q)) such that as n — oo,

p —00,q = 00,p=o0(n),q=o0(p),p=o0 ((nhd)m) :

1

np~'a(q) = o(1), ph* = o(1),ph? = .

Let

1
It = (

+c3ug,ko (

cru,tko (

Zy — 21

Jy—z
W >+02U2,tk‘0( th 1)
Jy — z Ty — z
5 e (252)).
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- n = j+1)p+
Then, we have T Z* = ﬁ S T = ﬁWn Let & = Zta J(piq;il 7.

+1)(p+ .
and ¢ = S DWED. L 7, forj=0,1,..., k—1,and ¢ = Zt:k(p+q>+1 Zn,t.

k-1 k-1
Then, W,, = Z &+ Z ¢j +C;. In order to prove this lemma, it suffices
j=0 j=0
S~
Wha Wi

to show that as n — oo,

(1) [Blexp(itWan)) - T3 Elexp(ite;))| — 0.

(2) =Waz = 0 and =, = 0,

(3) 02 = X325 E(€) = n(0® + o(1)),

(4) & 3520 B(EI1(1¢] > ey/02)) = 0 for any & > 0,
where

o? =clk fz(zl)a (21) + 3k fz(zl)az(zl)

+ c3r% f2(22)07 (22) + iR’ f2(22)05 (22)

+2c1026% f7(21)er12(21) + 2e3¢46" f2(22)c12(22).

The verification of the above expression for o2 is given in Section 4.5.

We now prove these results respectively. From Lemma 18.2 in Li and
Racine [9], which is due to Volkonskii and Rozanov [14],

k—1
E(exp(itWp1)) — H E(exp(ité;))| < 16ka(q) = O <Za(q)) =o(1),

=0

we obtain (1). In order to prove (2), we first consider W,2. Note that

k—1 k—1 k-1
E(W2) =Var(d ) =kVar(G)+ Y > Cov(Gi.¢)-
j=0 A i=0 j=0,j#i
(P1)
(P2)

Computation of (P1). Note that from

V(L’I" CO ZVGT n,i +2ZZCOU ZTLZ?Z;J)

=1 7>t

q
Z Var(Z,;) = qo* + O(gh?),
i=1
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and the fact that

q q q .
J
233 CovZnis Zng) =203 (1 = )C0U(Zn 1, Znss) = O*H),
j=1

i=1 j>i
we have that
Var(G) = qo? + O(¢*h?) 4+ O(gh?*) = qo®(1 + o(1)).
Therefore,
(P1) = kqo?(1 + o(1)) = O(kq) = o(n).
Computation of (P2). Note that from Theorem A.5 in [5],

k—1k—-1

(P2)] = 222001)(@-,@)

n—p n oo
SQZ Z |Cov(Znis Zn ;) SQ”Z\COU(Zn,l,Zn,HM

i=1 j=i+p Jj=p
> . Lo
< 2%2401,102”06(]) <C hd Za(j) = 0(77,),
Jj=p J=p

where Cjy, = 4max|cy|sup |us 1| sup |ko|/Vh? for i = 1,2. Then, we have
E(W2)/n = o(1). Similarly, Var((x) = O(p + q) = o(n), so (2) holds.
By stationarity and the same arguments in (1), we have Var(&) = po?(1+
o(1)). Thus Zf;é E(&)/n = kpo®(1 + o(1))/n — ¢°. Finally, since
|Zn | < C/Vh4, for every € > 0, the set {|{;| > ey/02} is an empty set
when n is large. Therefore, (4) holds. This complete the proof.

e Proof of (A3). It is sufficient to prove that (X,1,. .., Xoks Znty -+ s Znk) "~ i

(Yl, e Y e, .., Ck). Let X,, = (an, oo ,Xnk)T RV (an, ceey an)T,
Y =(Y1,...,Y)T and ¢ = (c1,...,c;)T. Then,
E(ei(tTXnJrsTZn)) E(ei(tTXnJrsTc)ei(sT(anc)))

E(ei(tTX”JrsTc)(6i(sT(anc)) o 1)) +E(6i(tTX”+sTc)).

I 17

Note that II — E(e/"Y+5"<)) and I — 0 by Lebesgue’s dominated
convergence theorem. Apply the continuous mapping Theorem and we
have (A3).

4.2 Proof of Theorem 1

We adopt the proof in [7]. For z € {z1,...,2;}, let ¢f: 1 <l <pand ¢}.: 1 <
m* < ¢ be the new basis functions obtained by making linear transformations of
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¢’s and ,+’s such that ¢7 =1 = ¥F, (E(¢] (X)) (X)|Z =2) : 1 < 1L,I' <p)
and (E(l-(Y)Yr, . (Y)|Z = 2) : 1 < m*,m’ < q) are identity matrices, and
E(¢;(X)k-(Y)|Z =2z) =0forl # m*. Take g1(X,Y), ..., gn(X,Y) to be the
functions ¢; (X) ¢} (X), o7 (X))« (Y) and 7, (V) (Y), where 1 < I <" <p
and 1 < m* <m’ < q. Apply Lemma 1 and we have

g1(21) — gt (21) WS¢ Boa(21)/ fz(21)
91(2k) - g1 (zx) h? Z(Si:l Bs,'l(zk)/fZ(Zk)
nh : — Vnhd : Bz
Gm(21) — gp (21) W20 Bym(21)/f2(21)
1) = (1) W2 Bam(2k)/ ()
(17)

Let

i Vii(z) Via(z)
ve= (e vao )
where the ({,1)-th element of V11(2) is E(¢] (X)¢; (X)|Z = z) for 1 <[, I' <p,
the (I,m*)-th element of Via(2) is E(¢f(X)¢)-(Y)|Z = 2) for 1 < 1 < p,
1 < m* < g, the (m*, m/)-th element of Vas(z) is E(¥.(Y)vr, (Y)|Z = z)
for 1 < m*,m' < q, and Vay(2) = (Vi2(2))T. Let V*(2) be the estimator
of V*(z) obtained by replacing each conditional expectation in V*(z) with its
kernel estimator defined in (8). Then, (17) gives

z'Z: | V*(2) — V*(2) |>= O, (nlhd) +0,(h) =0, (nlhd i h4) _

For 1 <i <k, forapx 1 vector a and a (p+ q) X (p+ ¢) matrix
Unn Ure
U= ,
( Ua1 Uz
where the dimensions of Uy, Uya, Uy and Uss are p X p, p X ¢, ¢ X p and g X ¢

respectively, define
gr,s(U) =Us (18)

for1 <r,s<2,

N —f grs(0) if (r,s) = (1,2) or (2,1);
gm(U)—{ (ro(U)~1 if (rrs) = (1.1) or (2,2),

and
g(U,a) = U1 2U; 3 Us U | — Uy 1aa”. (19)
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Let a® be the p x 1 vector whose first element is 1 and the rest elements are
0’s. Then, j(z) and p, () are the square roots of the largest eigenvalues of the

matrices g(V*(z),o*) and g(V*(z), a*) respectively. Let
Drsi =95V (z) = g7 (V7 (22).
Then, we have
I g(V* (i), ") = g(V*(2:), %)
2 2 2 2
S HH ”grs |+||A?”S7z|| HHngs V* Zi

r=1s=1

+ ||91,1( “(21)) = giaz)lle” (@)

which gives that

i 907 (.0%) = oV 0,0 = 0y (g + 1) = 0y (1 )

and

9

k
> () = )’ = 0y (a +1) (20

=1

since |p?(z;) — p3 4(21)] < lg(V*(2), a*) — g(V*(2), )| for 1 < i < k. From
(20) and the fact that

k
S (Fzl) = 2l = 0y (1 1),

i=1

=1

& 2
(Zf () zfzm-)pf,,q(z»)

k 2
(Z fz(zi) = f2(2:)p*(zi +Zfz 2)( —p2 (2 )))

= — +ht
o (3 )

4.3 Proof of Theorem 2

We adopt the proof in [7]. For z € {z1,..., 21}, let V*(z), V*(z) and Bs ; be as
defined in the proof of Theorem 1. Let B; be the (p+¢) x (p+ ¢q) matrix whose
elements are h? ZS 1 Bs,j(zi)/ fz(zi): 1 <j <m=(p+q)* From Lemma 1,

we have
Vb f7(21) KAV (21) = V¥ (21) — By) Nt

AT RV (2) — V* (21) — B) N
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where for 1 < ¢ < k, N; is a normal matrix of elements with mean 0 and
variance 1. Apply the Skorohod’s theorem, for 1 < i < k, there exist random
matrices T; and Wy ; such that Tj ~ (nh?fz(z)/kD)Y2(V*(2) — V*(2) — B),
Wi ~ N and T; — Wy ; almost surely. Therefore,

ar. d
V*(Zl) ~ 7\/;12 + V*(ZZ) + Bl = V*(Zl) + 7\/; (Wl,i + Wg’i),
nhefz(z) nhdfz(z)
where Wa,; = T; — Wy, + /nhfz(z;)/kB,. Note that B; = O(h?). From
(S6), Yory [IWal| = 0p(1).

For 1 <i <k, let Vi = V*(2;) + (nhfz(2) k)" V2(W i+ Way), Ai(zi) =
g(Vi,a*)g11(V;) and 3 (z;) be the largest eigenvalue of A;(2;)(g1,1(V;))~*. Here
the functions g(-,-) and g¢1,1 are defined in (19) and (18) respectively. Then,
po(z;) has the same distribution as p(z;). Below we will show that the impact
of Wa,; is negligible in the derivation of the asymptotic distribution of fo(z;).

For1<r,s<2and1<i<k, let A, ;= gr’s(ffi) — gr,s(V*(2;)). Then,

Eo2 2 ) )
9 _ 4\ _
ZZZ [Arsill* = Op (nhd +h ) =0y (nhd)
=1 r=1s=1
and
A1(z) =g12(V*(2:)) (92,2(V) 1921 (V*(20)) — g1 (Vi)™ ()T 911 (V5)
+ 912V (23))Do1i + D12,i921 (V7 (21)) + D1 2,21
—912(V*(2:))DNap2,ilNa1i — Di1,2,i02,2,i92.1 (V™ (%)) + Ru,
where
Ry =012:0((922(Ve) ™ = 1) Doy
+ 912V (2)) ((92.2(Vi))™F = I, + Nooi) Do
+ N12i((922(Vi) ™ = Iy 4 Daoi)gaa (V* ()

and I, denotes the g x ¢ identity matrix. Note that 92,2(‘71-) can be expressed as

92.2(Vi) = (é %T)

for some matrices B; and D;, so A;(z;) becomes
BI((D; = B;B]' )" = I;_1)BiJ + g12(V*(2:)) (D22, — J)?g2.1(V*(2:))
- A1,1,¢91,2(V* (Zi))92,1(V*(Zi))A1,1,i + A1,2,iA2,1,i
—g12(V*(2:) D22 D21, — D1,2,:02.2,921(V* (%)) + R,
where J = a*(a*)T. Let
As(zi) =g1,2(V*(2:)) (92,2(W1,6)) 2 92,1 (V* (24))
— 91,1 (W1i)g1,2(V*(2:))92,1(V*(2:)) 91,1 (W) + g1,2(Whi)g2,1(W1 )
= 91,2(V*(2i))g2,2(W1,:)g2,1(W1i) — 91,2(W1,i)92,2(W1,i) 92,1 (V" (2:))
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and
Ry =B{ ((Di — B;B{)™" = I,-1)BiJ
— (nh?f2(z:) kD)7 Aa(2) + 91,2V (20)) (D22, — J) 21 (V7 (1))
- Al,l,igl,Q(V*(Zi))92,1(v*(zi))A1,1,i + A1,2,iA2,1,i
- 91,2(V*(Z¢))A2,2,7:A2,1,z‘ - AQ,l,iAQ,Q,iQQ,l(V*(Zi))~

Then,
B Ag(zi)K?
Al(Zl) = m + Rl,l + R2,7,7 (21)
where
k 1
2 2y _
> IR + [Ral) = O, (<nhd)2)~ (22)

Note that under conditional independence, for 1 < i < k, As(z;) = C;CF,
where C; is the p X ¢ matrix obtained by replacing elements in the first col-
umn and first row of g1 2(W1 ;) with zero’s, and g1 2(Wh ;) is a random matrix
whose elements are IID N(0,1) expect that the (1,1)-th element is 1. There-
fore, Zle | A2(2:)||* = O,(1), which, together with (21) and (22), implies that
St A1 (z:)[12 = Op(1/((nh?)?)) and

i . 1
S IGO0 ~ G =0 (G ) 09

For 1 < i <k, let Ag; be the largest eigenvalue of As(z;). By (21), (22) and
(23),
k

> (nhfz(z)p5(z0) /KT = X0.0)? = 0p(1).

i=1
Let fi, p(z) and X\; : 1 < i < k be random variables such that the joint
distribution of (fi, p(z)) : 1 < i < k is the same as (fz(z),p(z)) : 1 <i < k,
and the joint distribution of (p(z;), A;) : 1 <14 <k is the same as (po(%), Noi)

1 <4 < k. Note that nh? Zle(ﬁ(zi))z = 0,(1), so we have that

nhd & nhd &
P Z f2(2:)(p(z:))? — P Z f2(2:)(p(2:))?
ahd [ 172
<7 (Z(fz(zi) - fZ(Zi))2> > (p(z:))?
i=1 i=1
= 0,(1)0p((nh*) 1) = O, ((nh®)~1/?)
and
ahd o k
T Z fi(p(z:))? — Z Ai| € Op((nhh)™12) + 0,(1) = 0,(1).

The proof of Theorem 2 is complete.
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4.4 Proof of Theorem 3

Suppose that p(z;) > 0 for some z;. Then, we have Zle fz(2:)p*(z) > 0.
Choose € such that 0 < e < Zle fz(2:)p*(z:) and we have

k R k k R HdF*
P (Z fz(20)p () > ZfZ(Zi)pz(Zi) - €> <P (Z f2(20)p%(z) > nhld_a>

111

for large n. From Theorem 1,

k
Y f2(z)p*(z) = Y f2(z00%(z)| <

111> P (
i=1 i=1

SO

k R dF*
P (Z f2(2:)p°(z) = “néd“> -1
i=1

4.5 The verification of the expression for o2

The expression for o2 involves some variance and covariance terms. Under the
conditions in Theorem 1, the major parts for those variance and covariance
terms can be obtained. The results are as follows. For 1 < 7,¢* < k and
1<7,7* <m,1-4hold.

L Var (ujiko(252)) = hk%02(2) f2(2i) + O(RF2).
2. Cov (ijtk()( Zt}?zi ), ’U,j*’tk()( Zt]:'zi )) = hdlidej* (Zz)fz(zz) + O(hd+2).

3. Cou (ko Z5:55), ujko(£55%) ) = O(h*4).

N

. Cov (uj,tko(zt,:“), antko(ztzzﬁ )) = O(h??).

We will only give the proof for Case 1 since the proofs for other cases are
similar. Since

Vo (U_j,tko (Zt;%)) _ E (E (uft (k‘o (%;%))2 |Zt>>
= /af(zt) (kzo (Zt ; Zi>>2fz(2t)dzt

= pd / a]z(zi + hw) (ko (V)2 fz (2 + hv)dy

s=1
= h'%0%(z) fz(z) + O(h*H?),

we complete verification of the expression for 2.
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R / o2 (2;)(ko(v))? (fz(zi) + 0 folzi)ve + O(h?)

>dy
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