
行政院國家科學委員會專題研究計畫 成果報告 

 

相依資料的條件獨立檢定 

研究成果報告(精簡版) 

 
 
 
計 畫 類 別 ：個別型 

計 畫 編 號 ： NSC 99-2118-M-004-006- 

執 行 期 間 ： 99 年 08 月 01 日至 100 年 07 月 31 日 

執 行 單 位 ：國立政治大學統計學系 

  

計 畫 主 持 人 ：黃子銘 

  

計畫參與人員：碩士班研究生-兼任助理人員：程毓婷 

博士班研究生-兼任助理人員：鄭宇翔 

 

  

  

  

  

處 理 方 式 ：本計畫可公開查詢 

 
 
 

中 華 民 國   100 年 07 月 29 日 
 



A conditional independence test for dependent

data based on maximal conditional correlation

Yu-Hsiang Cheng
Department of Statistics

National Chengchi University
Taipei, Taiwan, ROC
96354501@nccu.edu.tw

Tzee-Ming Huang
Department of Statistics

National Chengchi University
Taipei, Taiwan, ROC
tmhuang@nccu.edu.tw

June 16, 2011

Abstract

In Huang [7], a test of conditional independence based on maximal
nonlinear conditional correlation is proposed and the asymptotic distri-
bution for the test statistic under conditional independence is established
for IID data. In this paper, we derive the asymptotic distribution for
the test statistic under conditional independence for α-mixing data. The
results of simulation show that the test performs reasonably well for de-
pendent data. We also apply the test to stock index data to test Granger
noncausality between returns and trading volume.
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1 Introduction

The testing of conditional independence is important in statistics; one interest-
ing application of such testing is variable selection. For instance, consider the
following regression problem:

Y = f(Z,X) + ε, (1)

where ε is independent of (Z,X) and f is a real-valued function. If Y and X
are conditionally independent given Z, the variable X can be excluded from the
model in (1).

Suppose thatX, Y and Z are continuous random vectors of dimensions d1, d2
and d respectively. For testing whether X and Y are conditionally independent
given Z, most tests in the literature deal with the case where the observations
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for (X,Y, Z) are IID. See, for example, Linton and Gozalo [10], Delgado and
Manteiga [2], Li, Cook and Nachtsheim [8], Huang [7], etc.

When the observations for (X,Y, Z) are weakly dependent, fewer tests are
available in the literature. Su and White [12, 13] developed nonparametric tests
based on a weighted Hellinger distance between conditional densities or the
difference between conditional characteristic functions. Bouezmarni, Rombouts
and Taamouti [1] also proposed a nonparametric test based on the Hellinger
distance of copula densities.

In [12], [13] and [1], one motivation for constructing conditional indepen-
dence tests for dependent data is to test Granger noncausality, which, according
to Florens and Mouchart [4] and Florens and Fougere [3], is a form of condi-
tional independence. Specifically, a series {Ut} does not Granger cause series
{Vt} if

Vt ⊥ (Ut−1, Ut−2, . . . , Ut−p)|(Vt−1, Vt−2, . . . , Vt−p) for every p ≥ 1,

where ⊥ denotes an independent relationship.
In this paper, we consider Huang’s test statistic and derive its asymptotic

distribution for α-mixing data. In order to measure the conditional associa-
tion between X and Y given Z, Huang [7] uses a measure called the maximal
nonlinear conditional correlation, which is defined as

sup
f,g∈S∗0

Corr(f(X,Z), g(Y, Z)|Z), (2)

where S∗0 is the collection of (f, g)’s such that E(f2(X,Z)) <∞ and E(g2(Y,Z)) <
∞. Huang’s test statistic is an estimator for a weighted average of estimators of
maximal nonlinear conditional correlation at different evaluation points for the
given variable Z. The test statistic also involves certain basis functions used
to approximate the f and g in (2). We show that the asymptotic distribution
of Huang’s test statistic for α-mixing data is the same as that for IID data
if the number of evaluation points and the number of basis functions are held
constant.

This paper is organized as follows. In Section 2, we review the definition
of maximal nonlinear conditional correlation and certain approximation results
given in [7], and state the asymptotic properties of the test statistic that we
derive under α-mixing condition. Some simulation results and an application
are in Section 3. Proofs are given in Section 4.

2 Review and main results

In this section, we review the definition of the maximal nonlinear conditional
correlation ρ1(X,Y |Z), the approximation of ρ1(X,Y |Z) and the proposed es-
timator for ρ1(X,Y |Z = z) in [7]. Then, we consider Huang’s test statistic
for testing H0 : ρ1(X,Y |Z) = 0 and present its asymptotic properties that we
derive under α-mixing condition.
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2.1 Definition, approximation, and estimation for maxi-
mal nonlinear conditional correlation

The maximal nonlinear conditional correlation ρ1(X,Y |Z) is essentially the
maximum of E(f(X,Z)g(Y,Z)|Z) over S0, where S0 is the collection of (f, g)’s
that satisfy the following conditions:

E(f2(X,Z)|Z)I(0,∞)(E(f2(X,Z)|Z)) = I(0,∞)(E(f2(X,Z)|Z))

E(g2(Y, Z)|Z)I(0,∞)(E(g2(Y,Z)|Z)) = I(0,∞)(E(g2(Y,Z)|Z))
(3)

and
E(f(X,Z)|Z) = E(g(Y,Z)|Z) = 0. (4)

To avoid dealing with the existence of the maximum and the measurability of
ρ1(X,Y |Z), in [7], ρ1(X,Y |Z) is defined as

sup
(f,g)∈S0

E(f(X,Z)g(Y,Z)|Z),

where the supremum is defined as

lim
n→∞

E(αn(X,Z)βn(Y,Z)|Z),

where {(αn, βn)} is a sequence in S0 that satisfies the following conditions:

(i) The sequence {E(αn(X,Z)βn(Y,Z)|Z)} is non-decreasing.

(ii) For every (f, g) ∈ S0,

E(f(X,Z)g(Y,Z)|Z) ≤ lim
n→∞

E(αn(X,Z)βn(Y,Z)|Z).

To approximate

ρ1(X,Y |Z) = sup
(f,g)∈S0

E(f(X,Z)g(Y,Z)|Z),

we consider S0,p,q: the collection of all (f, g)’s in S0 such that f and g are in
the spans of {φp,j : 1 ≤ j ≤ p} and {ψq,k : 1 ≤ k ≤ q} respectively, when Z is
given. That is,

f(X,Z) =

p∑
j=1

ap,j(Z)φp,j(X) for some ap,j(Z)’s

and

g(Y, Z) =

q∑
k=1

bq,k(Z)ψq,k(Y ) for some bq,k(Z)’s.

Suppose that the basis functions φp,i’s and ψq,j ’s are selected so that there
exists basis functions θr,k’s such that

lim
p,r→∞

inf
a(i,k)

E

α(X,Z)−
∑

1≤i≤p,1≤k≤r

a(i, k)φp,i(X)θr,k(Z)

2

= 0 (5)
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and

lim
q,r→∞

inf
b(j,k)

E

β(Y, Z)−
∑

1≤j≤q,1≤k≤r

b(j, k)ψq,j(Y )θr,k(Z)

2

= 0. (6)

for every α and β such that E(α2(X,Z)) and E(β2(Y,Z)) are finite. Let X , Y
and Z be the ranges of X, Y and Z respectively. Suppose that for each (p, q),
there exist coefficients ap,0,i’s and bq,0,j ’s such that∑

1≤i≤p

ap,0,iφp,i(x) = 1 =
∑

1≤j≤q

bq,0,jψq,j(y) (7)

for every x in X and every y in Y. Let

ρp,q(Z) = max
(f,g)∈S0,p,q

E(f(X,Z)g(Y,Z)|Z).

Then, by Fact 2 in [7], ρ1(X,Y |Z) can be reasonably approximated by ρp,q(Z)
if p and q are large. The statement of the fact is given below.

FACT 1. (Fact 2 in [7]) Suppose that (5), (6) and (7) hold and {pn} and {qn}
are sequences of positive integers that tend to ∞ as n→∞. Then

lim
n→∞

E(|ρ1(X,Y |Z)− ρpn,qn(Z)|) = 0.

A remark.

• It is not difficult to find basis functions that satisfy (5), (6) and (7).
If X , Y and Z are bounded regions in Rd1 , Rd2 and Rd respectively
and the Lebesgue densities for (X,Z) and (Y,Z) are bounded, then φp,i’s
and ψq,j ’s can be taken as B-spline basis functions on multidimensional
intervals containing X and Y respectively, where the θr,k’s can be can be
taken as B-spline basis functions on a multidimensional interval containing
Z.

ρp,q(Z) can be found as follows. First, we look for vectors a1 = (a1,1(Z), . . . , a1,p(Z))T

and b1 = (b1,1(Z), . . . , b1,q(Z))T such that (a1, b1) is the pair (a, b) that maxi-
mizes aTΣφ,ψ,p,q(Z)b subject to

aTΣφ,p(Z)a = 1 = bTΣψ,p(Z)b,

where

Σφ,p(Z) = (E(φp,i(X)φp,j(X)|Z)− E(φp,i(X)|Z)E(φp,j(X)|Z))p×p,

Σψ,q(Z) = (E(ψq,i(Y )ψq,j(Y )|Z)− E(ψq,i(Y )|Z)E(ψq,j(Y )|Z))q×q,

and

Σφ,ψ,p,q(Z) = (E(φp,i(X)ψq,j(Y )|Z)− E(φp,i(X)|Z)E(ψq,j(Y )|Z))p×q.
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Take

f1(X,Z) =

p∑
j=1

a1,j(Z)(φp,j(X)− E(φp,j(X)|Z))

and

g1(Y,Z) =

q∑
k=1

b1,k(Z)(ψq,j(X)− E(ψq,j(Y )|Z)).

Then, E(f1(X,Z)g1(Y,Z)|Z) = ρp,q(Z).

For z ∈ Z, let Σ̂φ,ψ,p,q(z), Σ̂φ,p(z) and Σ̂ψ,q(z) be the kernel estimators
of Σφ,ψ,p,q(z), Σφ,p(z) and Σψ,q(z) respectively; in other words, every element
E(g(X,Y )|Z = z) in Σφ,ψ,p,q(z), Σφ,p(z) and Σψ,q(z) is estimated by

Ê(g(X,Y )|Z = z) =

∑n
t=1 g(Xt, Yt)k0((Zt − z)/h)∑n

t=1 k0((Zt − z)/h)
(8)

in Σ̂φ,ψ,p,q(z), Σ̂φ,p(z) and Σ̂ψ,q(z), where k0 is a kernel function defined on Rd

and h > 0. Then, we use ρ̂p,q(z) = maxa,b a
T Σ̂φ,ψ,p,q(z)b for estimating ρp,q(z),

where all pairs (a, b) satisfy

aT Σ̂φ,p(z)a = 1 = bT Σ̂ψ,q(z)b.

Henceforth, the estimator ρ̂p,q(z) will be abbreviated as ρ̂(z) for each z in Z.

2.2 A test for conditional independence and relative asymp-
totic properties

The conditional independence test that we use in this paper is based on ρ̂2(z)
at different z’s. Since each ρ̂(z) is determined by the kernel estimators of cer-
tain conditional expectations, we first derive their joint asymptotic distribution.
Then, we use

∑k
i=1 f̂Z(zi)ρ̂

2(zi)’s as our test statistic and establish its consis-
tency and asymptotic distribution. Here the zi’s are selected points in Z and

f̂Z(·) =

∑n
t=1 k0((Zt − ·)/h)

nhd

is the kernel density estimator of fZ : the Lebesgue pdf of Z. In order to avoid
dealing with the boundary bias problem in kernel estimation, we consider a set
Z0 that is contained in the interior of Z so that points in Z0 are away from the
boundary of Z, and choose the zi’s from Z0.

Our first result is with regard to the joint asymptotic distribution of kernel
estimators of some conditional expectations. In order to describe the assump-
tions, we first review the definition for α-mixing coefficients. For a strictly
stationary process {Ut}, let Fba denote the σ-algebra generated by (Ua, . . . , Ub).
Then, the α-mixing coefficient at lag s for {Ut} is

sup
{
|P (A ∩B)− P (A)P (B)| : −∞ < t <∞, A ∈ F t−∞, B ∈ F∞t+s

}
.
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{Ut} is considered to be α-mixing if its α-mixing coefficient at lag s tends to
0 as s tends to ∞. Let α(s) denote the α-mixing coefficient at lag s for the
process {(Xt, Yt, Zt)}. Our assumptions are provided below.

(S0) The basis functions φp,1, . . ., φp,p and ψq,1, . . ., ψq,q are bounded and (5),
(6) and (7) hold. For the sake of brevity, φp,1, . . ., φp,p and ψq,1, . . ., ψq,q
will be abbreviated as φ1, . . ., φp and ψ1, . . ., ψq respectively hereafter.

(S1) {(Xt, Yt, Zt) ∈ Rd1+d2+d, t ≥ 0} is a strictly stationary α-mixing process
that satisfies α(τ) = O(τ−(1+ε)), where ε > max(1, d/2), d1, d2 and d
denote the dimensions of Xt, Yt and Zt respectively.

(S2) Suppose that there exist Z0: an open subset of the interior of Z and µ:
σ-finite measure such that for every z ∈ Z0, the conditional distribution of
(X,Y ) given Z = z has a pdf f(·|z) with respect to µ. Further, f(x, y|z)
and fZ(z) are twice differentiable with respect to z on Z0.

(S3) There exists a function h on X × Y such that

sup
z∈Z0

max

(
|f(x, y|z)|, max

1≤i≤d

∣∣∣∣ ∂∂zi f(x, y|z)
∣∣∣∣ , max

1≤i,j≤d

∣∣∣∣ ∂2

∂zi∂zj
f(x, y|z)

∣∣∣∣)
≤ h(x, y)

and
∫
h(x, y)dµ(x, y) <∞.

(S4) There exist constants c0 and c1 such that

sup
z∈Z0

max

(
|fZ(z)|, max

1≤i≤d

∣∣∣∣ ∂∂zi fZ(z)

∣∣∣∣ , max
1≤i,j≤d

∣∣∣∣ ∂2

∂zi∂zj
fZ(z)

∣∣∣∣) ≤ c0
and 1/fZ(z) ≤ c1 for z ∈ Z0.

(S5) k∗ is a kernel function defined on R1, and k0 is a product kernel on Rd

that satisfies

k0(v1, v2, . . . , vd) = k∗(v1)k∗(v2) · · · k∗(vd),

k∗ ≥ 0, supv k
∗(v) < ∞,

∫
k∗(v)dv = 1,

∫
vk∗(v)dv = 0,

∫
v(k∗(v))2dv =

0 and κ2 =
∫
v2k∗(v)dv <∞.

(S6) As n→∞, the bandwidth h→ 0, nhd →∞ and nhd+4 → 0.

Under the above conditions, the joint asymptotic distribution of kernel estima-
tors of conditional expectations can be established, as stated in Lemma 1. The
proof for Lemma 1 is provided in Section 4.1.

LEMMA 1. Suppose that Conditions (S1)–(S6) hold. Suppose that g1, g2, . . .,
gm are bounded functions defined on X × Y. Suppose z1, . . ., zk are distinct
points in Z0. For i = 1, . . ., k, let

ĝj(zi) =

∑n
t=1 gj(Xt, Yt)k0((Zt − zi)/h)∑n

t=1 k0((Zt − zi)/h)
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be the kernel estimator of g∗j (zi) ≡ E(gj(X,Y )|Z = zi). Further, let

Bs,j(zi) =
κ2
2

(fZ(zi)g
∗
j,ss(zi) + 2fs(zi)g

∗
j,s(zi)) (9)

and

Wj,n(zi) =
√
nhd

(
ĝj(zi)− g∗j (zi)− h2

d∑
s=1

Bs,j(zi)/fZ(zi)

)
for 1 ≤ i ≤ k and 1 ≤ j ≤ m, where g∗j,s and g∗j,ss denote the first and the second
partial derivatives of g∗j with respect to the s-th component respectively and fs
denotes the first partial derivative of fZ with respect to the s-th component. Let

uj,t = gj(Xt, Yt)− g∗j (Zt),

cjj∗(zi) = E(uj,1uj∗,1|Z1 = zi),

σ2
j (zi) = E(u2j,1|Z1 = zi),

and

Wn = (W1,n(z1), . . . ,W1,n(zk), . . . ,Wm,n(z1), . . . ,Wm,n(zk))T .

Then, Wn converges in distribution to a random vector

(Z∗1,1, . . . , Z
∗
k,1, . . . , Z

∗
1,m, . . . , Z

∗
k,m)T ≡ Z∗,

where Z∗ is multivariate normal with mean 0 and for 1 ≤ i, i∗ ≤ k and 1 ≤
j, j∗ ≤ m,

Cov(Z∗i,j , Z
∗
i∗,j∗) =


κdσ2

j (zi)/fZ(zi) if i = i∗and j = j∗;
κdcjj∗(zi)/fZ(zi) if i = i∗and j 6= j∗;
0 if i 6= i∗,

where κ =
∫

(k∗(v))2dv.

Now, suppose that the basis functions φl’s and ψm∗ ’s are linearly indepen-
dent. For the sake of convenience, for z ∈ {z1, . . . , zk}, we apply certain linear
transformations to φl’s and ψm∗ ’s to obtain new basis functions φ∗l ’s and ψ∗m∗ ’s
(the ρ̂(z) remains unchanged under such transformations). Take g1(X,Y ), . . .,
gm(X,Y ) to be the functions φ∗l (X)φ∗l′(X), φ∗l (X)ψ∗m∗(Y ) and ψ∗m∗(Y )ψ∗m′(Y ),
where 1 ≤ l ≤ l′ ≤ p and 1 ≤ m∗ ≤ m′ ≤ q. Then, the consistency of ρ̂(z) can
be established and we have Theorem 1. The proof for Theorem 1 is provided in
Section 4.2.

THEOREM 1. Suppose that conditions (S0)–(S6) hold and the basis functions
φl’s and ψm∗ ’s are linearly independent. Suppose z1, . . ., zk are distinct points
in Z0. Then,

k∑
i=1

(
ρ̂2(zi)− ρ2p,q(zi)

)2
= Op

(
1

nhd
+ h4

)
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and (
k∑
i=1

f̂Z(zi)ρ̂
2(zi)−

k∑
i=1

fZ(zi)ρ
2
p,q(zi)

)2

= Op

(
1

nhd
+ h4

)
The following theorem states the approximate distribution of the statistic∑k
i=1 f̂Z(zi)ρ̂

2(zi) when X and Y are conditionally independent given Z.

THEOREM 2. Suppose that the conditions in Theorem 1 hold and X and Y
are conditionally independent given Z. Then,

nhd

κd

k∑
i=1

f̂Z(zi)ρ̂
2(zi) converges in distribution to

k∑
i=1

λi

as n tends to ∞, where the λi’s are IID and have the same distribution as the
largest eigenvalue of a matrix CCT , where C is a (p−1)× (q−1) matrix whose
elements are IID N(0, 1).

The proof of Theorem 2 is provided in Section 4.3. Theorem 2 is similar to
Theorem 3.2 given in [7]. The main difference between the two is that Theorem 2
can be applied to α-mixing data. In addition, p and q are held fixed in Theorem
2, while they are allowed to depend on n and tend to ∞ as n tends to ∞ in
Theorem 3.2 in [7].

According to Theorem 2, a test that rejects H0 if

nhd

κd

k∑
i=1

f̂(zi)ρ̂
2(zi) ≥ F ∗1−α (10)

is of approximate level α, where F ∗ is the distribution function of
∑k
i=1 λi and

F ∗1−α is the 1− α quantile of F ∗. Theorem 3 states that the test with rejection
region in (10) is consistent if p and q are sufficiently large and one of the ρ(zi)’s
is positive. The proof for this theorem is provided in Section 4.4.

THEOREM 3. Suppose that ρ(zi) > 0 for some zi and p and q are sufficiently
large so that ρp,q(zi) > 0. Then, for 0 < α < 1, the probability that (10) holds
tends to 1 as n→∞.

3 Simulation studies and application to S&P500
index data

3.1 Simulation studies

In this section, we conduct several simulation studies for illustrating the per-
formance of our test. The data generating processes, labeled Data1 – Data13,
are described below. In order to make our simulation results comparable with
those of the test proposed by Su and White [13], some of our data generating
processes (Data1–Data10) are the same as theirs. Throughout the description
for Data1–Data10, (ε1,t, ε2,t, ε3,t) are IID N(0, I3).
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Data1: (Xt, Yt, Zt) = (ε1,t, ε2,t, ε3,t).

Data2: Xt = 0.5Xt−1 + ε1,t, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Date3: Xt = ε1,t

√
0.01 + 0.5X2

t−1, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Data4: Xt = ε1,t
√
h1,t, Yt = ε2,t

√
h2,t, Zt = Xt−1, h1,t = 0.01 +

0.9h1,t−1 + 0.05X2
t−1 and h2,t = 0.01 + 0.9h2,t−1 + 0.05Y 2

t−1.

Data5: Xt = 0.5Xt−1 + 0.5Yt + ε1,t, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Data6: Xt = 0.5Xt−1 + 0.5Y 2
t + ε1,t, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Data7: Xt = 0.5Xt−1Yt + ε1,t, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Data8: Xt = 0.5Xt−1 + 0.5Ytε1,t, Yt = 0.5Yt−1 + ε2,t and Zt = Xt−1.

Data9: Xt = ε1,t

√
0.01 + 0.5X2

t−1 + 0.25Y 2
t , Yt = 0.5Yt−1 + ε2,t and Zt =

Xt−1.

Data10: Xt = ε1,t
√
h1,t, Yt = ε2,t

√
h2,t, Zt = Xt−1, h1,t = 0.01 +

0.1h1,t−1 + 0.4X2
t−1 + 0.5Y 2

t and h2,t = 0.01 + 0.9h2,t−1 + 0.5Y 2
t .

Data11: (Xt, Yt, Zt) = (ε1,t, ε2,t, ε3,t), where (ε1,t, ε2,t, ε3,t) are IID LN(0, I3).

Data12: Xt = ε1,tε1,t−1, Yt = ε2,tε2,t−1 and Zt = Xt−1, where (ε1,t, ε2,t)
are IID LN(0, I2).

Data13: Xt = ε1,tε2,t−1, Yt = ε21,tε2,t−1 and Zt = ε2,t−1, where (ε1,t, ε2,t)
are IID LN(0, I2).

Here, Data1 – Data4, Data11 and Data12 are used for examining the level of
the test, and Data5 – Data10 and Data13 are used for checking the power.

3.1.1 Simulation studies based on asymptotic distribution of the test
statistic

We first apply our test using the asymptotic distribution of the test statistic.
Parameter set-up: In order to apply our test, certain parameters need to

be specified, including the kernel function k∗, the kernel bandwidth h and the
basis functions. For the sake of simplicity, in all the simulation experiments,
we take the kernel bandwidth h to be cn−0.25, where n is the sample size and
c ∈ {0.5, 1, 1.5, 2}; we use the following kernel function:

k∗(x) =

{
1− x if 0 ≤ x ≤ 1;
x+ 1 if − 1 ≤ x < 0.

In addition, the basis functions φ∗1,. . . , φ∗p and ψ∗1 ,. . . , ψ∗q are selected in the
following manner. For i = 1, . . . , p and j = 1, . . . , q, let

φi(x) =

{
1 if i−1

p ≤ x <
i
p ;

0 otherwise
(11)
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and

ψj(y) =

{
1 if j−1

q ≤ y <
j
q ;

0 otherwise,
(12)

where p = q = 4. Since the basis functions are defined on [0, 1], we transform the
data (Xt, Yt, Zt)

n
t=1 into (F1(Xt), F2(Yt), F3(Zt))

n
t=1 before using the test, where

F1, F2 and F3 denote the empirical CDF’s of {Xt}nt=1, {Yt}nt=1 and {Zt}nt=1

respectively. For the choice of the evaluation points, we take z1 = 0.78n−0.25 ≡
h0 and zi = zi−1 + 2h0 if i ≥ 2 and zi ≤ 1− h0.

Table 1 shows that the levels of the test are less than 0.05 for c = 0.5 and
c = 1 and the powers of the test are larger for larger c’s. It seems that when
c = 1, the levels of the test are close to 0.05 and the power performance is fine.

n = 500 n = 1000
c = 0.5 c = 1 c = 1.5 c = 2 c = 0.5 c = 1 c = 1.5 c = 2

Data1 0.030 0.039 0.053 0.071 0.043 0.048 0.057 0.074
Data2 0.030 0.041 0.058 0.074 0.033 0.048 0.060 0.069
Data3 0.032 0.042 0.055 0.080 0.038 0.049 0.055 0.070
Data4 0.038 0.044 0.057 0.075 0.042 0.048 0.057 0.066
Data5 0.951 1 1 1 1 1 1 1
Data6 0.898 1 1 1 0.997 1 1 1
Data7 0.918 1 1 1 0.985 1 1 1
Data8 0.995 1 1 1 1 1 1 1
Data9 0.725 0.991 1 1 0.993 1 1 1
Data10 0.374 0.817 0.959 0.986 0.819 0.996 1 1
Data11 0.036 0.050 0.062 0.079 0.035 0.042 0.049 0.059
Data12 0.036 0.051 0.055 0.072 0.041 0.041 0.053 0.065
Data13 1 1 1 1 1 1 1 1

Table 1: Power results for different c’s when n = 500 and n = 1000

3.1.2 Simulation studies based on local bootstrap

The test based on asymptotic distribution of the test statistic does not work
well for small sample sizes. Figure 1 shows that the distribution of the test
statistic and the asymptotic distribution are quite different for Data11 when
n = 100. For Data1 – Data4 and Data12, we find similar patterns. When
n = 200, the difference between the distribution of the test statistic and the
asymptotic distribution become smaller but is still visible.

To apply our test for small sample sizes, we consider the local bootstrap
procedure proposed by Paparoditis and Politis [11]. The local bootstrap proce-
dure is described below. For a given sample {(Xt, Yt, Zt)}nt=1, a local bootstrap
sample {(X∗t , Y ∗t , Z∗t )}nt=1 is generated according to the following steps.

(a) Draw a random sample (Z∗1 , Z
∗
2 , . . . , Z

∗
n) from the empirical cumulative

10



Figure 1: Exact distribution (solid line) versus asymptotic distribution (dashed
line) of the test statistic with different bandwidth choices (h = cn−1/4)

distribution function F̂Z , where

F̂Z(z) =
1

n

n∑
t=1

I(−∞,Zt](z).

(b) For 1 ≤ t ≤ n, we draw X∗t and Y ∗t independently from the empirical cu-
mulative distribution functions F̂X|Z=Z∗t

and F̂Y |Z=Z∗t
respectively, where

F̂X|Z=Z∗t
(x) =

∑n
t=1 k

∗((Z∗t − Zt)/b)I(−∞,Xt](x)∑n
t=1 k

∗((Z∗t − Zt)/b)

and

F̂Y |Z=Z∗t
(y) =

∑n
t=1 k

∗((Z∗t − Zt)/b)I(−∞,Yt](y)∑n
t=1 k

∗((Z∗t − Zt)/b)
.
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Here, the bandwidth b is taken to be n−0.2 and the kernel function k∗ is
the probability density function for N(0, 1).

In order to determine the rejection region for a given sample, we repeat the
above procedure to obtain bootstrap resamples and compute the test statistic
nhdκ−d

∑k
i=1 f̂(zi)ρ̂

2(zi) for the original sample and each local bootstrap re-
sample. For a given level α, if the test statistic based on the given sample is
larger than the (1 − α) quantile of the test statistics that are computed based
on the local bootstrap resamples, we reject the conditional independence hy-
pothesis at level α. The purpose of using the local bootstrap procedure is to
generate a resample {(X∗t , Y ∗t , Z∗t )}nt=1 such that the distribution of Z∗, the con-
ditional distributions of X∗ given Z∗ = z and Y ∗ given Z∗ = z are close to the
distribution of Z, the conditional distributions of X given Z = z and Y given
Z = z respectively. In addition, since X∗t and Y ∗t are generated independently
given Z∗t = z, they are conditionally independent given Z∗t = z, irrespective of
whether or not X and Y are conditionally independent given Z.

In these simulation studies, we choose the basis functions in (11) and (12)
with p = q = 5. The evaluation points are {0.2, 0.4, 0.6, 0.8}, and the kernel
bandwidth h to be cn−0.25, where n is the sample size and c ∈ {0.5, 1, 1.5, 2}.

Finally, we present a few experimental results of our test (Test 1) and Su and
White’s test (Test 2). For Test 2, we run the simulations for Data11 – Data13
with the bandwidth hn = c∗n−1/8.5, where c∗ = 1 or 2. Each power estimate
is based on 3000 repetitions, where 1000 local bootstrap resamples are used in
each repetition. For the sake of comparison, we also list some power estimates
for Test 2 for Data1 – Data10, which are taken directly from [13]. They use 250
repetitions with 200 local bootstrap resamples for each repetition.

Tables 2 and 3 indicate the level and power estimates for Test 1 and Test 2
at significance level 5% when the sample sizes are 100 and 200 respectively.

Data1 Data2 Data3 Data4 Data5 Data6 Data7
Test 2,c∗ = 1 0.096 0.060 0.048 0.072 0.668 0.756 0.388
Test 2,c∗ = 2 0.072 0.036 0.072 0.048 0.952 0.944 0.576
Test 1,c = 0.5 0.045 0.061 0.046 0.062 0.525 0.479 0.265
Test 1,c = 1 0.046 0.050 0.050 0.047 0.746 0.717 0.400

Test 1,c = 1.5 0.040 0.052 0.056 0.055 0.814 0.779 0.329
Test 1,c = 2 0.041 0.050 0.053 0.062 0.852 0.793 0.218

Data8 Data9 Data10 Data11 Data12 Data13
Test 2,c∗ = 1 0.860 0.828 0.680 0.034 0.043 0.589
Test 2,c∗ = 2 0.940 0.988 0.912 0.022 0.022 0.859
Test 1,c = 0.5 0.692 0.357 0.195 0.058 0.050 1
Test 1,c = 1 0.873 0.566 0.320 0.049 0.048 1

Test 1,c = 1.5 0.889 0.618 0.341 0.049 0.041 1
Test 1,c = 2 0.860 0.631 0.348 0.046 0.045 1

Table 2: Power comparison between Tests 1 and 2 when n = 100
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Data1 Data2 Data3 Data4 Data5 Data6 Data7
Test 2,c∗ = 1 0.064 0.052 0.080 0.080 0.900 0.960 0.596
Test 2,c∗ = 2 0.044 0.060 0.056 0.048 1 1 0.864
Test 1,c = 0.5 0.040 0.061 0.036 0.055 0.827 0.830 0.488
Test 1,c = 1 0.049 0.051 0.057 0.054 0.982 0.983 0.831

Test 1,c = 1.5 0.046 0.048 0.049 0.053 0.995 0.989 0.827
Test 1,c = 2 0.045 0.045 0.047 0.057 0.997 0.995 0.735

Data8 Data9 Data10 Data11 Data12 Data13
Test 2,c∗ = 1 0.992 0.968 0.880 0.031 0.036 0.347
Test 2,c∗ = 2 1 1 0.996 0.025 0.032 0.872
Test 1,c = 0.5 0.988 0.730 0.392 0.062 0.062 1
Test 1,c = 1 1 0.947 0.679 0.048 0.047 1

Test 1,c = 1.5 1 0.968 0.738 0.051 0.043 1
Test 1,c = 2 1 0.971 0.745 0.058 0.037 1

Table 3: Power comparison between Tests 1 and 2 when n = 200

3.2 Application to S&P500 index data

In this section, we apply the linear Granger causality test (hereafter denoted by
Test LIN) and our conditional independence test (Test 1) in order to check the
interaction between returns and volume for S&P500 index data at one day lag.
There are 2514 observations for daily index returns and trading volume from
January 2000 to December 2009, taken from Yahoo Finance. Here, the return
for day t is defined as

Rt = 100 log

(
Pt
Pt−1

)
,

where Pt is the index value for day t. Moreover, the trading volume for day t
(in dollars), denoted by Vt, is transformed into

V ∗t = log

(
Vt
Vt−1

)
.

The above transformations are commonly used in the analysis for financial data;
for example, see Hiemstra and Jones [6] and [1]. The augmented Dickey-Fuller
test reveals that the series {Rt} and {V ∗t } are stationary.

In order to examine whether {Rt} is useful for predicting {V ∗t }, we consider
the effects up to lag 1. Specifically, we test

H0 : V ∗t ⊥ Rt−1|V ∗t−1 (13)

using Test 1. For Test LIN, it is assumed that

E(V ∗t |Rt−1, V ∗t−1) = a1Rt−1 + b1V
∗
t−1

and the null hypothesis is
H0 : a1 = 0. (14)
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We use the notation Rt−1 6⇒ V ∗t to denote the relation expressed in (13) or (14).
The notation V ∗t−1 6⇒ Rt is defined analogously.

The p-values for Test LIN and Test 1 are provided in Table 4. For Test
1, we use the same parameter set-up as in Section 3.1.1 and find both the
return-to-volume and volume-to-return relationships are significant at the 5%
level. However, for Test LIN, the volume-to-return relationship is not significant.
These findings are consistent with the results obtained in [6] and [1].

H0 Rt−1 6⇒ V ∗t V ∗t−1 6⇒ Rt
Test LIN 0.000 0.804

Test 1 0.001 0.032

Table 4: p-values for Test LIN and Test 1 for testing the relationship between
returns and volume changes

To illustrate the implementation of our test for the d > 1 case, we also apply
the test to test

H0 : V ∗t ⊥ (Rt−1, Rt−2)|(V ∗t−1, V ∗t−2) (15)

and
H0 : Rt ⊥ (V ∗t−1, V

∗
t−2)|(Rt−1, Rt−2). (16)

The empirical CDF transforms are applied component-wisely. For instance, we
transform (V ∗t−1, V

∗
t−2, )

n
t=4 into (F1(V ∗t−1), F2(V ∗t−2))nt=4, where n = 2512 and Fi

is the empirical CDF of V ∗t−i for i = 1, 2. For the basis functions, we use 4
basis functions on [0, 1]: φ1, . . ., φ4 and 4 basis functions ψ1, . . ., ψ4 on [0, 1]2,
where φ1, . . ., φ4 are given in (11) with p = 4, ψ1(y1, y2) = I[0,0.5)(y1)I[0,0.5)(y2),
ψ2(y1, y2) = I[0,0.5)(y1)I[0.5,1)(y2), ψ3(y1, y2) = I[0.5,1)(y1)I[0,0.5)(y2) and ψ4 =
1−ψ1−ψ2−ψ3. Here IA(·) denotes the indicator function on A. In addition, the
kernel bandwidth is cn−1/(d+δ) with c = 1.4 and δ = 2.4. The evaluation points
are all the points in S2

h0
, where Sh0

= {(2k−1)h0 : k is an integer }∩[h0, 1−h0]

and h0 = 0.78n−1/(d+δ). Here c and δ are selected from certain candidate values
so that the levels of the test are close to 0.05 when the data are IID U(0, 1).
The p-values for (15) and (16) are 0.017 and 0.370 respectively.

Some remarks on the implementation of the test.

• It is recommended to choose evaluation points so that two evaluation
points, zi and zj , are at least 2h away (for each component) when a
compact kernel supported on [−1, 1]d is used. In such case, the ρ̂(zi) and
ρ̂(zj) are independent for IID data, which makes the distribution of the
test statistic close to the derived asymptotic distribution. Since nhd →∞,
h cannot be too small, which implies that the number of evaluation points
cannot be too large.

• We apply empirical CDF transforms to our data so that the distribution
of each component of X, Y and Z is supported on [0, 1]. The transforms
are data dependent and it is not clear whether the transformed data can
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be treated as if they were transformed by the true underlying CDF. The
simulation results are fine, but further investigation is needed.

4 Proofs

In this section, we give proofs for Theorems 1 – 3 and Lemma 1. Before giving
the proofs, we first define and recall some notations. Recall that k∗ is a kernel
on R1 and k0 is a product kernel on Rd defined by

k0(v1, v2, . . . , vd) = k∗(v1)k∗(v2) · · · k∗(vd),

κ =

∫
(k∗(v))2dv

and κ2 =
∫
v2k∗(v)dv.

For a (p+ q)× (p+ q) matrix V0, let g1,1(V0), g1,2(V0), g2,1(V0) and g2,2(V0)
denote the matrices of dimensions p × p, p × q, q × p, q × q respectively such
that

V0 =

(
g1,1(V0) g1,2(V0)
g2,1(V0) g2,2(V0)

)
.

4.1 Proof of Lemma 1

For simplicity, we prove the lemma only for the case where m = 2 and k = 2.
For t = 1, 2, . . . , n, i = 1, 2 and j = 1, 2, let

η̂j,1(zi) = (nhd)−1
n∑
t=1

(g∗j (Zt)− g∗j (zi))k0

(
Zt − zi
h

)
,

η̂j,2(zi) = (nhd)−1
n∑
t=1

uj,tk0

(
Zt − zi
h

)
and η̂j(zi) = η̂j,1(zi) + η̂j,2(zi). Then, ĝj(zi) − g∗j (zi) = η̂j(zi)/f̂Z(zi), where

f̂Z(zi) = (1/(nhd))
∑n
t=1 k0((Zt − zi)/h). We can complete the proof using the

following results (A1)-(A3):

(A1) Suppose that the conditions in Lemma 1 hold. Then, for 1 ≤ i, j ≤ 2,

η̂j,1(zi) = h2
d∑
s=1

Bs,j(zi) + op

(
h3 + (nhd)−1/2

)
.

(A2) Suppose that the conditions in Lemma 1 hold. Then,

Z∗n ≡
√
nhd


η̂1,2(z1)
η̂2,2(z1)
η̂1,2(z2)
η̂2,2(z2)

 D→ Z,
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where the distribution of Z is N(0,Σ) and Σ is
κdσ2

1(z1)fZ(z1) κdc12(z1)fZ(z1) 0 0
κdc12(z1)fZ(z1) κdσ2

2(z1)fZ(z1) 0 0
0 0 κdσ2

1(z2)fZ(z2) κdc12(z2)fZ(z2)
0 0 κdc12(z2)fZ(z2) κdσ2

2(z2)fZ(z2)

 .

(A3) Suppose that (Xn1, Xn2, . . . , Xnk)T
D→ (Y1, Y2, . . . , Yk)T and (Zn1, Zn2 . . . , Znk)T

D→ (c1, c2, . . . , ck)T , where c1, c2, . . ., ck are constants. Then,

(Xn1Zn1, Xn2Zn2, . . . , XnkZnk)T
D→ (c1Y1, c2Y2, . . . , ckYk)T .

From (A1),(A2) and the assumption that nhd+4 → 0, we have

√
nhd


η̂1(z1)− h2

∑d
s=1Bs,1(z1)

η̂2(z1)− h2
∑d
s=1Bs,2(z1)

η̂1(z2)− h2
∑d
s=1Bs,1(z2)

η̂2(z2)− h2
∑d
s=1Bs,2(z2)

 ∼ Z + (nhd)1/2op

(
h3 +

1√
nhd

)
D→ Z,

where A ∼ B means that the distributions of A and B are the same. Apply
(A3) and we have Lemma 1.

The proofs of (A1)-(A3) are given below.

• Proof of (A1). Note that

E (η̂j,1(zi)) =
1

hd

∫ (
g∗j (zt)− g∗j (zi)

)
k0

(
zt − zi
h

)
fZ(zt)dzt

=

∫ (
g∗j (zi + hν)− g∗j (zi)

)
k0(ν)fZ(zi + hν)dν

ν = (ν1, . . . , νd)
=

∫
h

d∑
s=1

g∗j,s(zi)νsfZ(zi)k0(ν)dν

+

∫
h2

(
d∑
s=1

g∗j,s(zi)νs

)(
d∑
s=1

fs(zi)νs

)
k0(ν)dν

+
1

2

∫
h2fZ(zi)

d∑
s=1

d∑
s∗=1

g∗j,ss∗(zi)νsνs∗k0(ν)dν +O(h3)

= h2
κ2
2

d∑
s=1

(
fZ(zi)g

∗
j,ss(zi) + 2fs(zi)g

∗
j,s(zi)

)
+O(h3)

= h2
d∑
s=1

Bs,j(zi) +O(h3).

Let Ki,j,t = h−d
(
g∗j (Zt)− g∗j (zi)

)
k0((Zt − zi)/h). Then, we have

V ar (η̂j,1(zi)) =
1

n2

 n∑
t=1

V ar(Ki,j,t) +

n∑
t=1

n∑
s=1,s6=t

Cov(Ki,j,t,Ki,j,s)

 .
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Since

V ar(Ki,j,t) = E
(
K2
i,j,t

)
− (E(Ki,j,t))

2

=
1

hd

∫ (
g∗j (zi + hν)− g∗j (zi)

)2
(k0(ν))

2
fZ(zi + hν)dν

−

(
fZ(zi)h

∫ d∑
s=1

g∗j,s(zi)νsk0(ν)dν +O(h2)

)2

=
1

hd
O(h2)−O(h4),∑n

t=1 V ar(Ki,j,t) = O(nh2−d). Note that from Corollary A.2 in Hall

and Heyde [5] and the fact that for 2 < β < 2(2 + d)/d, E(
∣∣∣Kβ

i,j,t

∣∣∣) =

O(h2+d−βd), we have∣∣∣∣∣∣
∑
s6=t

Cov(Ki,j,t,Ki,j,s)

∣∣∣∣∣∣ =

∣∣∣∣∣2
n∑
t=1

n∑
s>t

Cov(Ki,j,t,Ki,j,s)

∣∣∣∣∣
≤ 2n

∞∑
s=1

|Cov(Ki,j,1,Ki,j,1+s)|

≤ 16nO(h2(2+d−βd)/β)

∞∑
s=1

α(β−2)/β(s).

Therefore,

V ar (η̂j,1(zi)) = O

(
h2

nhd

)
+O

(
h2(2+d−βd)/β

n

)
= o

(
1

nhd

)
From the above results, η̂j,1(zi) = h2

∑d
s=1Bs,j(zi)+op(h

3+(nhd)(−1/2)).

• Proof of (A2). By the Cramér-Wold Theorem, it is sufficient to prove that
cTZ∗n converges in distribution to cTZ for any c = (c1, c2, c3, c4)T in R4.
We use “big-small block” arguments to complete the proof. Assume that
there exist positive integers p = p(n), q = q(n) and k = k(n) = [n/(p+ q)]
(the integer part of n/(p+ q)) such that as n→∞,

p→∞, q →∞, p = o(n), q = o(p), p = o
(

(nhd)1/2
)
,

np−1α(q) = o(1), phd = o(1), pεhd →∞.

Let

Zn,t =
1√
hd

(
c1u1,tk0

(
Zt − z1
h

)
+ c2u2,tk0

(
Zt − z1
h

)
+c3u1,tk0

(
Zt − z2
h

)
+ c4u2,tk0

(
Zt − z2
h

))
.
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Then, we have cTZ∗n = 1√
n

∑n
t=1 Zn,t ≡

1√
n
Wn. Let ξj =

∑(j+1)p+jq
t=j(p+q)+1 Zn,t

and ζj =
∑(j+1)(p+q)
t=(j+1)p+jq+1 Zn,t for j = 0,1, . . ., k−1, and ζk =

∑n
t=k(p+q)+1 Zn,t.

Then, Wn =

k−1∑
j=0

ξj︸ ︷︷ ︸
Wn1

+

k−1∑
j=0

ζj︸ ︷︷ ︸
Wn2

+ζk. In order to prove this lemma, it suffices

to show that as n→∞,

(1)
∣∣∣E(exp(itWn1))−

∏k−1
j=0 E(exp(itξj))

∣∣∣→ 0,

(2) 1√
n
Wn2

p→ 0 and 1√
n
ζk

p→ 0,

(3) σ2
n ≡

∑k−1
j=0 E(ξ2j ) = n(σ2 + o(1)),

(4) 1
σ2
n

∑k−1
j=0 E(ξ2j I(|ξj | > ε

√
σ2
n))→ 0 for any ε > 0,

where

σ2 =c21κ
dfZ(z1)σ2

1(z1) + c22κ
dfZ(z1)σ2

2(z1)

+ c23κ
dfZ(z2)σ2

1(z2) + c24κ
dfZ(z2)σ2

2(z2)

+ 2c1c2κ
dfZ(z1)c12(z1) + 2c3c4κ

dfZ(z2)c12(z2).

The verification of the above expression for σ2
n is given in Section 4.5.

We now prove these results respectively. From Lemma 18.2 in Li and
Racine [9], which is due to Volkonskii and Rozanov [14],∣∣∣∣∣∣E(exp(itWn1))−

k−1∏
j=0

E(exp(itξj))

∣∣∣∣∣∣ ≤ 16kα(q) = O

(
n

p
α(q)

)
= o(1),

we obtain (1). In order to prove (2), we first consider Wn2. Note that

E(W 2
n2) = V ar(

k−1∑
j=0

ζj) = kV ar(ζ0)︸ ︷︷ ︸
(P1)

+
k−1∑
i=0

k−1∑
j=0,j 6=i

Cov(ζi, ζj)︸ ︷︷ ︸
(P2)

.

Computation of (P1). Note that from

V ar(ζ0) =

q∑
i=1

V ar(Zn,i) + 2

q∑
i=1

q∑
j>i

Cov(Zn,i, Zn,j),

q∑
i=1

V ar(Zn,i) = qσ2 +O(qh2),
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and the fact that

2

q∑
i=1

q∑
j>i

Cov(Zn,i, Zn,j) = 2q

q∑
j=1

(1− j

q
)Cov(Zn,1, Zn,1+j) = O(q2hd),

we have that

V ar(ζ0) = qσ2 +O(q2hd) +O(qh2) = qσ2(1 + o(1)).

Therefore,
(P1) = kqσ2(1 + o(1)) = O(kq) = o(n).

Computation of (P2). Note that from Theorem A.5 in [5],

|(P2)| =

∣∣∣∣∣∣2
k−1∑
i=0

k−1∑
j>i

Cov(ζi, ζj)

∣∣∣∣∣∣
≤ 2

n−p∑
i=1

n∑
j=i+p

|Cov(Zn,i, Zn,j)| ≤ 2n

∞∑
j=p

|Cov(Zn,1, Zn,1+j)|

≤ 2n

∞∑
j=p

4C1nC2nα(j) ≤ C∗ n
hd

∞∑
j=p

α(j) = o(n),

where Cin = 4 max |ck| sup |us,1| sup |k0|/
√
hd for i = 1, 2. Then, we have

E(W 2
n2)/n = o(1). Similarly, V ar(ζk) = O(p+ q) = o(n), so (2) holds.

By stationarity and the same arguments in (1), we have V ar(ξ0) = pσ2(1+

o(1)). Thus
∑k−1
j=0 E(ξ2j )/n = kpσ2(1 + o(1))/n → σ2. Finally, since

|Zn,t| ≤ C/
√
hd, for every ε > 0, the set {|ξj | ≥ ε

√
σ2
n} is an empty set

when n is large. Therefore, (4) holds. This complete the proof.

• Proof of (A3). It is sufficient to prove that (Xn1, . . . , Xnk, Zn1, . . . , Znk)T
D→

(Y1, . . . , Yk, c1, . . . , ck). LetXn = (Xn1, . . . , Xnk)T , Zn = (Zn1, . . . , Znk)T ,
Y = (Y1, . . . , Yk)T and c = (c1, . . . , ck)T . Then,

E(ei(t
TXn+s

TZn)) = E(ei(t
TXn+s

T c)ei(s
T (Zn−c)))

= E(ei(t
TXn+s

T c)(ei(s
T (Zn−c)) − 1))︸ ︷︷ ︸

I

+E(ei(t
TXn+s

T c))︸ ︷︷ ︸
II

.

Note that II → E(ei(t
TY+sT c)) and I → 0 by Lebesgue’s dominated

convergence theorem. Apply the continuous mapping Theorem and we
have (A3).

4.2 Proof of Theorem 1

We adopt the proof in [7]. For z ∈ {z1, . . . , zk}, let φ∗l : 1 ≤ l ≤ p and ψ∗m∗ : 1 ≤
m∗ ≤ q be the new basis functions obtained by making linear transformations of
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φl’s and ψm∗ ’s such that φ∗1 = 1 = ψ∗1 , (E(φ∗l (X)φ∗l′(X)|Z = z) : 1 ≤ l, l′ ≤ p)
and (E(ψ∗m∗(Y )ψ∗m′(Y )|Z = z) : 1 ≤ m∗,m′ ≤ q) are identity matrices, and
E(φ∗l (X)ψ∗m∗(Y )|Z = z) = 0 for l 6= m∗. Take g1(X,Y ), . . ., gm(X,Y ) to be the
functions φ∗l (X)φ∗l′(X), φ∗l (X)ψ∗m∗(Y ) and ψ∗m∗(Y )ψ∗m′(Y ), where 1 ≤ l ≤ l′ ≤ p
and 1 ≤ m∗ ≤ m′ ≤ q. Apply Lemma 1 and we have

√
nhd



ĝ1(z1)− g∗1(z1)
...

ĝ1(zk)− g∗1(zk)
...

ĝm(z1)− g∗m(z1)
...

ĝm(zk)− g∗m(zk)


−
√
nhd



h2
∑d
s=1Bs,1(z1)/fZ(z1)

...

h2
∑d
s=1Bs,1(zk)/fZ(zk)

...

h2
∑d
s=1Bs,m(z1)/fZ(z1)

...

h2
∑d
s=1Bs,m(zk)/fZ(zk)


D→ Z∗.

(17)
Let

V ∗(z) =

(
V11(z) V12(z)
V21(z) V22(z)

)
,

where the (l, l′)-th element of V11(z) is E(φ∗l (X)φ∗l′(X)|Z = z) for 1 ≤ l, l′ ≤ p,
the (l,m∗)-th element of V12(z) is E(φ∗l (X)ψ∗m∗(Y )|Z = z) for 1 ≤ l ≤ p,
1 ≤ m∗ ≤ q, the (m∗,m′)-th element of V22(z) is E(ψ∗m∗(Y )ψ∗m′(Y )|Z = z)

for 1 ≤ m∗,m′ ≤ q, and V21(z) = (V12(z))T . Let V̂ ∗(z) be the estimator
of V ∗(z) obtained by replacing each conditional expectation in V ∗(z) with its
kernel estimator defined in (8). Then, (17) gives

k∑
i=1

‖ V̂ ∗(zi)− V ∗(zi) ‖2= Op

(
1

nhd

)
+Op(h

4) = Op

(
1

nhd
+ h4

)
.

For 1 ≤ i ≤ k, for a p× 1 vector a and a (p+ q)× (p+ q) matrix

U =

(
U11 U12

U21 U22

)
,

where the dimensions of U11, U12, U21 and U22 are p× p, p× q, q × p and q × q
respectively, define

gr,s(U) = Urs (18)

for 1 ≤ r, s ≤ 2,

g∗r,s(U) =

{
gr,s(U) if (r, s) = (1, 2) or (2, 1);
(gr,s(U))−1 if (r, s) = (1, 1) or (2, 2),

and
g(U, a) = U1,2U

−1
2,2U2,1U

−1
1,1 − U1,1aa

T . (19)
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Let α∗ be the p × 1 vector whose first element is 1 and the rest elements are
0’s. Then, ρ̂(z) and ρp,q(z) are the square roots of the largest eigenvalues of the

matrices g(V̂ ∗(z), α∗) and g(V ∗(z), α∗) respectively. Let

4r,s,i = g∗r,s(V̂
∗(zi))− g∗r,s(V ∗(zi)).

Then, we have

‖ g(V̂ ∗(zi), α
∗)− g(V ∗(zi), α

∗)‖

≤
2∏
r=1

2∏
s=1

(‖g∗r,s(V ∗(zi))‖+ ‖4r,s,i‖)−
2∏
r=1

2∏
s=1

‖g∗r,s(V ∗(zi))‖

+ ‖g∗1,1(V̂ ∗(zi))− g∗1,1(zi)‖‖α∗(α∗)T ‖,

which gives that

k∑
i=1

‖g(V̂ ∗(zi), α
∗)− g(V ∗(zi), α

∗)‖2 = Op

(
1

nhd
+ h4

)
= Op

(
1

nhd

)
and

k∑
i=1

(
ρ̂2(zi)− ρ2p,q(zi)

)2
= Op

(
1

nhd
+ h4

)
(20)

since |ρ̂2(zi) − ρ2p,q(zi)| ≤ ‖g(V̂ ∗(zi), α
∗) − g(V ∗(zi), α

∗)‖ for 1 ≤ i ≤ k. From
(20) and the fact that

k∑
i=1

(f̂Z(zi)− fZ(zi))
2 = Op

(
1

nhd
+ h4

)
,

(
k∑
i=1

f̂Z(zi)ρ̂
2(zi)−

k∑
i=1

fZ(zi)ρ
2
p,q(zi)

)2

=

(
k∑
i=1

(f̂Z(zi)− fZ(zi))ρ̂
2(zi) +

k∑
i=1

fZ(zi)(ρ̂
2(zi)− ρ2p,q(zi))

)2

= Op

(
1

nhd
+ h4

)
.

4.3 Proof of Theorem 2

We adopt the proof in [7]. For z ∈ {z1, . . . , zk}, let V̂ ∗(z), V ∗(z) and Bs,j be as
defined in the proof of Theorem 1. Let Bi be the (p+ q)× (p+ q) matrix whose

elements are h2
∑d
s=1Bs,j(zi)/fZ(zi): 1 ≤ j ≤ m = (p + q)2. From Lemma 1,

we have
√
nhdfZ(z1)/κd(V̂ ∗(z1)− V ∗(z1)−B1)

...√
nhdfZ(zk)/κd(V̂ ∗(zk)− V ∗(zk)−Bk)

 D→

 N∗1
...
N∗k

 ≡ N∗,
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where for 1 ≤ i ≤ k, N∗i is a normal matrix of elements with mean 0 and
variance 1. Apply the Skorohod’s theorem, for 1 ≤ i ≤ k, there exist random
matrices Ti and W1,i such that Ti ∼ (nhdfZ(zi)/κ

d)1/2(V̂ ∗(zi)− V ∗(zi)−Bi),
W1,i ∼ N∗i and Ti →W1,i almost surely. Therefore,

V̂ ∗(zi) ∼
√
κdTi√

nhdfZ(zi)
+ V ∗(zi) + Bi = V ∗(zi) +

√
κd√

nhdfZ(zi)
(W1,i +W2,i),

where W2,i = Ti −W1,i +
√
nhdfZ(zi)/κdBi. Note that Bi = O(h2). From

(S6),
∑k
i=1 ‖W2,i‖ = op(1).

For 1 ≤ i ≤ k, let Ṽi = V ∗(zi) + (nhdfZ(zi)/κ
d)−1/2(W1,i +W2,i), A1(zi) =

g(Ṽi, α
∗)g1,1(Ṽi) and ρ̃20(zi) be the largest eigenvalue of A1(zi)(g1,1(Ṽi))

−1. Here
the functions g(·, ·) and g1,1 are defined in (19) and (18) respectively. Then,
ρ̃0(zi) has the same distribution as ρ̂(zi). Below we will show that the impact
of W2,i is negligible in the derivation of the asymptotic distribution of ρ̃0(zi).

For 1 ≤ r, s ≤ 2 and 1 ≤ i ≤ k, let 4r,s,i = gr,s(Ṽi)− gr,s(V ∗(zi)). Then,

k∑
i=1

2∑
r=1

2∑
s=1

‖4r,s,i‖2 = Op

(
1

nhd
+ h4

)
= Op

(
1

nhd

)
and

A1(zi) =g1,2(V ∗(zi))(g2,2(Ṽi))
−1g2,1(V ∗(zi))− g1,1(Ṽi)α

∗(α∗)T g1,1(Ṽi)

+ g1,2(V ∗(zi))42,1,i +41,2,ig2,1(V ∗(zi)) +41,2,i42,1,i

− g1,2(V ∗(zi))42,2,i42,1,i −41,2,i42,2,ig2,1(V ∗(zi)) +R1,i,

where

R1,i =41,2,i((g2,2(Ṽk))−1 − Iq)42,1,i

+ g1,2(V ∗(zi))((g2,2(Ṽi))
−1 − Iq +42,2,i)42,1,i

+41,2,i((g2,2(Ṽi))
−1 − Iq +42,2,i)g2,1(V ∗(zi))

and Iq denotes the q× q identity matrix. Note that g2,2(Ṽi) can be expressed as

g2,2(Ṽi) =

(
1 BTi
Bi Di

)
for some matrices Bi and Di, so A1(zi) becomes

BTi ((Di −BiBTi )−1 − Iq−1)BiJ + g1,2(V ∗(zi))(42,2,i − J)2g2,1(V ∗(zi))

−41,1,ig1,2(V ∗(zi))g2,1(V ∗(zi))41,1,i +41,2,i42,1,i

− g1,2(V ∗(zi))42,2,i42,1,i −41,2,i42,2,ig2,1(V ∗(zi)) +R1,i,

where J = α∗(α∗)T . Let

A2(zi) =g1,2(V ∗(zi))(g2,2(W1,i))
2g2,1(V ∗(zi))

− g1,1(W1,i)g1,2(V ∗(zi))g2,1(V ∗(zi))g1,1(W1,i) + g1,2(W1,i)g2,1(W1,i)

− g1,2(V ∗(zi))g2,2(W1,i)g2,1(W1,i)− g1,2(W1,i)g2,2(W1,i)g2,1(V ∗(zi))
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and

R2,i =BTi ((Di −BiBTi )−1 − Iq−1)BiJ

− (nhdfZ(zi)/κ
d)−1A2(zi) + g1,2(V ∗(zi))(42,2,i − J)2g2,1(V ∗(zi))

−41,1,ig1,2(V ∗(zi))g2,1(V ∗(zi))41,1,i +41,2,i42,1,i

− g1,2(V ∗(zi))42,2,i42,1,i −42,1,i42,2,ig2,1(V ∗(zi)).

Then,

A1(zi) =
A2(zi)κ

d

nhdfZ(zi)
+R1,i +R2,i, (21)

where
k∑
i=1

(‖R1,i‖2 + ‖R2,i‖2) = Op

(
1

(nhd)2

)
. (22)

Note that under conditional independence, for 1 ≤ i ≤ k, A2(zi) = CiC
T
i ,

where Ci is the p × q matrix obtained by replacing elements in the first col-
umn and first row of g1,2(W1,i) with zero’s, and g1,2(W1,i) is a random matrix
whose elements are IID N(0, 1) expect that the (1, 1)-th element is 1. There-

fore,
∑k
i=1 ‖A2(zi)‖2 = Op(1), which, together with (21) and (22), implies that∑k

i=1 ‖A1(zi)‖2 = Op(1/((nh
d)2)) and

k∑
i=1

‖A1(zi)(g1,1(Ṽi))
−1 −A1(zi)‖2 = Op

(
1

(nhd)3

)
. (23)

For 1 ≤ i ≤ k, let λ0,i be the largest eigenvalue of A2(zi). By (21), (22) and
(23),

k∑
i=1

(nhdfZ(zi)ρ̃
2
0(zi)/κ

d − λ0,i)2 = op(1).

Let f̃i, ρ̃(zi) and λi : 1 ≤ i ≤ k be random variables such that the joint

distribution of (f̃i, ρ̃(zi)) : 1 ≤ i ≤ k is the same as (f̂Z(zi), ρ̂(zi)) : 1 ≤ i ≤ k,
and the joint distribution of (ρ̃(zi), λi) : 1 ≤ i ≤ k is the same as (ρ̃0(zi), λ0,i) :

1 ≤ i ≤ k. Note that nhd
∑k
i=1(ρ̂(zi))

2 = Op(1), so we have that∣∣∣∣∣nhdκd
k∑
i=1

f̂Z(zi)(ρ̂(zi))
2 − nhd

κd

k∑
i=1

fZ(zi)(ρ̂(zi))
2

∣∣∣∣∣
≤ nhd

κd

(
k∑
i=1

(f̂Z(zi)− fZ(zi))
2

)1/2 k∑
i=1

(ρ̂(zi))
2

= Op(1)Op((nh
d)−1/2) = Op((nh

d)−1/2)

and ∣∣∣∣∣nhdκd
k∑
i=1

f̃i(ρ̃(zi))
2 −

k∑
i=1

λi

∣∣∣∣∣ ≤ Op((nhd)−1/2) + op(1) = op(1).

The proof of Theorem 2 is complete.
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4.4 Proof of Theorem 3

Suppose that ρ(zi) > 0 for some zi. Then, we have
∑k
i=1 fZ(zi)ρ

2(zi) > 0.

Choose ε such that 0 < ε <
∑k
i=1 fZ(zi)ρ

2(zi) and we have

P

(
k∑
i=1

f̂Z(zi)ρ̂
2(zi) ≥

k∑
i=1

fZ(zi)ρ
2(zi)− ε

)
︸ ︷︷ ︸

III

≤ P

(
k∑
i=1

f̂Z(zi)ρ̂
2(zi) ≥

κdF ∗1−α
nhd

)

for large n. From Theorem 1,

III ≥ P

(∣∣∣∣∣
k∑
i=1

f̂Z(zi)ρ̂
2(zi)−

k∑
i=1

fZ(zi)ρ
2(zi)

∣∣∣∣∣ ≤ ε
)
→ 1,

so

P

(
k∑
i=1

f̂Z(zi)ρ̂
2(zi) ≥

κdF ∗1−α
nhd

)
→ 1.

4.5 The verification of the expression for σ2
n

The expression for σ2
n involves some variance and covariance terms. Under the

conditions in Theorem 1, the major parts for those variance and covariance
terms can be obtained. The results are as follows. For 1 ≤ i, i∗ ≤ k and
1 ≤ j, j∗ ≤ m, 1 - 4 hold.

1. V ar
(
uj,tk0(Zt−zi

h )
)

= hdκdσ2
j (zi)fZ(zi) +O(hd+2).

2. Cov
(
uj,tk0(Zt−zi

h ), uj∗,tk0(Zt−zi
h )

)
= hdκdcjj∗(zi)fZ(zi) +O(hd+2).

3. Cov
(
uj,tk0(Zt−zi

h ), uj,tk0(Zt−zi∗
h )

)
= O(h2d).

4. Cov
(
uj,tk0(Zt−zi

h ), uj∗,tk0(Zt−zi∗
h )

)
= O(h2d).

We will only give the proof for Case 1 since the proofs for other cases are
similar. Since

V ar

(
uj,tk0

(
Zt − zi
h

))
= E

(
E

(
u2j,t

(
k0

(
Zt − zi
h

))2

|Zt

))

=

∫
σ2
j (zt)

(
k0

(
zt − zi
h

))2

fZ(zt)dzt

= hd
∫
σ2
j (zi + hν)(k0(ν))2fZ(zi + hν)dν

= hd
∫
σ2
j (zi)(k0(ν))2

(
fZ(zi) + h

d∑
s=1

fs(zi)νs +O(h2)

)
dν

= hdκdσ2
j (zi)fZ(zi) +O(hd+2),

we complete verification of the expression for σ2
n.
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