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Multi-armed bandit problems have a wide area of applications such as clinical trials, on-
line industrial experimentations, adaptive network routing, etc. In this study, we examine the
bandit problem with infinitely many arms from a Bayesian perspective. We assume the
unknown Bernoulli parameters are independent observations from a common distribution F,
and the objective is to provide strategies for selecting arms at each decision epoch so that the
expected long run failure rate is minimized. In the first part of this study, we assume the
common distribution F is arbitrary but known. We introduce three strategies proposed by
Berry et al. (1996) and show that they asymptotically minimize the expected long run failure
rate. Numerical results from computer simulations are also provided to evaluate the
performance of the three strategies. In the second part of this study, we assume the common
distribution F' is unknown. For this setting, we propose a strategy called the “empirical non-
recalling m-run strategy” and prove that this strategy is asymptotically optimal. Numerical
results from computer simulations will also be provided to evaluate the proposed strategy
and two other strategies by Herschkorn et al. (1995).

Key words: Multi-armed bandit problem; Bayesian strategy.
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We consider the following settings for the bandit problem: Suppose there are
an infinite number of Bernoulli arms, of which the unknown parameters p; (suc-
cess probabilities) are i.i.d. random variables with a non-degenerate common dis-
tribution F' defined on [0,1]. At each decision stage, the decision maker chooses
an arm for observation. Our goal here is to select arms at each decision stage so
that the expected long-run failure rate (failure proportion) over n choices (with
n — o0) is minimized.

A strategy of selecting arms that minimizes the long-run failure rate is called
the optimal strategy. It is obvious that under the current settings the optimal strate-
gies depends greatly on the prior distribution /' and the number of trials n. Intu-
itively, when n is large, the decision maker is more inclined to sacrifice immediate
gain and select new arms in hoping to find one that has a larger Bernoulli param-
eter (thus producing a substantial low failure rate). However, when n is small,
new information has less value and it might be prudent to use an arm that has a
small failure rate. Therefore, during the course of an experiment and as the hori-
zon nears, arms with a low failure rate are more appealing even though they have
less potential for providing information. The same reasoning reveals that, when
F has a perceivable weight near 1, the decision maker will be more optimistic and
aggressive in searching for a new arm with a very low failure rate. On the other
hand when F' has a negligible weight near 1, one becomes more conservative and
reluctant in searching for a new arm, and has the propensity to use an arm which
has the best performance so far.

A=Y

Bandit problems have a wide area of applications in clinical trials, on-line in-
dustrial experimentation, machine learning, inter-temporal allocation in an eco-
nomics environment, etc (for real examples, see Banks and Sundaram, 1992;
Berry and Fristedt, 1985; Gittins, 1989; Lai and Robbins, 1984; Wang et al., 2005;
and the references there in). For the problem under current settings, we introduce
its one important application to the control of data routing networks. Consider a
typical computer network (such as Internet) or telecommunications network that
is determined by connections (or links) between nodes (or stations). The network
routes digital data in small pieces (called packets) and each of which is transmitted
independently through the links between nodes to the correct destination. At each
intermediate node, there could be a large number of downlinks from which the
router can select one to transmit a particular packet (called unicast transmission).
However, the transmission of packets between nodes may not succeed due to fac-
tors such as channel congestion, corrupted packets rejected in-transit, faulty net-
working hardware, faulty network drivers, etc. These “unreliable” links may result
in packet loss, thus affecting the quality of service (QoS) performance of network.
Therefore, a good routing strategy must be able to select, at any point in time,
the best downlink to transmit the packet so as to possibly minimize the packet



loss rate. Note that such a routing scheme can be simply modeled as the bandit
problem, where each possible downlink of a particular node can be viewed as an
“arm”, and the corresponding probability of successfully transmitting a packet is
denoted by p; (or the probability of losing a packet is 1 — p;). Figure 1 illustrates a
basic component of the described network topology with one router and n parallel
downlinks. However, when information about the reliability of downlinks is not
available (this is often the real situation), constructing an optimal routing strategy
becomes a challenging task.

Router

Dy Dy

Figure 1: An illustration of data network with one router and n parallel downlinks.
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The primary study of bandit problems can be traced back to the work by Mal-

lows and Robbins (1964), Robbins (1952), and Thompson (1933). Afterwards,
there exists a fairly rich literature discussing one-armed bandit problems with var-
ious settings (Clayton, 1989; Sarkar, 1991; Woodroofe, 1979; Zoubeidi, 1994).
Berry and Fristedt (1985) described the general setting of multi-armed bandit
problems and provided extensive treatment to them. Narendra and Thathachar
(1989) treated bandit problems from the engineering perspective, providing a good
discussion of the various theoretical traditions that have focused on them, Pandey
et al. (2007) provided a framework to exploit dependencies among arms. Other
pertinent references include the work by Auer and Cesa-Bianchi (2002), Gittins
(1979, 1989), Guha et al. (2010), Lai (1987), Lai and Robbins (1984), Powell
(2007), and Whittle (1982, 1983), just to name a few. A remarkable study of ban-
dit problems from the Bayesian perspective is the work by Berry et al. (1997),
wherein three appealing strategies (called the m-run strategy, the non-recalling
m-run strategy, and the N-learning strategy) were shown to, as the number of tri-
als goes to infinity, achieve the best lower bound of the expected failure rate when
F is the uniform(0, 1) distribution (i.e., they are asymptotically optimal). Later
on, Lin and Shiau (2000) conducted a simulation study to evaluate the numerical
performance of these three strategies when £ is the beta distribution. On the other
hand, the study of bandit problems regardless of the common distribution F' is
rather limited. Herschkorn et al. (1995) proposed a strategy that pulls the ¢th arm
until ¢ failures in a row are observed (called the “¢ — ¢ strategy” in later analysis)
and showed that this strategy minimizes the expected long-run failure rate without
requiring knowledge of F'. However, numerical evidence shows that this particu-
lar strategy does not perform well due to its slow convergence rate (see Berry et
al. (1997) and Section 4 for examples).

(M) HREFGE

Optimal Strategies for Arbitrarily Known Priors
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We start with introducing two sets of strategies that are closely related to the
optimal strategies described later. The first strategy is called a “k-failure strategy”,
which calls for using the same arm until that arm produces k failures, and when
this happens, it calls for switching to a new arm. Note that this strategy never
recalls arms that have produced failures. With the possible exception of the arm
being used when the total number of trials 7 is reached, every arm used yields a

total of k failures. The second strategy is called a *“S-rate strategy”, which stays on
the same arm until that arm has produced a failure rate greater than (3, 5 € [0, 1],

and when this happens, the arm is discarded and a new arm is used. Analogously,
the discarded arms are never recalled.

One might suspect that the [-rate strategy can do better than the 1-failure
strategy for some particular choices of 5. However, as shown by Berry et al.
(1997), if F'(a) < 1 for all @ < 1, the expected failure rate of the 5-rate strategy
is always greater than a positive constant as n — oo for any 5 > 0. On the other
hand, we see that if > fol aldF(a) = oo, the expected failure rate of the 1-
failure strategy goes to 0 as n — oo. This means that if n is large enough, the
1-failure strategy outperforms the 3-rate strategy for any choices of  when F' has
the property that 3 >° fol addF(a) = 0.

Itis noted that the 1-failure strategy can perform poorly when % | fol addF(a) <
oo. A simple example is when F'is a beta(a, b) distribution with the shape param-
eter b > 1. Therefore, we seek for other strategies that can possibly achieve the
lower bound given in Eq. (4) when n is large. We next introduce three appealing
strategies proposed by Berry et al. (1997).

e The m-run strategy: This strategy uses the 1-failure strategy until either the
current arm has produced a success run of length m or m arms are used. If the
former obtained, then the current arm will be used for the all remaining trials. If
the latter obtained, then the arm with lowest failure proportion among the m arms
used so far will be used for the all remaining trials. So an m-run strategy uses at
most m arms. If it does use m arms, then the best performing arm is recalled and
will be used for all remaining trials.

e The non-recalling m-run strategy: This strategy uses the 1-failure strategy until
an arm has produced a success run of length m at which this arm will be used for
the all remaining trials. If no arm has produced a success run of length m, then
the 1-failure strategy is used for all n trials.

e The N-learning strategy (N < n): This strategy follows the 1-failure strategy
for the first /V trials (the arm used at the N-th trial will be used until such time that
it yields a failure), and then it calls for using the arm that performed best during
the learning period for all remaining trials.

An Optimal Strategy for Unknown Priors

Motivated by the optimality of the “non-recalling m-run strategy” from Sec-
tion 2 and its nice numeric performance given by Lin and Shiau (2000), we next
introduce a new strategy called the “empirical non-recalling m-run strategy”” when
the prior distribution F'is unknown.



e The empirical non-recalling m-run strategy: For each positive integer n, let k
be the smallest integer such that k& > 1/2/n. Choose k independent arms and
perform k trials for each arm (thus %? trials in total). Record the observed pro-
portion of success p; for each arm ¢ and construct an empirical distribution Fj,
for p1, P2, . .., Pr. Implement the non-recalling m-run strategy for the remaining
n — k? trials based on the empirical distribution FJ,.

Note that this new strategy is comprised of two stages — learning and imple-
mentation. In the learning stage, the k? trials are used to construct the empirical
distribution of the observed Bernoulli parameters p; so as to obtain a good esti-
mate for the underlying unknown distribution F'. In the implementation stage, the
non-recalling m-run strategy is used for the remaining n — k? trials. The follow-
ing theorem shows the asymptotic optimality of the empirical non-recalling m-run
strategy.

(H) #EREETR
When F is known, we prove that:

Theorem 1. Suppose that 0 < z* = inf{t : F(t) = 1} < 1, then the expected
failure rate of the non-recalling m-run strategy can be arbitrarily close to 1 — z*.

Theorem 2. The non-recalling u,,-run strategy is asymptotically optimal.

Theorem 3. The k,-run strategy is asymptotically optimal.
Theorem 4. The N-learning strategy is asymptotically optimal.
When F is unknown, we prove that:

Theorem 5. Suppose that 0 < z* = inf{t : F(t) = 1} < 1, then the expected
failure rate of the empirical non-recalling m-run strategy can be arbitrarily close
tol —x*.

Theorem 6. The empirical non-recalling u,,-run strategy is asymptotically opti-
mal.

Now we proceed to evaluate the numerical performance of the proposed em-
pirical non-recalling m-run strategy via computer simulation. Since now we as-
sume the underlying distribution F' is unknown, for comparison purpose we also
evaluate the performance of (i) the 7 — ¢ strategy proposed by Herschkorn et al.
(1995), which pulls the ith arm until ¢ failures in a row are observed; and (ii) the
1-failure strategy, which is a popular strategy and easy to implement. The “sim-
ulated” long-run failure rates for these strategies with different numbers of trials
are given in Table 1, for which F'is generated from five different beta distribu-
tions: beta(0.5,0.5), beta(1, 1), beta(2,2), beta(1,2), and beta(2, 1). It should be
noted that, the choices of F' in the simulation study represent a fairly wide range



of shapes including possibly symmetrical, right-skewed, and left-skewed distri-
butions over (0, 1). In addition, each failure rate is estimated by the average of
2,000 Monte Carlo simulation trials that were executed on 2.53GHz Intel Core 15
processor with 4GB of cache under the operating system of Mac OS 10.6. The
computer programs were written in R, where the function “rbeta” was used to
generate beta random numbers.

As can be seen from Table 1, our proposed strategy significantly outperforms
the other two strategies for almost all simulation scenarios. On the other hand,
the ¢ — 1 strategy, although proven optimal, performs poorly due to its slow con-

vergence rate. It is worth noting that the 1-failure strategy reveals to be fairly
competitive when F' is beta(0.5,0.5) or beta(2,1). The numerical evidence sup-

ports the fact that the 1-failure strategy, although proven not optimal, performs
well when F’ has a lot of its probability mass near one.

Table 1: The estimated failure rates of the three strategies for different choices of n and F'. Note
that m represents the average of the best chosen values of m for the empirical non-recalling m-run
strategy.

Empirical non—recalling

m—run strategy The i—i strategy ~ The 1-failure strategy
F n m

100 7.5 0.117 0.176 0.104

300 10.3 0.065 0.137 0.063

beta (0.5,0.5) 500 139 0.055 0.125 0.049
1000 18.1 0.032 0.110 0.035

1500 25.7 0.030 0.105 0.029

2500 30.6 0.024 0.092 0.024

100 6.2 0.176 0.262 0.219

300 14.8 0.109 0.227 0.180

beta(1,1) 500 16.0 0.090 0.209 0.167
1000 21.0 0.066 0.192 0.149

1500 275 0.054 0.182 0.141

2500 33.0 0.046 0.173 0.132

100 9.2 0.246 0.348 0.355

300 17.1 0.204 0.312 0.344

beta (2,2) 500 223 0.197 0.298 0.340
1000 28.9 0.154 0.283 0.336

1500 33.8 0.135 0.273 0.336

2500 40.3 0.126 0.261 0.334

100 9.1 0.347 0.472 0.520

300 16.2 0.335 0.421 0.508

500 235 0.306 0.393 0.504

beta(1,2) 1000 29.1 0.294 0373 0.502
1500 313 0.288 0.358 0.501

2500 35.6 0.258 0.343 0.501

100 11.0 0.147 0.182 0.136

300 15.8 0.090 0.156 0.108

beta (2,1) 500 194 0.075 0.147 0.098
1000 22.6 0.053 0.134 0.088

1500 26.8 0.040 0.129 0.083

2500 315 0.035 0.123 0.078

The Control of Data Routing Networks - Revisited
Let’s recall the network routing problem introduced in Section 1. A well-



known routing strategy called “round-robin”, which selects downlinks to transmit
the packets in circular order and in equal proportion, is extensively used and has
been shown to be optimal in many situations. However, it is straightforward to see
that under our current settings, such a routing strategy will result in a successful
transmission rate close to the “mean” of the prior distribution F' as the number of
downlinks becomes large (this is simply the result of the law of large numbers).
Therefore, the expected “failure” (or packet loss) rates under the round-robin
strategy are 0.5, 0.5, 0.5, 0.67, and 0.33 when F' is chosen to be beta(0.5,0.5),
beta(1,1), beta(2,2), beta(1,2), and beta(2, 1), respectively. This means that the
round-robin strategy is far from “optimal” when the number of “arms” is large. In
this case, the performance of our proposed strategy has been shown promising.
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