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l. Research background

Most credit derivative products possess an underlying reference pool of credit entities
with multiple asset classes. The valuation of such products entails careful assessments of the
likelihood of defaults and the inter-dependent relationship among them. Recent trends in the
development of credit-related products, such as forward-starting CDO tranches, option on
CDO tranches, and reset tranches are basket-typed securities with fexible timing features
embeded. The factor copulae formalism of Li(2000), Laurent and Gregory (2003), Andersen
et al. (2003) and Hull and White (2004) that generates conditional portfolio-loss distributions
on single fixed maturity dates are inadequate under an inter-temporal setting, and has since
triggered research efforts to consider inter-temporal default inter-dependencies.

A forward-starting CDO (FCDO) is a forward contract which allows investors to buy or
sell a specific tranche on a pre-specified date. The premium for the protection sellers is preset
at the beginning of the contract, and they are responsible for the future losses of the reference
pool should any default event takes place during the contract period. As a protection measure
for the protection sellers, the protection buyers of FCDOs are solely responsible for the losses
of any underlying credit entities prior to the pre-determined contractual date. Upon entering
the contract, the underlying credit entities that have defaulted are then excluded from the
reference pool.

Although the contract of a FCDO only becomes effective after the contractual date, the
changes in the default probabilities of the underlying reference pool shall still affect the value
of the contract. When the average credit spread of the reference pool increases by one basis
point, the credit spread of each tranche will decrease. Thus, in order to hedge the market-wide
spread-risk upon entering into long positions in a FCDO contract, investors should in fact
consider taking specific short positions (buy protection) in the CDS index.

The valuation and hedging of these instruments require a dynamic description of
portfolio losses, and therefore, of the correlated nature of defaults that would result in such
losses. A consistent pricing framework under such dynamic description presents a real
challenge to both academic researchers and practitioners, and the existing literature on this
subject is surprisingly scarce. In this research, we explore the feasibility of modeling the
correlated nature of defaults in an inter-temporal setting, and we consider the valuation of
options on forward-starting CDO tranches under such framework.

As for the valuation of options on forward-starting CDO tranches, the decision to buy or
sell protection at a forward time T depends on if the losses due to defaults events that took
place prior to the exercise date remain below the tranches detachment point. A dynamic
description of losses are therefore of absolute necessity in determining the probability of the
option being “in-the-money”, and this in turn calls for an adequate modeling of default events
which are inter-temporally dependent. In contrast to Jackson and Zhang (2007), this research

adapts the inter-temporal factor copulae model of Andersen (2006) in order to calculate the
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expected losses of forward-starting CDO tranches. Under the inter-temporal framework, we
derive the relevant tranche spreads of forward-starting CDOs. In addition, we allow the
systematic and idiosyncratic risk factors and the factor loadings to be inter-related across time
horizons, in order to properly characterize the inter-temporal feature of the forward-starting
CDO tranches.

Subsequent parts of this report are organized as follows. Section 2 presents the
methodology that introduced the inter-temporal factor for pricing the FCDO tranches. Section

3 analyzes the numerical results. Section 4 concludes.

Il.  Methdology

1.1 Inter-temporal Correlation:

We begin with only two dates {Tj}]_z=1. As to the asset value, we define as follows:

XM = fay(TOM® + /T —a;(Tel” at Ty
X® = [aj(THOM® + /T — a;(Tp)e? atT, i=12,..,N

@
1
respectively. The density of MO is (pl(dl) (m), j=1,2 and the joint density of M) and M®
is (Pl(\:[)(mpmz)-

Let Fi(j)(e) denote the cumulative distribution function for ei(j) , j=1,2, and let

where Xi(j) is asset i’s value. Also M@ and e’ are systematic and idiosyncratic risk factor

Fi(l’z) (e1,e5) be the joint cumulative distribution function for ei(l) and ei(z). With the barrier

variable H;(t), we would lead to conditional survival probabilities:

Pr(t; > t) = Pr( a(TOM® + T —a (Te® > Hi(t)),t € [0,T,]
Pr(T, <t <t) =Pr (,/ai(Tl)M(U + /1 —a;(Te”

> Hi(Ty), Var(TOM® + T = 2 (T)e® < 1)

where t € (Ty, T,].
Setting our total systematic factor vector to M = (M(l), M(z)) = (mq,m,), we can get

the following results:

Pr (,/ai(Tl)M(D + /1= a;(TDe™ > Hi(Ty), Va (T)OM®@ + /1 — a;(T,)e® < Hi(t))

_ @ (Hi(t) - ai(Tz)mz>
1 V1 —2a(T)
e (Hi(n) —Jai(T)my Hi(®) — aim)mz)

where t € (Ty, T,].



We use the fact that:
Pr( @ 5 el,ei(z) < ez) + Pr (ei(l) <ey, ei(z) < ez) = Pr (ei(z) < ez)

to rewrite the equation and lead to conditional survival probabilities:
Hi(0) - aﬁnmﬁmemnu
Vv1-—2ai(Ty)
Hi(t) - mﬁﬂmﬁ
V1—2ai(T)
+F@m<man— ai(T)m; Hi®) — a(T)m,

i JT=a(m)  J1—a(Ty)

Since we consider a Gaussian copula where M and Z are standard normal distribution,

qi(tl mllmZ) =1- F(1)<

qi(t, my, m;) = q;(Ty, my, my) — (2) (

>'t € (TI'TZ]

that 1s, we write:

H;(t) —va®m,

Qi(tnmpmz):l—@( m ),tE[O,T1]

H;(t) —va®m, H;(t) —va®m,
qi(tr mll mZ) = 1 - m (D
+ o Hi(T)) —va®m,; H;t) —va@m,
’ Ji—a® 1 J1-a®

Calibration of H;(t) is accomplished from the equation:

; Pe) JLE (Ty, Ty ]

Pﬂn>t)=j‘qitmpmﬁ¢3m0npmﬁmmdmz
M

A FCDO have an effective date T* preset in the beginning of contract and the terminal
maturity denoted by T. If defaults take place before the effective which is time interval
between [0,T*], the investors need not count in these default when determining the
cumulative losses in a given tranche. To obtain the entire loss distribution between [T*, T].

we substitute primary default probability Pr(t; <t) to Pr(T* <t <t).

11.2 Constructing the Loss Distribution

Assume that nominal principal and recovery rate for each asset are the same, we can
calculate the survival probability S;(t|M) and the default probability Q;(t|M) in order to
construct the loss distribution. In other words, given that np(t|M) is the probability that
exactly k defaults occur from time zero to time T , and systematic risk factor is known, then

we get:

N
mrOIM) = [ [sicTiMy
i=1

Similarly, by replacing survival probability to default probability, we can prove:



N N
ano = [ [scmn|« Y2 _ o - Z L
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Define w; = %, then the above equation can be renewed to:

j
o (M) = 2r(OIM) % )" W1y Wz - Wagig,] = O
i=1
where z(1),z(2),...,z(k) is a set of k assets selected from N assets.
To know the relationship of Uy, Ux_4,..., U, we also define:
j
Uy = Z Wa(1)Wy(2)- - Wzl ] = Cit
i=1

Hull & White show that if a variable can be described as:

then there exist the relationship as follow:
U, =V,
2U, =Vv,U; =V,
3U3 =V,U, = V,U; + V3

kUk = VlUk—l - VZUk—Z + -+ (_1)kvk_1U1 + (_1)k+1vk

Based on the above procedure, one can calculate the wp(k|M) by finding Uy, U,,... Uy.
In addition, it is easy to compute the loss distribution by integrating over the M. However,
this recurrence method cannot be used in the non-standard products. Also, the loss distribution

cannot be constructed when the number of underlying asset pools is too large.

I11. Numerical results

First, we construct and price two FCDOs based on methodology as described in section
2. Second, we examine the impact of each parameter to the credit spreads and what makes the
credit spreads changed. Finally, we use the hedging parameter delta to explore the FCDO
hedging issues.

We consider FCDO pricing on a CDX-like portfolio with 125 names, with average
S-year spread of 75bps. The effective date of the FCDO is T*, and the maturity is T. We let the

contract period T —T* =5 and consider two trades T* =2 and T* = 5. The tranches are
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0-3%, 3%-7%, 7%-10%, 10%-15% and 15%-30%. For simplicity, we let the risk-free rate be
constant of 5%, recovery rate be 0 and factor loadings a; = a,.
Based on the methodology described in section 2, we then examine the impact of the

inter-temporal factors of the system risk and idiosyncratic risk on the credit spreads of the
FCDO tranches.

I11.1 The Impact of p,,

In a Gaussian model, we assume that the systematic risk factor loading va = v2 and

the inter-temporal correlation of the idiosyncratic p, = 0. We consider four cases of the

inter-temporal correlation of the systematic risk p,,, which are {1, T* /T,O,—l}. The

numerical results are shown as follows.
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Figure 1 =2 a; = a, = 0.2,p, = 0, Gaussian model Figure 2 T =5, a; = a, = 0.2,p, = 0, Gaussian model

From Figure 1 and 2, we can observe that in all cases of T —T* =5 years, the credit
spreads of the FCDO are higher than the regular synthetic CDO tranches, especially, the later
of the FCDO contract effective date is, the higher the credit spreads are. This shows that if
default intensity is constant, the default probability will increase as time goes on. In general,
the senior and subordinated tranche are hard to default in the first or second year, so the
investors usually can receive the fixed payoff in every interest payment date. As to the FCDO,
it does not need to pay these premiums before the effective date and cause the effect of
deferred payment. However, it should give more risk premiums to attract more investors.

In addition, as the inter-temporal correlation factor p,, getting small will decrease the
credit spreads of the equity tranche and increase the credit spreads of the senior tranche. We
begin with inspect the loss situation of senior tranche. Let the contract period [0, T] be
divided into two periods [0, T*] and [T*,T].

Since the inter-temporal correlation p,, is higher, and with a well market environment
in the first period, there is a decreased likelihood to crash to the second period. Therefore the
senior tranche has less possibility to suffer loss. On the country, as the p,, get close to -1, the
environment of the second period will be inversed. As a result, there may be few defaults in

[0, T*] and caused a sufficient amount of defaults located inside [T*, T] that lead senior



tranche under less protection during effective period. It implies senior tranche take more risks.

On the other hand, if the economic environment of the first period is bad, there may be
large number of defaults to concentrate in [0, T*] and leaving a few underlying assets still in
the portfolio. Even the remain part of the underlying assets to default in the [T*, T], the losses
will be absorb by equity and subordinated tranche, and cause the investors of the senior
tranche to take less risks. The smaller the value of p,, is, the better the market environment
is in the second period, still makes investor of the senior tranche having less probability to get
losses. Briefly, as the inter-temporal correlation is lowered, there may be a sufficient amount
of defaults located inside [T*, T] to cause loss in the senior tranche and raise the credit
spreads of it.

For the equity investor, things work the opposite way than for the senior investor. Under
the well environment in the first period and inter-temporal correlation factor p,, is higher,
there is very few defaults take place in [0, T*], and some poor foundational assets still in the
portfolio that cause the equity tranche more risky. When the economic environment is bad in
the first period and the value of p,, is getting closer to -1, that means the large amount of
defaults clustered in [0, T*], and also include the pool foundational ones, this will decrease
the equity tranche risky. In other words, lowering inter-temporal correlation will make the

equity tranche less risky.

111.2 The Impact of p,_
See the examples of py; given above, we come to observe the other timing variable pe.

Using the Gaussian Factor Copula environment with v/a = v0.2 and py = 0, the impact
of p, =1,{/T*/T,0,—1 can be showed as Figure 3 and 4.
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Figure 31T =2 a; = a, = 0.2, p,; = 0, Gaussian model Figure 4 T =5, a, = a; = 0.2,p,, = 0, Gaussian model

As the results of Figure 3 and 4, the little p. has more CDO spreads for all tranche and
bigger loss probability. (see Figure 4.1) This phenomenon is due to the investors of FCDO
only response the loss during [T*,T], that is, the investors only consider the assets that survive
during [T*,T] and react without default asset. The assets that survive during [T*,T] are well

enough to having bigger e. In other words, the smaller the p. and e are, the larger the default



risk is. And this phenomenon does not only appear in equity tranche investors. When all
assets that survive during first period [T*,T] but there has individual firm becoming physical

deterioration in the second period [T*,T], the investors of senior or highest tranches may have

the loss. Thus, all the spreads of credit tranches will be bigger when the p, is smaller.

111.3 The Impact of a

Above study is assumed in a=0.2, and then we come to observe the impact of credit
spreads when the system load factor v/a increase to va = /0.2.
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Figure 5 T"=2a=02, p, = 0, Gaussian model
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Figure 7 T*=5a=0.2 p, = 0, Gaussian model Figure 8 T*=5a=08, p, = 0, Gaussian model

From Figure 5 to 8 show the different impact of py to different credit tranche spreads
when p, = 0. We find that the loading of systematic risk factor v/a less sensitiveness when
pm is small. This is the same conclusion of Hull & White (2004).

Next, we can observe that the credit spreads does not change larger as py becoming small.
This is because that the risk characteristics are the same with the senior tranches when the

systematic loading risk factor coefficient is larger. The results of increasing a=0.8 is showing
from Figure 9 to 12.
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Figure 11 = 5,a=0.2, Py = 0, Gaussian model Figure 12 = 5,a= 0.8, Py = 0, Gaussian model

111.4 Hedging of FCDO

The CDS index is the most often seen instrument to hedge the price risk of a synthetic
CDO. The CDS index is a standardize contract and has high trading volumes and great
liquidity. Therefore, it is convenient to hedge the market-wide credit spread risk with the CDS
index. The composition of a CDS index is not always the same with the portfolio of a
synthetic CDO. Hence, it is necessary to compute the hedging parameters, and measure the
capability of a hedging strategy.

Although the contract of a FCDO becomes effective after the effective date, the changes
in default probabilities of the underlying asset pool still affect the value of the contract. If the
average credit spread of the underlying asset pool increases by 1bp, the values of each tranche
will decrease. Thus, when investors enter into a long position in a FCDO contract, a short
position (buy protection) in CDS index should be constructed to hedge the market-wide credit
risk. For simplicity, we assume that a = al = a2, r=p_ = p,.

In Figure 13 to 16, we show that when the loading of systematic risk factor ‘a’ decreases,
the dispersion in delta of each tranche increases. When the credit spreads of underlying asset
pool increase, the equity tranche of the FCDO suffers the greatest negative impact. On the
other hand, when the loading of systematic risk factor increases, the dispersion in delta of
each tranche decreases. Moreover, delta of the equity tranche becomes smaller and delta of
the highest rated tranche becomes bigger. Also in these figure, we can see that when

r = pp = Pe decreases, delta of the highest rated tranche increases.



Figure 15 = 5 T = 10,a = 0.2, Gaussian model Figure 16 T = 5,T = 10,a = 0.8, Gaussian model

Next, we consider the feasibility of the hedging strategy. We take the equity tranche as
an example, under the assumption of a = 0.2, T* = 2, and r = 1, delta of this tranche is
-9.8248. Therefore, to fully hedge the price risk due to the changes in the credit spreads of
underlying asset pool, one should sell the CDX index contract and its total amount must equal
to 9.8248 times the total principal of the investment on equity tranche. When the credit
spreads of underlying asset pool change by 1bp in average, the value of the equity tranche
will decrease by -12300. Meanwhile, the value of hedging position will gain 12300 therefore
offset the decrease in value of the equity tranche position. However, for the FCDO holder, the
premium of 2371bps is received after the effective date, but the hedging cost of 9.8248*75bps
is paid before this date. Before effective date, the investor must pay 184.215bps in every
quarter. After the second year, the investor has the net income of 408.535bps. Therefore, the
equity tranche investor must receive the premium at least for one year, or the hedging cost
will be greater than the premium.

Then, we consider the hedging feasibility of 7%~10% tranche investors. Under the
assumption of a = 0.2, T* = 2,r = 1, delta of this tranche is -5.3843. The total principal of
this tranche is 3.75 million dollar, hence, the investors must sell 36.843 million to construct a
fully hedge strategy. Yet the premium of 209bps will be received after effective date. Before
the effective date, investors must pay 5.3843*75bps for the hedging position. After second

year, investors have net income of 108.23bps in each quarter. Therefore, the investors should



receive the premium for at least 2.25 years or the hedging cost is too high to be offset.

For the highest rated tranche, under the same assumption of a, T*, and r, delta is -0.6621.
Before the effective date of the FCDO, the investors have to pay 0.6621*75bps for hedging
cost. After that, the investors have net premium of 5.6bps. The total hedging cost is more than
total income of the investors, thus, hedging strategies using delta are not feasible for the
investors of the highest rated tranche.

Then we change the effective date to examine the impact on the effectiveness of the
hedging strategy. Under the assumption of a = 0.2, T* = 5,and r = 1, delta of equity tranche
is -9.7619. Therefore, before the effective date, the investors must pay 9.7619*80bps annually.
This means that the investors have net outcome of 195.238bps quarterly. Until the second year,
the investors receive the net income of 453.762bps. Thus, for equity tranche investors, the
premium at least for one year should be received in order to cover the hedging cost. By
comparing between Figure 13 to 16, we show that hedging parameters are similar after
delaying the effective date. However, the investors must pay greater hedging cost because of
the delayed premium income. In general, the farer the effective date is, the more difficult

hedging is.

I\VV. Conclusion

From the above analysis, we show that because of the feature of deferred premium for
the FCDO, the investors must pay the hedging cost and have no premium before effective
date when implementing a hedging strategy using delta. Furthermore, the hedging cost of the
CDS index as a hedging instrument is very high. For equity tranche investors, at least one
year of premium have to be received to cover the hedging cost. For the highest rated tranche
investors, the hedging cost is higher than income so that this hedge strategy is not feasible. In
general, the difficulty of hedging increases as the effective date becomes farer from beginning
date of the contract. However, at present, in order to make FCDO more attractive, the issuers
would pay a premium the same level as LIBOR before the effective date. The main objective
of this design is to smooth the premium income to every payment date before and after the
effective date. Therefore the investors have earlier premium income and reduce the difficulty

of hedging.
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This research adapts the inter-temporal factor copulae model of Andersen (2006)
1n order to calculate the expected losses of forward-starting CDO tranches. Under

the inter-temporal framework, we derive the relevant tranche spreads of
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forward-starting CDOs. In addition, we allow the systematic and idiosyncratic risk
factors and the factor loadings to be inter-related across time horizons, in order

to properly characterize the inter-temporal feature of the forward-starting CDO
tranches.




