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Introduction 

A CDO-squared (denoted as CDO²) offers yield-enhancement for tranche investors 

while at the same aims to further reduce their credit risk exposures. Due to the 

synthetic nature of such products, the underlying CDOs (the inner CDO) can be 

created conceptually for the sole purpose of being referenced. However, it has some 

drawbacks. A CDO² is particularly sensitive to several areas: (1) the degree of overlap 

among referenced assets in the inner CDOs, (2) default correlation between the 

underlying credits, (3) location of defaults in the inner CDOs. An in-depth study on 

the pricing and hedging of this product is therefore essential to the credit market, and 

this entails careful investigations on the risk characteristics of such products. 

 

A CDO² consists of a portfolio of inner CDOs. Each inner CDO in turn consists of a 

pool of reference credit entities. Such pool forms the fundamental layer in its product 

structure, and to further complicate the situation, the underlying names that are 

referred among the inner CDOs can in fact overlap, and can thus result in 

simultaneous defaults occurring. In particular, the overlapping feature induces a direct 

dependency among the inner CDOs, and further complicates the correlation structure 

among default events. 

 

Unlike in the modeling of CDOs where the characterization of the lost distribution 

requires, in addition to a copula that captures the correlation structures, the knowledge 

of the number of defaults in the underlying pool before maturity. The modeling of 

CDO²s requires us to also consider the location of the defaults; i.e. to specify the 

payoff of CDO², we need to know both the number of defaults and how these default 

events are distributed in the inner CDOs. 

 

 

Literature Review 

There are two major difficulties involved in the pricing of multi-named credit 

derivatives products: firstly, the characterization of a default distribution, and 

secondly, the correlation of the underlying credits. Li (2000) constructs the joint 

distribution of survival times via a copula function which inter-links the marginal 

distributions of the underlying credits. However, the Li-model suffers from the curse 

of dimensionality as it is required in the model that the joint distribution of default 
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times be fully specified. As a direct consequence, the execution of Monte Carlo 

simulations becomes time-consuming as the number of underlying credits increases. 

 

Laurent and Gregory (2003), Andersen et al. (2003) and Hull and White (2004) 

developed the semi-analytic approaches under the conditional independence 

assumption. The conditional independence assumption, pre-assumes that, conditional 

on a common risk fact default event are mutually independent. Such assumption  

overcomes the curse of dimensionality and gives rise to the market-standard factor 

copula approach.  

 

In terms of characterizing the conditional loss distribution, Laurent and Gregory 

(2003) use the Fast Fourier Transforms to construct the conditional loss distribution 

via the convolution of characteristic functions. Andersen et al. (2003) proposes a 

recursive method to build up the loss distribution. Following the same stream of 

thoughts, Hull and White (2004) introduce the probability bucketing approach for 

generating the lose distribution. Under the conditional independence assumption, the 

correlations structure among defaults is reduced to an integral that can be solved 

numerically, and the resulting model is highly efficient in calculating the tranche 

greeks for hedging purposes. However, we must note that such simplification though 

result in the analytic tractability of the pricing model, information regarding the 

correlation structure among default times is actually lost, and the commonly observed  

contagion effect of defaults is no longer observable in the model. Whether or not there 

exist other means of bringing back a dynamic nature of default correlations under the 

conditional independence assumption remains an open question. 

 

 

Research Objectives 

In this research, I adapt the conditional independence framework for our modeling 

purposes due to the analytic tractability and efficiency in the computation of hedging 

parameters. In other words, I aim to develop a semi-analytic approach to price CDOs 

that are of compound-protection layers. My preliminary attempt which resulted in a 

published article (Chiang, Yueh, and Lee (2008)) was to consider the possibility of 

generating the loss distribution for CDO² without Monte Carlo simulation. The 

algorithm consists of two parts: firstly, the construction of conditional loss distribution 

for a portfolio of inner CDOs and secondly, the transformation of the above 

distribution to the conditional loss distribution of the mater CDO.  
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In this research, I have further extended this algorithm to full generality; in particular, 

I address the questions as to whether or not there is a general principle governing the 

generation of conditional loss distribution when the credit protection layer is of 

compound structure. Furthermore, adequate risk measures for such credit derivatives 

with compound protection structure need to be introduced in order that proper 

understanding of their risk profiles can be established. In addition, we must confront 

the question of how the overlapping effect among obligors can be quantified.  

 

This research aims to contribute in three aspects: (1) to establish an efficient pricing 

model for CDOs with compound protection structure, (2) to provide appropriate risk 

measures for characterizing the risk profiles of such products, and (3) to provide 

proper ways for hedging the embedded risks. In addition, I proposed the following 

questions to be answered: 

(1) How to construct the conditional distribution for CDO with compound protection 

layer? 

i. The technique to solve the problem of overlapping structure. 

ii. The method of handling the path-dependent structure of lower-layer. 

(2) Is there a generalized framework for the valuation of nth power CDOs? 

i. The valuation of CDO². 

ii. The extension of CDO² to higher layers. 

(3) What are the adequate risk measures for the multi-protection-layer CDO? 

i. The quantifying of diversification/overlapping risk. 

ii. The measure of risks between tranches. 

(4) What are the coherent hedging parameters? 

i. The definition of tranche Delta, Gamma, and other Greeks. 

ii. The efficient method for calculation of hedging parameters. 

(5) How to derive proper hedging strategies? 

 

 

Methodology 

1. Valuation of Tranche Spreads for CDO² 

Assume that all payments are made at specific time points jt , where 

1 20 ... Nt t t T     . The expected (
jtE L 

  ) for any CDO² tranche at time jt can 

be defined as: 
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max

0

( ) max(0, min( (1 ), ) )
j

L

t i j
i

E L p t i R U L


         

where maxL  stands for the maximum loss of the reference pool, and R denotes the 

recovery rate; U and L are the upper, and lower attachment points of CDO² tranches 

respectively.  

The default leg (DL), and premium leg (PL)) are: 

1
1

( )
j j j

N

t t t
j

DL B E L E L




          

 max
1

j j j

N

t t t
j

PL s B L E L


          

where 
jtB represents the discount factor at time jt ; s denotes the tranche spread per 

annum; 
jt accounts for the time adjustment factor for accrual payments at any 

specific date jt . The tranche spread, s, is then extracted by equating the above two 

legs 

 
2. The Generalized Recursive Algorithm 

In the following we begin with the construction of the conditional loss distribution for 

a portfolio of inner CDOs. Suppose a CDO² consists of n inner CDOs. Each inner 

CDO in turn consists of a reference pool of m underlying credit entities. The 

derivation of conditional loss distribution requires a extended recursive procedure that 

we consider in the following: 

Let Pr( | )i iH t M   be the conditional default probability of the i-th underlying 

credit entity. To be consistent with the probability bucketing approach of Hull and 

White(2004), we divide the accumulated total loss into k sub-blocks of buckets: 

     0 1, ,..., ku u u , where  0u refers to a zero loss of total notional,  1u refers to a one 

chosen unit loss, and  ku refers to an accumulated loss of total notional. Note that the 

unit loss (basket size) can be arbitrarily chosen in accordance with the targeted 

problem in hand.  

Our recursive algorithm proceeds by a sequential addition of the underlying credit 

entities into the reference which is initially empty. For example, at the beginning of 

recursion when the pool contains zero entities, the (conditional) probability of a zero 
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loss is one,  0Pr( ) 1u  . In abbreviated terms, we have: 0 1p  , where 0p stands for 

the conditional probability of a zero accumulated loss. 

 

Sequential addition of the underlying credit entities shall result in a shifting of 

conditional probability weights between buckets, for example the addition of the first 

and second credit entities shall result in an updating process as:  0 0 11newp p H   

and 1 1 1 0
newp p H p  . The new

ip refers the updated probability after the addition of the 

i-th credit entity. Let the loss given default of the i-th credit entity measure in chosen 

unit of loss be denoted by iLGD , then the addition of the i-th credit entity shall result 

in a shifting of probability weights from bucket  ju to bucket  ij LGDu  , in 

abbreviated expressions, we have:  1new
j j ip p H  and 

i i

new
j d j LGD j ip p p H   . 

Now for a CDO², let iLower  and iUpper  represent the upper and lower attachment 

points of a referenced tranche for the i-th underlying inner CDO. To generate the 

accumulate total loss for the master CDO entails finding the set of all possible linear 

combinations of losses resulted by the underlying inner CDOs. The set of all possible 

linear combination of loses are equivalent to the set of all possible buckets ranging by 

 ju , where 1, 2,...,j k . Note that a resulted loss in the master CDO is always less 

than or equal to the accumulated loss of its referenced inner CDOs. This is because 

that any tranches in a CDO² is in fact a certain percentage of the tranches extracted 

from the portfolio of its inner CDOs. For example, if the underlying portfolio of inner 

CDOs suffer a loss of  ju , the set of all possible loss of the mater CDO might 

encounter can range from  0u to  ju . In addition, even in the case of a homogeneous 

pool of underlying credit entities being considered, the repetitive occurrence of 

referenced entities among the inner CDOs further complicate the set of possible loss 

that a master CDO shall subsequently encounter. This is known as the overlapping 

effect among inner CDO tranches. 

To deal with the difficulties outlined above, we define a maximum loss of the master 

CDO for a CDO² structure as follows: 
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max

1 1

m m

i j
i j

Loss Upper Lower
 

    

which is the summation of the principals of the referenced tranches. With the 

maximum loss, we know that the possible losses of CDO² are max0,1, 2,..., Loss . Let 

i  be the set of all possible linear combination of default events among the 

underlying credit entities that results in a loss of  iu  in the master CDO of a CDO², 

max0,1, 2,...,i L , and j  
be the set of all possible linear combination of default 

events among the underlying credit entities that results in a loss of  ju  in the 

portfolio of inner CDOs. For example, suppose 

4 {{#1,#2,#3}{#1,#2,#4}{#3,#4}{#3,#5}}   

which form the set of all combinations of underlying credit entities that can result in a 

$4 unit loss in the CDO portfolio, and let 

1 {{#1,#2,#3}{#1,#2,#4}...}}   

0 {{#3, #4}{#3,#5}...}}   

Here we see that the four subsets of 4 can in fact belongs to 1  or 0 . This means 

that of the four possible combinations in 4 , two of them bring a loss of $1 unit loss 

to the CDO² while the other two shall cause zero loss to the CDO². In addition:  

1 2 3 1 2 4
1 1 4

1 2 3 1 2 4 3 4 3 5

new H H H H H H
p p p

H H H H H H H H H H


  

  
 

3 4 3 5
0 0 4

1 2 3 1 2 4 3 4 3 5

new H H H H
p p p

H H H H H H H H H H


  

  
 

* 1 2 3 1 2 4 3 4 3 5
4 4 4 4

1 2 3 1 2 4 3 4 3 5 1 2 3 1 2 4 3 4 3 5

0
H H H H H H H H H H

p p p p
H H H H H H H H H H H H H H H H H H H H

 
     

     

 

which completes our probability bucketing procedure for 4p . 

In contrast to Hull and White (2004), we therefore arrive at a two stage probability 

bucketing procedure: For a chosen bucket size  u k , the shifting of probability 
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weights between ip  and new
ip  for 0,1, 2,...,i k  is carried out by the following: 

i i

j j

m
mnew

i i k
n

n

H

p p p
H

 

 





  



      and      

i i

i j

m
mnew

k k k
x

n

H

p p p
H

 

 





  



 

 

Finally, as the probabilities of default we obtained are conditional on the factor M at a 

time jt , we have to solve for the unconditional probabilities  i jp t with respect to 

the probability density function of the common factor M that it was conditional upon. 

 

Numerical Results 

1. Tranche Spreads for CDO² 

Suppose our CDO² has only one tranche, with a maturity of 3 years, payment dates at 

the end of each year, recovery rate of 0.4, and risk-free interest rate is flat at 3%; let 

both distribution for M and iZ (for all i) be standard normal distribution, 

  1 exp( 0.01 )i j jp t t   , and 0.3ia  , therefore,  

 1

2

1 exp( 0.01 ) 0.3
( )

1 ( 0.3)

j

i j

t M
t

    
  
  

. 

1. When 1jt  ,  1 1 exp( 0.01 1) 2.3282       

Default 

Loss 

Conditional Default Loss Distribution  | 1M
i jp t   

Conditional Default Loss 

Distribution  1i jp t   

2M    1M    0M   1M   2M   

0 0.96095 0.99757 0.99993 1 1 0.788422 

1 0.03649 0.00240 0.00007 * * 0.002058 

2 0.00225 0.00003 * * * 0.000103 

3 0.00031 * * * * 0.000013 

* means the amount is smaller than 0.00001 

 

2. When 2jt  ,  1 1 exp( 0.01 2) 2.0579       
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Default 

Loss 

Conditional Default Loss Distribution  | 2M
i jp t   

Conditional Default Loss 

Distribution  2i jp t   

2M    1M    0M   1M   2M   

0 0.88887 0.98937 0.99956 0.99999 1 0.783615 

1 0.09771 0.01028 0.00043 0.00001 * 0.006333 

2 0.01121 0.00031 * * * 0.000543 

3 0.00222 0.00003 * * * 0.000101 

 

3. When 3jt  ,  1 1 exp( 0.01 3) 1.8874       

Default 

Loss 

Conditional Default Loss Distribution  | 3M
i jp t   

Conditional Default Loss 

Distribution  3i jp t   

2M    1M    0M   1M   2M   

0 0.80846 0.97566 0.99873 0.99997 1 0.777236 

1 0.15879 0.02312 0.00125 0.00003 * 0.011708 

2 0.02605 0.00110 0.00001 * * 0.001338 

3 0.00670 0.00013 * * * 0.000314 

 

With the calculation above, we get the expected loss at jt , 

1
0.0013818tEL  , 

1
0.0046332tEL  , 

1
0.0091956tEL   

as well as the two legs (Note: 
0

0tEL  ), 

0.0085726DL  , 8.4641917PL S   

and finally the spread of our single-tranche CDO², 

0.0085726
0.0010128

8.4641917
S    

which is about 1 bp. 
 
2. Hedging Parameters: DV01 and SDV01 

 

DV01 

 
overlapping 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Equity-Equity 0.03% 0.06% 0.08% 0.09% 0.10% 0.13% 0.14% 0.15% 0.15% 0.16% 0.17%

Equity-Mezzanine 0.03% 0.06% 0.08% 0.09% 0.10% 0.13% 0.14% 0.15% 0.15% 0.16% 0.17%

Equity-Senior 0.08% 0.52% 0.75% 0.84% 0.94% 1.08% 1.23% 1.28% 1.28% 1.35% 1.38%
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Mezzanine-Equity 0.08% 0.13% 0.19% 0.21% 0.24% 0.29% 0.32% 0.34% 0.36% 0.38% 0.40%

Mezzanine-Mezzanine 0.08% 0.13% 0.20% 0.24% 0.27% 0.30% 0.33% 0.36% 0.38% 0.37% 0.31%

Mezzanine-Senior 0.19% 1.21% 1.61% 1.68% 1.72% 1.80% 1.73% 1.73% 1.75% 1.73% 1.76%

Senior-Equity 0.55% 1.71% 2.03% 1.91% 1.80% 1.62% 1.49% 1.37% 1.47% 1.45% 1.44%

Senior-Mezzanine 0.17% 0.70% 0.82% 0.78% 0.75% 0.69% 0.65% 0.61% 0.67% 0.68% 0.67%

Senior-Senior 0.16% 0.76% 0.91% 0.88% 0.85% 0.71% 0.63% 0.52% 0.74% 0.76% 0.75%

 
SDV01 

 

Extent of Overlapping 0% 10% 20% 30% 40% 50%

Equity-Equity 0.52% 0.86% 1.21% 1.38% 1.55% 1.90%

Equity-Mezzanine 0.52% 0.86% 1.21% 1.38% 1.55% 1.90%

Equity-Senior 1.21% 3.12% 5.72% 6.99% 8.51% 12.39%

Mezzanine-Equity 1.21% 2.02% 2.82% 3.22% 3.63% 4.43%

Mezzanine-Mezzanine 1.21% 2.02% 2.65% 2.95% 3.22% 4.34%

Mezzanine-Senior 2.83% 7.28% 11.50% 12.81% 14.62% 18.51%

Senior-Equity 8.26% 9.99% 12.28% 13.93% 15.15% 16.69%

Senior-Mezzanine 2.41% 3.55% 4.74% 5.40% 6.02% 6.86%

Senior-Senior 1.76% 3.14% 4.14% 4.75% 5.24% 5.79%

 

 

Extent of Overlapping 60% 70% 80% 90% 100%

Equity-Equity 2.07% 2.23% 2.24% 2.42% 2.59%

Equity-Mezzanine 2.07% 2.23% 2.24% 2.42% 2.59%

Equity-Senior 14.53% 16.46% 16.31% 18.56% 20.73%

Mezzanine-Equity 4.82% 5.21% 5.06% 5.53% 6.05%

Mezzanine-Mezzanine 4.61% 4.97% 4.84% 5.02% 4.63%

Mezzanine-Senior 20.85% 22.20% 22.43% 24.03% 26.20%

Senior-Equity 17.30% 18.41% 18.48% 19.73% 21.16%

Senior-Mezzanine 7.50% 7.87% 8.17% 8.81% 9.52%

Senior-Senior 6.17% 6.20% 6.95% 7.64% 8.32%

 

 

Conclusion 

In the research I have provided a valuation framework under which efficient 

calculation of the hedging parameters are made feasible. Upon doing so, we must 

consider the tradeoff of using a semi-analytic approach instead of raw simulations. In 
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particular, the information regarding the correlation structure of defaults though now 

being simplified is in a way lost. Is there other means of gaining back this loss 

information in terms of a factor form? In addition, I have established a way in which 

characterization of the loss distribution with respect to each layer of protection is 

feasible. This generalized recursive algorithm developed under this research project is 

expected to be able to adapt to CDOs with compound protection layers of higher 

dimensionality. 

 

References 

Andersen, L., J. Sidenius, and S. Basu (2003), "All your hedges in one basket", Risk 

magazine, November 2003. 

Gibson, M.S. (2004), "Understanding the Risk of Synthetic CDOs", Working paper, 

Trading Risk Analysis Section, Division of Research and Statistics, Federal Reserve 

Board. 

Hull, J. and A. White (2004), "Valuation of a CDO and an n-th to Default CDS 

without Monte Carlo Simulation", Journal of Derivatives 12, 2; 8-23. 

Laurent, J.P. and J. Gregory (2003), "Basket Default Swaps, CDOs and Factor 

Copula", working paper, ISFA Actuarial School, University of Lyon. 

Li, D.X. (2000), "On default correlation: a copula approach", Journal of Fixed Income, 

9(3), 43-54. 

Marmery, N. (2005), "The pricing puzzle", US credit magazine April 2005. 

Neugebauer, M. (2004), "Analysis of Synthetic CDOs of CDOs", Global CDO 

Criteria Report, Structured Finance, Fitch Ratings. 

Richard Bruyere (2006) Credit derivatives and structured credit-A guide for investors, 

Wiley Finance. 

Whetten M. (2005), "CDOs-Squared Demystified", Nomura Fixed Income Research 

February 2005. 


