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Dear Sir/Madam, 

 

The title of my research agenda for the year 97 was “The impact of order-splitting on 

Long-Memory in an Order-Driven Market”.  

 

Recent empirical research has documented long-memories of trading volume, 

volatility, and order-signs in stock markets (but yet, the market is informationally 

efficient in a sense that there is no persistence in returns).
1
 However, there is relatively 

less theoretical work to explain why and where these features are coming from. In my 

research project joint with Professor Blake LeBaron at Brandeis University, we 

conjectured that traders’ order-splitting is related to these empirical features.  

 

 It is a common practice in stock markets that stock investors split their large 

orders into smaller pieces and execute them incrementally to minimize price impact.
2
 

Thus, the same sign of market orders enters the order book persistently. Bouchaud, 

Farmer, and Lillo [6] and Lillo, Mike, and Farmer [7] show that it is a source of a long-

memory of order signs, however, they investigate the property of order signs only. We 

have examined how order-splitting is related to the previously mentioned long-memories 

and shown that we can replicate the dynamics of price and trading volume in our order-

splitting economy. We concluded that order-splitting can be a possible cause for all long-

memories.  

 

 We conducted simulations on our order-splitting model, which is built on an 

order-driven model first constructed by Chiarella and Iori [8]. Our model is a continuous 

double auction system which is one of the modern and standard market institutions for 

trading stock shares. Orders are executed immediately after they are entered into the 

                                                 
1
 Lobato and Velasco [1] find the long-memory of volume. Ding, Granger, and Engle [2] 

demonstrate this for volatility, while Lillo and Farmer [3] and Bouchaud, Gefen, Potters, and 

Wyart [4] show the empirical features of the order signs in an informationally efficient market. 
2
 According to the estimation by Vaglica, Lillo, Moro, and Mantegna [5], large orders are cut into 

smaller pieces possibly 1,000 to 10,000. 
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order book and matched with limit orders in the book. Our market does not contain 

dealers or a specialist who intermediate in stock trading and/or trade for their own 

accounts so that all transactions are totally algorithmic. Thus, our market resembles in 

spirit the market after the opening session in the Tokyo Stock Exchange. This simplified 

set-up do not allow us to answer any institutional questions in a market where dealers or a 

specialist play a role, but does highlight the effect of order-splitting on a market.  

 

 LeBaron and Yamamoto ([9], [10]) show that agents’ herding behavior is critical 

to the generation of long-memory persistence in volume, volatility, and order signs. Both 

herding and order-spitting possibly operate at once in reality. However, we did not 

consider any imitative behavior of agents and instead focus only on the effect of order-

splitting on the long-memories. 

 

We have successfully replicated all long-memories subject to three critical 

conditions. First, order size needs to be power-law distributed with an exponent less than 

1.2. Second, the distribution of the number of order splits also needs to follow a power-

law with an exponent less than 1.28. Finally, splitting must be heterogeneous across 

agents. In other words the distributions of orders and order splitting must be sufficiently 

fat tailed to drive the long memory results. The limited empirical evidence available 

suggests that not all these conditions hold for financial time series. Vaglica, Lillo, Moro, 

and Mantegna [5] study the Spanish stock exchange, and find the exponent for the 

number of splits is 1.8. Lillio, Mike, and Farmer [7] estimate order size distributions by 

using a proxy variable, volume in the off-book market of the London Stock Exchange, 

and show that the average exponent for the individual stocks is 1.74. So in our framework 

order-splitting can be a possible cause for observed long-memories, but it may require 

scaling exponents which are not realistic in observed financial time series. 

 

We have been completing this research project because our research paper titled 

“Order-Splitting and Long-Memory in an Order-Driven Market” has been accepted this 

month for a publication at European Physical Journal B (SCI, Impact factor: 1.568). 

The acceptance email and the paper have been attached to this report. 



Ryuichi Yamamoto 

National Chengchi University  

(97-2410-H-004-016- ) 

 3 

 

A year ago, our paper was quite undeveloped yet. However, with a financial 

support from NSC, I had an opportunity to present some results of our project at 

Econophysics Colloquium 2008 in Kiel, Germany, in August 2008. The program covered 

all areas dealing with the computational aspects (broadly defined) of economics, finance, 

computer science, and physics. The conference focused on topics covered by the field of 

Econophysics which applies methods from statistical physics and non-linear dynamics to 

macro/micro-economic modeling, agent based models, financial market analysis and 

social problems. and so on. The conference is interested in research topics like Agent-

based models: Theory and Simulations, Econophysics, Socio-Economic Networks, 

Information, Bounded Rationality and Learning in Economics, Markets as Complex 

Adaptive Systems, Evolutionary Economics, Multiscale analysis and modeling, Non-

linear Dynamics and Econometrics, Physics of Risk, Statistical and probabilistic methods 

in Economics and Finance, and Complexity. 

 

 At that time, we did not reproduce all long-memories in our order-splitting model. 

However, after the discussion with professors at the conference, we have somehow 

figured out an idea to replicate all long-memories in our order-splitting model and now 

have reached a conclusion that order-splitting can be a possible cause for all long-

memories. In addition, some professors suggested that it would be more interesting if we 

can relate our order size distribution, which reproduces long-memories in our model, to 

the actual distribution in stock markets. Vaglica, Lillo, Moro, and Mantegna [5] and 

Lillio, Mike, and Farmer [7] are the papers to which we can compare our results. 

 

Our paper dramatically improved after attending the conference, and now we got a 

publication to European Physical Journal B. I am grateful to NSC for funding me to have 

such great opportunities at the conference. I am also grateful to NSC who provided me 

funds to hire research assistants and buy stuffs, which were required to conduct my 

research. I believe that all opportunities that NSC provided to me have helped me greatly 

improve my paper.  
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Abstract  

 

Recent empirical research has documented long-memories of trading volume, volatility, 

and order-signs in stock markets. We conjecture that traders’ order-splitting is related to 

these empirical features. This study conducts simulations on an order-driven economy 

where agents split their orders into small pieces and execute piece by piece to reduce 

price impact. We demonstrate that we can replicate the long-memories in our order-

splitting economy and conclude that order-splitting can be a possible cause for these 

empirical properties.  

 

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management 

 

 

1. Introduction 

An important feature of many financial markets is that high-frequency time series of 

trading volume, volatility, and order signs follow long-memory processes, and yet the 

market is informationally efficient in that returns are uncorrelated over time.
3
 Recent 

empirical research has demonstrated these results; however, there is relatively less 

theoretical work to explain why and where these features are coming from. This paper 

shows that traders’ order-splitting behavior can provide an explanation. 

                                                 
3
 Lobato and Velasco [1] find the long-memory of volume. Ding, Granger, and Engle [2] 

demonstrate this for volatility, while Lillo and Farmer [3] and Bouchaud, Gefen, Potters, and 

Wyart [4] show the empirical features of the order signs in an informationally efficient market. 
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 It is a common practice in stock markets that stock investors split their large 

orders into smaller pieces and execute them incrementally to minimize price impact.
4
 

Thus, the same sign of market orders enters the order book persistently. Bouchaud, 

Farmer, and Lillo [6] and Lillo, Mike, and Farmer [7] show that it is a source of a long-

memory of order signs, however, they investigate the property of order signs only. This 

paper examines how order-splitting is related to the previously mentioned long-memories 

and shows that we can replicate the dynamics of price and trading volume in our order-

splitting economy. We conclude that order-splitting can be a possible cause for all long-

memories.  

 We conduct simulations on our order-splitting model, which is built on an order-

driven model first constructed by Chiarella and Iori [8]. Our model is a continuous 

double auction system which is one of the modern and standard market institutions for 

trading stock shares. Orders are executed immediately after they are entered into the 

order book and matched with limit orders in the book. Our market does not contain 

dealers or a specialist who intermediate in stock trading and/or trade for their own 

accounts so that all transactions are totally algorithmic. Thus, our market resembles in 

spirit the market after the opening session in the Tokyo Stock Exchange. This simplified 

set-up will not allow us to answer any institutional questions in a market where dealers or 

a specialist play a role, but does highlight the effect of order-splitting on a market.  

 LeBaron and Yamamoto ([10], [11]) show that agents’ herding behavior is critical 

to the generation of long-memory persistence in volume, volatility, and order signs. Both 

herding and order-spitting possibly operate at once in reality. However, this paper does 

not consider any imitative behavior of agents and instead focuses only on the effect of 

order-splitting on the long-memories. 

 The rest of the paper proceeds as follows. The next section introduces our order-

splitting economy. The third section presents simulation results, and the final section 

gives our conclusion.    

 

2. Market structure 

                                                 
4
 According to the estimation by Vaglica, Lillo, Moro, and Mantegna [5], large orders are cut into 

smaller pieces possibly 1,000 to 10,000. 
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This section describes our order-driven market which is based on the market outlined in 

Chiarella and Iori [8] and Chiarella, Iori, and Perello [9]. Agents submit market or limit 

orders to an open order book sequentially, and once an order is matched, it is executed 

immediately. We assume that the transaction price, tp , is observed by all agents all the 

time. When no transaction takes place, the average of the best bid and ask prices is 

revealed to the market.  

 Our market consists of 500 heterogeneous agents indexed by i and each of them 

decides what types of orders to submit. We define the return at time t as: 











1

log
t

t
t

p

p
r .        (1)  

All agents estimate a technical trading indicator by averaging the returns over the past 

iL periods where iL is randomly assigned independently from a uniform distribution over 

the interval ),1( maxL : 


 


















i

i

L

j jt

jt

i

L
p

p

L
r

1 1

log
1

.        (2) 

We assume that our agents observe a constant fundamental price, fp . Agents 

form their weighted forecasts on the future returns by combining fundamental-, technical-, 

and noise-based forecasts as follows: 
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where ig1 , ig2 , and in  are weights for fundamentalist, chartist, and noise-induced 

components for agent i, respectively, and randomly assigned according to 

|),0(~| 11 Ng i  , ),0(~ 22 Ng i , and ),0(~ ni Nn  . 

Since this paper does not consider any evolution on their forecasts, we assume that these 

parameters are constant over time. The noise at t is given by )1,0(~ Nt . 
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Agents expect future prices at time t by: 

i
ttr

t

i

t epp 




,ˆ
ˆ .         (4) 

Agents decide to buy (sell) when they forecast the future price to increase (decrease). 

They submit their buy order at: 

)1(,

i

b

i

tt

i

t kpb  


         (5) 

and sell order at: 

)1(,

i

s

i

tt

i

t kpa  


.         (6) 

Agents are willing to trade shares at these prices or better. In particular, agent i 

prefers to buy (sell) an asset at i

tb ( i

ta ) or lower (higher). The spread variables, i

bk  and i

sk , 

take different values and are initially assigned independently from a uniform distribution 

over an interval [-0.5, 0.5]. Those are assumed to be constant over time, but vary over 

agents. When i

tb ( i

ta ) is above (below) the market best ask (bid), the agent places market 

orders. Otherwise, the order from agent i stays in the order book as a limit order at the 

requested price, i

tb ( i

ta ).  The order is removed from the book once executed or expired at 

its lifetime  .  

Since i

bk  and i

sk  are separately given and lie between [-0.5, 0.5], this set-up 

allows agents to place their bid and ask lower or higher than their expectations, while the 

strategies can be nearly symmetric in buy and sell orders. Order placement strategies 

would be associated with a trade-off between advantageous price and immediacy of 

execution.
5
 Agents submit their bid and ask higher than their risk neutral price when they 

seek a price improvement for selling a share whereas they would like to buy it 

immediately. Agents choose positive i

bk  and negative i

sk  so that their bid and ask can be 

lower than their expectations. In such a case, they prefer an immediate execution to sell, 

but would like to buy it at a better price. They place bid and ask prices in a symmetric 

manner when they do not have any differences in preference between buying and selling 

behaviors. These order placement strategies would be motivated by the traders’ profit-

                                                 
5
 Papers which explain the trade-off include Biais, Hillion, and Spatt [12], Griffiths, Smith, 

Turnbull, and White [13], Hollifield, Miller, and saSand
o

 [14], and Ranaldo [15]. 
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seeking behavior. Agents place their bid and ask higher (lower) than their expectations or 

symmetrically, because they think that they would achieve higher profits by doing so. 

However, in this paper we simply assume that the preferences of agents on immediacy of 

execution and advantageous price are initially given and constant over time, because 

agents’ strategies are not based on profits. 

 The size of orders i

ts is assumed to be power-law distributed and assigned to each 

agent when he enters the market each time as in Lillio, Mike, and Farmer [7]. Agent i 

places all his orders to the book as a limit order at his limit price i

tb ( i

ta ) given by 

equation (5) (equation (6)), when i

tb ( i

ta ) is below (above) the market best ask (bid). For 

example, suppose that the order book is given as in Figure 1 where the best bid is $100 

with 10 units and the best ask is $101 with 10 units. If agent i is willing to buy 30 units 

(= i

ts ) at $98 (= i

tb ), he will place all of his order at $98 since his limit price is below the 

best bid ($100).  

When i

tb ( i

ta ) crosses the best ask (bid), agent i submits a market order to buy 

(sell). Given his total order size i

ts , he decides the market order size in the following way. 

We assume that agents can observe the limit order book. When an agent submits a market 

order, he can observe how many limit orders are currently available in the book which 

can possibly be executed at a price he is willing to trade ( i

tb ( i

ta )). He tries to execute that 

amount immediately by placing a market order. However, if his total size of order i

ts is 

more than the size of the market order, he will send the market order first and place the 

remaining orders as a limit order at his requested price, i

tb ( i

ta ), after executing all his 

market order. For example, suppose that the order book is given as in Figure 2 and agent i 

is willing to buy 30 units at $102. He observes the order book, and so he knows that there 

are 20 units on the ask side which can be matched at his requested price ($102) or lower. 

In other words, he knows that 10 units cannot be executed immediately. In this case, he 

will submit 20 units of a market order first and 10 units of a limit buy order at $102 after 

executing all 20 units of his market order. 

When agents decide to place market orders, we assume that they split their market 

orders into smaller pieces and execute them incrementally, and the size of each split is 
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randomly assigned from an interval [1,10]. Each split size varies over agents, but is 

constant for each agent until he trades all of his splits. For example, if an agent is 

assigned 2 units for the size of one split and is placing 20 units of market orders, he will 

split the 20 units into 10 pieces and execute them incrementally. Since the split size is 

given over an interval [1,10], as agents have a larger size of market orders, they split 

them into more pieces. Since the total size of orders is power-law distributed, agents are 

more likely to execute a larger number of splits as the scaling exponent becomes smaller. 

We will examine economies with different degrees of scaling exponents and show that 

long-memory properties can be replicated as agents split their orders into many pieces.    

 We assume that agents can enter the market anytime while other agents are 

executing their splits. However, the probability that a new agent can place an order at t 

depends on how many pieces of market orders other agents are waiting to submit to the 

book as: 

tatsubmittedbetowaitingbuyselltoordersmarketofNumber
t




1

1
Prob .           

(7) 

As other agents have multiple pieces of market orders being sent to the book, it is likely 

that more market orders will be placed to the book at time t. So, it will be harder for a 

new agent to place and/or execute his order at the same time t, because in our order book 

system only one order can be executed at each time. The more market orders are waiting 

to be submitted, the less likely a new order will arrive to the book and be executed at t.
6
 

This mechanism generates a persistence in order flow coming from a given agent in that 

the order flow is less likely to shift to a new agent when more orders are waiting to be 

executed. 

 When agents submit splits of market orders, the ordering of his splits being 

executed is randomly determined. For example, one of the pieces for an agent may be 

transacted first, but he may trade the next one a few seconds later, and so other agents’ 

                                                 
6
 Our results are robust to changes in the impact of market orders in (7).  Specifically we have 

tried, 

 tatsubmittedbetowaitingbuyselltoordersmarketofNumber
t




1

1
Prob , 

where  =0.1 and 0.5. Our results are basically unchanged over these different specifications. 
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splits will be transacted before his second split. This set-up reflects a situation where an 

agent prefers to wait for seconds to execute his splits. He can trade shares at a better price 

if he waits and limit orders are filled at a price inside the spread.   

 Our time step, t, is one click in which an agent transacts one split of his market 

order or places a limit order in the book. Since the price is recorded at each time and all 

agents can observe it, agents update their forecasts according to equation (3) every click. 

One round ends when all agents submit their orders. We shuffle the ordering of the agents 

for the next trading round. 

 

3. Simulations 

We run simulations on our order-splitting economy with parameter values in Table 1. We 

assume that the probability that the order size i

ts  is larger than x is given by: 

   xxsP i

t ~          (8) 

We use from 1 to 2 for the scaling exponents of the order size distribution  , and set the 

minimum order size to 1. Lillio, Mike, and Farmer [7] estimate the scaling exponents for 

a proxy variable, i.e., volume of individual stocks in the off-book market of the London 

Stock Exchange, and show that the average is 1.74 over the individual stocks. Our scaling 

exponents are the values around their empirical scaling exponent.  

Table 2 provides summary statistics on the number of splits into which agents 

divide their market orders when the exponents are 1, 1.2, 1.5, and 2. Each statistic is 

calculated by using 50,000 samples on the number of splits. Since we assume that the 

total share size is power-law distributed and each size of a split is randomly drawn from 

an interval [1,10], agents are more likely to split their orders into larger number of pieces 

as the scaling exponent for the order size becomes smaller. For example, agents split 

orders into 5.2 pieces on average when the scaling exponent is 1.2, while they trade 18.4 

splits on average at 1 for their scaling exponent. In addition, agents are not unlikely to 

have many splits when the exponent becomes 1.2 or 1. For example, 1.61 (0.46) % of 

agents have more than 100 pieces of splits when the exponent is 1 (1.2). The percentages 

of agents with more than 1,000 splits are 0.19 and 0.02% when the exponents are 1 and 
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1.2, respectively. However, almost none of them have 100-1,000 or more splits when the 

exponent is 2.  

Assuming the distribution of the number of splits isp  also obeys a power-law by: 

   xxspP i ~ ,         (9) 

the scaling exponents  are estimated in the last column in Table 2. The estimated 

scaling exponent is 0.97 when the exponent for the order size is 1. They are 1.28, 1.86, 

and 2.50 for order size scaling exponents of 1.2, 1.5, and 2. We will see later that all 

long-memory properties can be replicated in our market only when the scaling exponent 

of the order size becomes smaller than 1.2 or the exponent for the number of splits is less 

than 1.28.  

We convert our clicks into wall-clock time. In particular, we consider 25 clicks as 

one wall-clock time. Returns are given by the percentage change in prices over 25 clicks, 

while we measure volatility by taking standard deviations of the log returns over the 

interval. Volume series is constructed by cumulating the number of shares traded over the 

interval. We assign +1 (-1) for order signs over each interval when the majority of the 

transaction is buyer- (seller-) initiated. We assign zero when the same numbers of buyers 

and sellers transact their shares. We simulate our economy for 11,000 wall-clock times 

and use the last 10,000 clock times for the long-memory analysis.  

We conduct the rescaled variance (V/S) test to examine the long-memory 

properties (Giraitis, Kokosza, Leypus, and Teyssiere [16]). The V/S test achieves a better 

balance of size and power than the Lo R/S test (Lo [17]) for different values of the 

bandwidth parameter q. We consider the weighted auto-covariance up to q lags (=4, 6, 8, 

and 10) to capture the effects of short-range dependence. Averages of the V/S statistics 

over 20 simulations are plotted over the different degrees of the scaling exponent for the 

order size in Figures 3-6.
7
 The short-memory null is rejected with 95% confidence when 

the V/S statistic is above the critical value, i.e., 0.1869. In Figures 3-6, ** next to the 

exponent in the x-axes indicates that we reject the null hypothesis of short-range 

dependence at the 95% confidence level in 80% or more out of 20 simulations. * next to 

the exponent in the x-axes indicates the rejection of the null with more than 30% but less 

                                                 
7
 We use from 1 to 2 in an increment of 0.1 for the scaling exponent. 
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than 80% of 20 simulations. When there is no sign of ** or * next to the exponent in the 

x-axes, it indicates the rejection of the null in 30% or less than 30% of the 20 simulations. 

These figures show that all long-memories tend to be observed as the scaling 

exponent for the order size becomes less than 1.2, while the long-memory of order signs 

appears when the exponent becomes less than 1.5. We do not have the property in returns 

for all exponents.
8
’
9
 Long-memories are observed as agents split their orders into many 

pieces.
10

 The scaling exponent for the number of splits is less than 1.28 when we generate 

all long-memories, while the exponent less than 1.86 is small enough to reproduce the 

long-memory of order signs. The following explains why and where these long-memories 

are coming from in an informationally efficient market as the exponent becomes smaller. 

Signs of market orders have a long-memory, because in our market more agents 

keep submitting larger numbers of splits of the same sign as the scaling exponent 

becomes smaller. When agents keep doing so, it persistently takes off liquidity from the 

book so that the book tends to be persistently sparser. The sparser order book generates 

larger price changes, and a persistently sparser order book will lead to persistently larger 

price changes. However, when an agent submits a very large size of a limit order, in 

particular within the spread, without executing any of them, the order book suddenly 

becomes thicker. As a result, the price changes become smaller and such smaller changes 

will persist for a while. Therefore, we can generate larger price changes followed by 

larger price changes and smaller price changes followed by smaller price changes. 

                                                 
8
 Lillo, Mike, and Farmer [7] theoretically show that the scaling exponent of less than 2 for the 

order size distribution is crucial to produce the long-memory of order signs, while our model 

requires a slightly smaller value to generate it. 
9
 We have performed robustness checks on the parameters used in our simulations. In particular, 

we have varied 
1 , the standard deviation of the fundamental forecasts from 0.5 to 1.5 from our 

original value of 1. We have also varied 
2  the chartist forecasting component from 1 to 2 from 

the original value of 1.5, and the noise standard deviation, n , from 0.3 to 0.7 from our original 

value of 0.5. We have also adjusted the interval of the spread parameter, 
i

bk  and 
i

sk , from [-0.3, 

0.3] to an interval [-0.7, 0.7]. Finally, we have tried our test on an economy with only 10 agents. 

In all these cases we find that our results do not change significantly. 
10

 In our order-splitting model, the long-memory of order signs results from the strong persistence 

of order signs coming from the same traders as shown in Bouchaud, Farmer, and Lillo [6]. We 

have plotted the autocorrelation functions of order signs from the same traders with 1,000 lags, 

and confirmed the strictly positive ACFs with the long lags when the exponent for the order size 

is small enough like closer to 1, although we do not show it here. 
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When an agent is randomly assigned a relatively larger size for a split, for 

example 10, he continuously executes this size until he trades all of his market orders. 

When an agent who has so many splits transacts 10 units each time continuously, the 

trading volume in wall-clock time will be relatively higher than the other periods. 

Although other agents can enter the market while an agent is executing his order, the 

probability that a new agent can place an order at t (equation (7)) is smaller as the agent 

has more pieces of market orders to submit. In this case, the maximum volume in one 

wall-clock time is 250 around those periods, since each clock time consists of 25 clicks 

and he trades 10 units each time for long periods. When the agent is assigned a smaller 

size for a split, for example 3, the trading volume in one wall-clock time will be much 

smaller than in the previous example, but it will persist for a while. Thus, the larger 

trading volume is followed by larger volume while smaller volume will be persistent for 

long periods. As a result, we can generate the long-memory of trading volume. The 

volume series looks clustered in this way, because different agents submit a series of 

splits with different sizes and each agent possibly executes many splits with the same size 

for long periods.  

 If the size of a split is the same for all agents, for example one unit for a split, we 

will not see such a clustered series of volume. A similar size of volume will be recorded 

over long times, and we will not see persistent periods of larger or smaller trading volume. 

The following shows an example of this. We fix the size of each split to 1, but the total 

share size still follows the power-law distribution so that agents possibly split their orders 

into many pieces. Table 3 summarizes the 20 run averages of the V/S statistics with the 

scaling exponents of 1 for the order size distribution. In our previous experiments, we 

generated long-memories of volume, volatility, and order signs when the exponent is 1. 

However, Table 3 shows that only the V/S statistics for volatility and order sign exceed 

their critical values.  This means that we observe long-memory for volatility and order-

signs only. We do not produce volume long-memory, because the size of each split is the 

same for all agents. As a result, we do not observe persistent trading volume in our 

simulations. 

It is a stylized fact that volume and volatility both display persistence consistent 

with long-memory. However, the results in Table 3 show that volume and volatility can 
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have different properties in some simulated cases. Our results suggest that volume and 

volatility do not have the same empirical feature when agents do order-splitting and 

execute exactly the same amount of orders each time. 

Our results of the V/S tests indicate that returns are not correlated over the long 

time span although the order signs are long-memory. The persistence of the order signs 

implies that the prices are likely to follow the past trend. However, our order-splitting 

economy is informationally efficient. In the following, we provide an analysis to support 

further the informationally efficient market in the presence of strong dependence in order 

signs as found in Lillo and Farmer [3] and Bouchaud, Gefen, Potters, and Wyart [4].  

 In an informationally efficient market a price series follow a random walk, 

implying that there is no arbitrage opportunity. It is well known that the variance of the 

increments in a random walk is linear in the sampling interval - that is, the variance of its 

q-differences is q times the variance of its first difference. Thus, if N observations 

nXXX ,.....,, 21 of tX at equally spaced intervals follow a random walk, 1/q of the 

variance of qtt XX   is the same for any integer q greater than 1. In addition, if 1/q of 

the variance of qtt XX   is greater than the variance of 1 tt XX for q (>1), it indicates 

the presence of a positive serial correlation in the series. A smaller 1/q of the variance of 

qtt XX   than that of 1 tt XX  suggests the presence of a negative serial correlation 

(mean-reversion) in a series.  

 Following Lo and MacKinlay [18] and defining tX as the log-price process, we 

estimate the variance by using overlapping qth differences of tX by: 

   


 
N

qt

qttqtt qXX
m

XX
2

ˆ
1

var  , where 

N is the number of observations. 

  









N

q
qNqm 11  and, 

 1

1
ˆ XX

N
N  .  
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 Figure 7 is the plot of   qXX qtt /var  , where we use log-transaction prices 

for tX . Lags q are from 2 to 100 clock times where one clock time is 25 ticks in our 

market. We plot the averages of the ratios over 20 runs with scaling exponents 1, 1.2, 1.5, 

and 2 for the order size distribution. For all scaling exponents, when q is small, 

  qXX qtt /var   is relatively large, meaning that the price changes within a very short 

time are large for some periods while they are not for some other periods. This is possible 

for the following two reasons. First, the prices change a lot within a short period due to 

the presence of a bid-ask bounce. Since we use log-transaction prices, our price is 

bouncing up and down between the best bid and ask. Buy orders tend to increase the 

price, but once a sell order enters the book, the price is pushed down to the level of the 

current best ask. The price will decrease by that amount, even with one unit of sell order, 

which may be enough to cancel out the previous increase in prices.  

Second, in our market when agents place limit orders within the spread the price 

fluctuations suddenly decrease after that period. In Figure 8 we use the mid-quote series 

to remove the effect of the bid-ask bounce. Here,   qXX qtt /var   looks smaller for 

short lags than in Figure 7. However, we still see the larger price variations in short lags. 

Thus, in addition to the bid-ask bounce, placing limit orders within a spread would lead 

to the larger    qXX qtt /var   at short lags. 

 In the figures, for relatively short lags,   qXX qtt /var   decreases as q becomes 

larger indicating the presence of mean-reversion in a series. However, the curves tend to 

be flatter (but strictly positive) once the lags become 20-40 or longer. This implies that 

the price moves back to the informationally efficient level in short time periods. Although 

the order signs follow a long-memory, our market is informationally efficient which is 

consistent with the findings of Lillo and Farmer [3] and Bouchaud, Gefen, Potters, and 

Wyart [4].  

 

4. Conclusion 

This paper has investigated the sources of long-memories, and successfully replicated 

them subject to three critical conditions. First, order size needs to be power-law 
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distributed with an exponent less than 1.2. Second, the distribution of the number of order 

splits also needs to follow a power-law with an exponent less than 1.28. Finally, splitting 

must be heterogeneous across agents. In other words the distributions of orders and order 

splitting must be sufficiently fat tailed to drive the long memory results. The limited 

empirical evidence available suggests that not all these conditions hold for financial time 

series. Vaglica, Lillo, Moro, and Mantegna [5] study the Spanish stock exchange, and 

find the exponent for the number of splits is 1.8. Lillio, Mike, and Farmer [7] estimate 

order size distributions by using a proxy variable, volume in the off-book market of the 

London Stock Exchange, and show that the average exponent for the individual stocks is 

1.74. So in our framework order-splitting can be a possible cause for observed long-

memories, but it may require scaling exponents which are not realistic in observed 

financial time series. 
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Figure 1: An example for an agent placing limit orders 

 

Buy order Limit price Sell order 

 $103 30 

 $102 10 

 $101 (best ask) 10 

10 $100 (best bid)  

20 $99  

 $98  

50 $97  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agent i places 30 units of a limit order at $98. 
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Figure 2: An example for an agent placing market and limit orders 

 

Buy order Limit price Sell order 

 $103 30 

 $102 10 

 $101 (best ask) 10 

10 $100 (best bid)  

20 $99  

 $98  

50 $97  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agent i whose total order size is 30 will place 20 units of a market buy order first and 

10 units of a limit buy order at $102 after executing all of his market orders.  

20 units are available to 

be executed 

immediately if an agent 

is willing to buy at 

$102.  
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Figure 3: V/S statistics for volume 
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Figure 4: V/S statistics for volatility 
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Figure 5: V/S statistics for order signs 
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Figure 6: V/S statistics for returns 
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Figure 7: 1/q of the variance of the price increments (transaction price) 
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Figure 8: 1/q of the variance of the price increments (mid-quotes) 
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Table 1: Parameters 

Maximum time horizon in the chartist component: 
maxL  100 

Fundamental value: fp  1000 

Std of fundamentalist component: 1  1 

Std of chartist component: 
2  1.5 

Std of noise-trader component: 
n  0.5 

Order life:   20,000 

Tick size:   0.1 
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Table 2: Summary statistics of the number of splits 

Scaling exponent for 

order size   

Mean % of splits more than Exponents for the 

number of splits   

  10 100 1,000  

1 18.4 13.8 1.61 0.19 0.97 

1.2 5.2 7.9 0.46 0.02 1.28 

1.5 3.5 4.6 0.06 0.01 1.86 

2 2.3 2.3 0.01 0 2.50 
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Table 3: Order-splitting in an economy of agents who execute one unit each time 

(scaling exponent = 1) 

 Volume Volatility  Order Signs Returns 

q=4 0.0027 4.5298** 10.0089** 0.0006 

q=6 0.0019 3.4074** 7.3620** 0.0008 

q=8 0.0015 2.7500** 5.8549** 0.0010 

q=10 0.0012 2.3152** 4.8772** 0.0012 

Averages of the V/S test statistics over 20 simulations. ** indicates that we reject the null 

hypothesis of short-range dependence at the 95% confidence level in 80% or more out of 

20 simulations. When there is no sign of **, it indicates the rejection of the null in 30% 

or less than 30% of the 20 simulations.  
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一、參加會議經過 

I attended a conference, which was taken place in Kiel, Germany from August 28-30, 2008. The 

program covered all areas dealing with the computational aspects (broadly defined) of economics, 

finance, computer science, and physics. The conference focused on topics covered by the field of 

Econophysics which applies methods from statistical physics and non-linear dynamics to 

macro/micro-economic modeling, agent based models, financial market analysis and social 

problems. and so on. The conference is interested in research topics like Agent-based models: 

Theory and Simulations, Econophysics, Socio-Economic Networks, Information, Bounded 

Rationality and Learning in Economics, Markets as Complex Adaptive Systems, Evolutionary 

Economics, Multiscale analysis and modeling, Non-linear Dynamics and Econometrics, Physics of 

Risk, Statistical and probabilistic methods in Economics and Finance, and Complexity.  

 

This is a great conference to attend. Many well-known professors attended the conferences and 

presented the latest results of a wide variety of research. The conferences brought together 

researchers and practitioners from diverse fields, such as computer science, economics, physics, and 

complex system theory for understanding emergent and collective phenomena in economic, 

organizational, and social systems, and to discuss on effectiveness and limitations of computational 

models and methods in social sciences.  

 

Since I am doing research about the agent-based modeling for finance, it was really a good 

conference to attend and great opportunity for improving the quality of my paper. Moreover, I had 

many opportunities to talk with many professors in my field. Discussions with such professors 

further improved my research. I made an oral presentation of my paper, “The impact of 

order-splitting on long-memory in an order-driven market” joint with Professor Blake LeBaron at 

Brandeis University.  

 

 



二、與會心得 

 

The paper examines how traders’ order splitting behavior is related to the long-memory properties 

in an order-driven market, i.e., long-memories in volume, volatility, and order signs (but yet, the 

market is informationally efficient in a sense that there is no persistence in returns). We conduct 

simulations on a simple automated order-splitting, and examine whether and under which 

conditions we can reproduce those properties with order-splitting.  

 

LeBaron and Yamamoto (2007, 2008) show that that investors’ imitative behavior is so 

important for replicating all of the long-memories. Our order-splitting model does not assume any 

herding among agents; however, we show that it generated long-memories of order signs and 

volatility. This implies that imitation would not be the only source for the long-memories. However, 

order-splitting would matter in our market when agents split orders into so many pieces like 50 

without allowing others to enter the market where there are only 100 agents. We conclude that we 

need to impose such a strict assumption to generate the long-memories with order-splitting, 

implying that order-splitting itself would not be the only source for these properties too.  

 

 The questions I had from the audiences there were all for the clarifications, including really 

basic stuff like what the order-splitting is and whether it is popular in stock trading. Stock investors 

often split their orders into small pieces to reduce transaction costs. But I think that more review 

(more detailed one) on these stuffs should have been given at the beginning of the presentation, in 

particular, at a conference with audiences from difference fields. This may be a small thing, but is 

one of which I learned at this conference. 

 

 We do not reproduce all long-memories in our current version. However, after the discussion 

with professors at the conference, I now think it would be more interesting to generate all of them in 

a model with order-splitting. We actually tried so many kinds of simulation, but it is our future goal 

to replicate all of them. In reality, there might be other reasons than herding to generate the 

long-memories. 

 

The presentation I found interesting is a keynote speech by Professor Bornholdt from 

University of Bremen. He talked about a spin model which is, my friend of Econophysics said, one 

of the popular models in physics. Although the model itself is really simple (only a few equations), 

but can be applied to financial markets and describe cyclical behavior of return volatility. It 

replicates clustered volatility (but not asymmetric volatility). What I found interesting at this 

conference is that econo-physicists often use only simple and mostly only a couple of equations and 

figures, but replicate some important phenomena in financial markets. But they often do not explain 

details on agents’ behavior for those features. 

 



Anyway, since I learned a lot there, I am grateful to NSC for funding me to have such great 

opportunities there. I believe the things I learned there have made my research ideas much better.  
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