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V. (FORM4) EXECUTIVE SUMMARY ON RESEARCH OUTCOMES OF THIS PROGRAM

(Please state the followings concisely and clearly)

1. General Description of the Program: Including Objectives of the Program

The research attempts to offer econometric explanations to the near random-walk exchange rates. It argues
that previous empirical evidence for or against predictability in exchange rate movements might have been
considerably flawed by the existence of estimation risk due to the strong persistence in fundamentals. The
primary goal of the project is in a pursuit of a more reliable inference procedure for the predictability both
in-sample and out-of-sample by appropriately controlling the estimation risk.

To achieve the goal, an averaging estimator that combines information optimally both from the univariate
time series under study and from cross-sectional time series is developed.

Another goal of the project for the current year is to explore another form of averaging, particularly in the
time series context. This is important because for the studies using time series where the data under
consideration typically do not have a long span, and the regressions are featured by the presence of serial
correlated errors of unknown forms. We propose another simple averaging estimatior that is able to attain

efficency gains without the knowledge of autocorrelation in errors.

Breakthroughs and Major Achievements

Evidence for the exchange rate predictability in the past literature has been mixed. In contrast, the current
project, after controlling the estimation risks, is able to establish a more uniform evidence for the predictability,
whether the forecasting horizons are short or long. This is somehow remarkable because to our knowledge, little
evidence for the exchange rate predictability in the short horizons was found in the literature.

In addition to establishing evidence for the predictability, two major conclusions emerging from part of the
research so far can be summarized: 1) the magnitude of the estimation risks is so high that the exchange rate
predictability can be masked even when it exists in the data; 2) The information about exchange rate movements
from cross-section is valuable in the ways that it can reduce the estimation risk and thus improve the testing
power for predictability, if it could be exploited effectively as the averaging estimator does.

The new averaging estimator proposed from the research this year possesses the optimality in the sense that
the associated mean squared errors (MSE) are found to be no more than the Gauss-Markov bound
asymptotically, regardless of the degrees of error dependence. Not only this, to implement the proposed
averaging estimator can not be simpler than adding ordinary least squared estimator (OLS hereafter) and
first-differencing estimator (FD in brief) together with respective weights that are determined optimally.

2. Categorized Summary of Research Outcomes. The criteria for top conferences and journals should be given and
introduced briefly in the beginning of this section. In each research area, please give a brief summary on the
research outcomes associated with the area. Note that the summaries should be consistent with the statistics
given in Form3. Please list and number each research outcomes in sorted order in Appendix Il, and list all the

publications in top conferences and journals in Appendix I11.

2.1 The development of an avaraging estimator that combines cross-sectional information :

An averaging estimator that is to control potential estimation risks associated with the predictive regression




is developed in the first-year study. The sources of the estimation risks comes from high persistence of predictive
regressors, and the dependent variable being the overlapping sums of short-horizon change in log exchange rate.
The former creates bias in small-samples and the latter brings forth remarkable estimation variability in
long-horizon predictions.

The considered averaging estimator optimally combines two alternative estimators that differ in their bias and
precision characteristics. By construction, the suggested estimator for the slope coefficients utilizes information
from cross-sections in a similar way that the panel-based estimators do. The implicit assumption underlying the
use of information from cross-sections for our estimator, however, is very much different from that for the
panel-based estimators. In contrast, the panel-based estimators are built on the assumption that the slope
coefficients are all the same for all the cross-sectional countries. On the other hand, the averaging estimator
allows for separate slope estimate for each cross-section country as the OLS estimator does, but makes use of the
cross-sectional information that the OLS estimator does not. Thus both the averaging estimator and the pooled
estimator are the same to reduce the estimation errors, but differ in the way how the cross-sectional information
is processed. Yet, our averaging estimator has the advantages of producing more reasonable slope estimates.

2.2 Risk reduction: simulation analysis

We examined to what extent the proposed estimator can improve over the traditional estimator in terms of
risk reduction through simulations. Under the setup that mimics the reality, we documented that the averaging
estimator empirically dominates the least-square (LS) estimator, regardless of which simulation scenario is
considered. Virtually the risk reductions using the averaging estimator can be as large as between 10\% and
35\%, compared with the LS estimator. More importantly, the risk improvement by the averaging estimator is
embodied further into power gains in testing. Our simulation shows that the power gains from using the
averaging estimator, again relative to the LS estimator, is 10% to 30% or more in many cases. An significant
implication of the finding is simply that the predictability alternative can now be better detected from the data
when the test statistics are based on the averaging estimator.
2.3 A re-examination of the exchange rate predictability

We re-investigated the empirical validity of the exchange rate predictability applying the averaging
estimator. The testing strategy basically follows that utilized in the literature where these studies all base their
inference on the bootstrap approach in order to control for small-sample bias for which the asymptotic
approximation generally fails to correct.

We accessed the relative forecast accuracy of the two competing models with Theil's U and DM statistics. It
should be noted that the problem with estimating the long-run variance precisely when calculating the DM
statistic often leads to spurious inference. Important messages emerging from the empirical exercises include:

1) There is now much more significant evidence presented for the dominance of the monetary model over the
random walk when predicting, after accounting for estimation risks using the considered estimator. With only
few exceptions, the p-values associated with the averaging estimator for both statistics are smaller, relative to
those associated with the LS estimator.

2) It stands out from the results that controlling over the risks uncovers more favorable evidence in supports
of the monetary model, while there is essentially no evidence for so when leaving the risks unattended. Many
more instances of this are found from the reported Theil’s U statistic. Particularly, at almost all horizons, the
monetary model is found to be superior to the random walk in terms of predictability for Germany and Japan.
This contrasts sharply with the previous findings where little evidence for predictability is reported. Considering
the Theil's U statistic is more robust, this evidence lends quite a good deal of credence to the predictability at
both short- and long-horizons.

2.4 Asymptotic theory for the averaging estimator combining cross-sectional information

The use of the averaging estimator in testing for exchange rate predictability brings forth some econometric
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interesting questions. This entails the development of an asymptotic theory of the averaging estimator. We
invoke a local-to-unity framework to build the asymptotic theory based on the observation with inherent high
persistence in the data. We are now able to derive the asymptotic distributions of the averaging estimator under
the simplified assumptions where regression errors are uncorrelated with predicting variables. The asymptotic
distribution derived is a mixture normal. The mixture normal collapses into the limit distribution of the
least-square estimator, or that of the panel estimator, when either receives zero weights in forming the averaging
estimator.
2.5 The development of a new averaging estimator in the time series context

The new averaging estimator to attain more efficiency gains than the Gauss-Markov bound is formed by
combining OLS with FD. Indeed each of the aforementioned estimators provides some particular information
regarding the regression parameters of concern for the cases where it works well. OLS performs more
satisfactorily when the autocorrelation in errors is mild, while FD goes another direction. Since the degree of
autocorrelation in errors is unknown, determining which estimator to adopt amounts to a bet on two extremes.
However, our averaging estimator is obtained by optimally combining the two specific estimators, and is found to
have smaller estimation risks than either of the two estimators that is to combined. Specifically, the averaging
estimator is obtained by associating both OLS and FD with respective weights. The weights are however
determined such that the asymptotic MSE for the averaging estimator is minimized. It should be emphasized
that while consisting of both the estimators that are linear by construction, the averaging estimator is
nevertheless non-linear. Intuitively it is such the non-linearity nature that the proposed averaging estimator can
gain more efficiency than the Gauss-Markov bound, defined for the family of linear estimators. Further, our
simulation results show that the averaging estimator is much preferred when information about the degrees of
persistence in regression errors is unknown. The numerical evidence concurs on the theoretical predictions of the
estimator.

3. Program Management: the Mechanism for Promoting Collaboration and Integration among the Institutes Involved

The mini conference held at Academia Sinica in Jan 2007, and Feb 2008 exposed me to the ideas contributed
by other principle investigators of different sub-projects. Admittedly | learned quite a bit from these team
partners. Some of the work and results were intriguing. Importantly, | found that there should have more links
to each other among sub-projects than it used to project.

The study on the averaging estimator in time series context was presented at the third mini conference in
August 2008, Academia Sinica. While the research is the only study that falls into the category of econometrtic
theory, a few important observations and comments regarding the idea of the averaging estimator were made by
conference participants, probably because of its intuitive appealing. These observations and comments turn out
to be the focal points for future research for the year to come. It will be detailed somehow in the following
section.

4. A Summary of the Post-Program Plan ( Including the Detailed Description of Budget and Plan Adjustment of the

next year )

There are two potential directions that can be after for future research. The first is to apply the averaging
notion to panel data where the estimation suffers bias and inefficiency due to, again, short span of realizations in
time horizons, as in typical time series. The lack of efficiency in estimations for typical panel data is well known.
\Worse is the bias problem when dynamic panel data is under study. With lag dependent variables as explanatory
regressors, the autoregressive coefficients have been long known to be biased downwards, as in the conventional

auto-regressions. While the averaging may well be applied to the panel context for the purposes of efficiency
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gains and bias reductions, work along the line will prove to be very challenging and time-demanding, due to the
the complications arising from the dimensionality of the panel data.

Another important work is to explore the possible link of the averaging estimators to the family of the GMM
estimator. This is a very reasonable and interesting inquiry because the averaging estimator is in fact made up of
the two estimators, OLS and FD, which can be obtained by method of moments, individually. Therefore, the
averaging estimator in essence should share some common characteristics with the GMM estimator. The GMM
estimators arise in the over-identification cases where number of the moment conditions exceeds that of the
parameters to be estimated. Information from various moments is thus combined with the use of an appropriate
weighting matrix where the respective contribution from each moment is taken into account. The respective
weight associated with OLS and FD in the averaging estimator proposed depends on the contribution of each
combined estimator. The two estimators differ from each other by their objective functions. The GMM
estimators are developed to minimize the squared difference between the true moments and the estimated ones,
while the averaging estimator is obtained when the associated mean squared error is minimized. It proves
worthwhile to examine how the two types of the estimators differ in terms of their statistical properties. Of the
properties of major interest is to investigate whether the weighting schemes in the averaging estimator could help
understand and thus improve the poor small sample performance of the GMM estimators due to ill calculations
of the corresponding weighting matrix. This subtlety will be one of important focal points for future research.

5. International Cooperation Activities (Optional)

Prof. Bruce Hansen of University of Wisconsin at Madison has been working on the averaging estimator
around the same time as the research got started. One of his first papers along the line got published in a recent
issue of Econometrica and Journal of Econometrics, marking research on the averaging estimator a potential
important direction to move in the future. Possible research collaborations with him in terms of visiting him
would greatly help improve the exposition of my research.
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Averaging to Improve Efficiency in Time

Series Regressions

February 17, 2009

Abstract

This paper proposes a simple averaging estimator to increase the efficiency of the
regression coefficient estimates, relative to the usual ordinary least squares (OLS), es-

timator when the error term having nonparametric autocorrelation.

Key words: averaging estimator; time series regression



1 Introduction
Consider the regression model consisting of stationary time series processes as follows:
Co=~v+2Z'B+e, t=1,2,...,n, (1)

where 7 represents a scalar finite constant, Z; is a (K x 1) random vector whose j-th element
is Z; ;, and (3 is a (K x 1) non-stochastic vector of unknown regression coefficients to be esti-
mated and tested. Adaptive estimation method based on an approximate frequency-domain
generalized least squares (GLS) has been considered by Hannan (1963) for the model in (1)
when ¢, is a short memory process with nonparametric autocorrelation. The methodology of
Hannan (1963) has been extended by Hannan (1965), Hannan and Terrell (1972, 1973), and
Robinson (1976) to other interesting econometric models. Robinson and Hidalgo (1997) and
Hidalgo and Robinson (2002) further apply the frequency-domain method of Hannan (1963)
to the cases where ¢; and Z; can be long memory processes.

The most well-known time-domain method for the model in (1) surely is the usual ordinary
least squares (OLS) estimator. The OLS estimator basically cannot achieve Gauss-Markov
bound when ¢ is not an independently identically distributed (i.i.d.) process. Thus, GLS-
type method has been proposed to increase the efficiency of the regression coefficient estimate
when ¢; admits a specific parametric form. For example, the Cochrane and Orcutt (1949) es-
timator requires &, as an autoregressive process of order 1, or AR(1). Some authors, including
Maeshiro (1976), Chipman (1979), and Krémer (1982) and references therein, suggest that
the first-differenced (FD) estimator can be an approximation to the GLS estimator when es-
timating the coefficient of the linear trend. When ¢; having nonparametric autocorrelation,
however, we do not have a clear understanding about the relative performance of the OLS
and FD estimators in estimating . In this paper we thus fill the gap of literature by sug-
gesting a time-domain semiparametric Stein-like (SPSL) estimator advocated in Judge and
Mittelhammer (2004) to increase the efficiency of the regression coefficient estimate relative
to both the OLS and FD estimators for the model in (1) where Z; and ¢; are stationary
processes admitting nonparametric autorrelation.

The proposed SPSL estimator is a linear combination of the OLS and the FD estimator.
The SPSL estimator is risk superior to the OLS and FD estimator in MSE under suitable

regularity conditions outlined in Judge and Mittelhammer (2004). The simulations reveal



that the finite sample power performance of the proposed shrinkage estimator are 99% more
powerful than that of OLS and FD estimator, respectively, when the sample is 1007. When

sample size increase, the percentages become 7.

2 Main statistics

With a sample of size n and define St,.7;, as the sample mean of the random variable S; from
t =T, to t =Ty, the usual OLS estimator for the model in (1) is:
n -1 n
Bn,OLS - [Z(Zt - Zln)Z:] Z (Zt - Zl:n) C115- (2)
t=1 t=1
Define A =1 — L, where L is the usual lag operator (Lz; = z;_1), the FD estimator for
the model in (1) is computed as:
n -1 n
Borp = lz (82, - 1Z,,,) 0zZ] ] S (02— RZy,) AC (3)
t=2 t=2

We compute the shrinkage estimator as follows:

B =@ Bomors + (1 — @) Brp, (4)
where B
B?:n,OLS = [Z(Zt - Z2n)ZJ] Z (Zt - 72%) Ct; (5)
t=2 t=2

and w is the weight estimated from the data. The choice of observations used for estimation
is to ensure that the sample sizes used for the OLS and FD estimators are compatible. The
theoretical foundation of calculating w will be discussed later.

Similar to the arguments in Judge and Mittelhammer (2004, p. 480), the proposed SPSL
estimator, B, can reduce the estimation risks for the time series regression model in (1),
because it has a smaller expected quadratic risk than the OLS estimator. Following Judge
and MIttelhammer (2004), we note that, whenever the OLS and FD estimators are not
perfectly correlated, the optimal weighted linear combination estimator B in (4) will, under
quadratic loss, be superior to the OLS estimator. The estimator B is in the general form of
the Stein rule family of estimators, where shrinkage of the base estimator, OLS, is toward
the alterative estimator, FD. The estimator is drawn toward the alternative estimator when

the variance of the OLS estimator is higher, and drawn toward the OLS estimator when the



FD estimator has a higher variance. The combined-models formulation is similar in spirit to
the Bayesian model-averaging method of Hoeting, et al. (1999, 2002). The difference is that
the Bayesian model-average methods are not optimized with respect to any particular loss
function.

We now discuss the asymptotic properties of the shrinkage estimator. Note that

[B&n,OLS] . n~! ;2 (Zt - 72:71,) Cy

~ :Qn n - ) <6>
BnFp n Y (AZ — DZy,) AC
t=2
where
-1
A [nl S (Zs — Zom) 2 0
Qn = = . - e (7)
0 [n_l > (8%~ BZ,,) AZ] ]
t=2

It follows that

n1/2(3 n,OLS ™ 6) ~ n71/2 i Zt - 72:71 &t PR
[ i ’ =Q, . t:2< o ) — 0,7, (8)
n'2(Bnrp — 0) n~1/2 3 (AZt — AZM) Ag;
t=2
We observe that
Qn—Q -0, 9)

where @ in (9) is O(1) and uniformly positive definite under suitable regularity conditions.

Under suitable regularity conditions, we can show that Y, in (8) is asymptotically dis-
tributed as:
Vin Vg

R 0
Y, = N , (10)
0] [Vip Va

where = stands for weak convergence. It follows that we have
) . (11)

{nl/z(@:n,ow - 5)] ( {0
~ = N
”1/2(5n,FD - 5) 0

Combining the results in (11) and (2.5) of Judge and Mittelhammer (2004), we compute the

)

Vors X

?

weighting constant as:
tI‘(VOLs) — tr(E)
tI'(VOLS) + tI'(VFD) -2 tr(E) '

w is calculated based on the results in (12). As a consequence, the shrinkage estimator G is

w=1— (12)

asymptotically distributed as:

n'2(B = B) = N (0,wVors + (1 — w)*Vep + w(l — w)(X +27)). (13)



The results in (13) can be used to construct a t-ratio statistic for testing the value of g in

(1) based on the asymptotic properties of the shrinkage estimator 3 in (13).

3 Monte Carlo experiment

This section focuses on the finite sample performance of the shrinkage estimator B as com-
pared to the OLS and FD counterparts for the regression model with stationary regressor
and errors. Without loss of generality, only one regressor is considered in the experiment,
i.e., we assume K = 1 throughout this section. Moreover, v = 0 is assumed throughout this
section.

We focus on the cases where ¢, and Z; are both generated as AR(1) processes:
(1 — QSEL)Et = Uy, (1 — CbZL)Zt = W, (14)
such that v; and w; both are zero-mean normally i.i.d. white noise processes with:

E(v) =0,

v

E(w?) = o2, (15)

w

The value of 02 and 02 in (41) are chosen to ensure the variance of ¢, and Z; are both equal
to 1. The values of ¢. and ¢z ranges from 0.1 to 0.9.
In the context of stochastic regressor framework, we generate 5,000 replciation of Z; and

¢ based on the following model:
Cl=pZ'+&, t=1,2,...,n, 1=1,2,...,5000, (16)

where [ denotes the [-th replication of the data. (3, can be 1 or 0.9 for investigating the

empirical powers of the shrinkage estimator given that the null hypothesis for 3 is always
tested as:

Hy:p8, =05 =1. (17)

We adopt the the long-run variance estimator of Robinson (1998) to implement the shrink-

age estimator and conduct inference for the OLS, FD, and shrinkage estimators, because it

does not involve the difficult choices of kernel function, bandwidth parameter, or lag length

of AR model typically used in the literature. Particularly, V3; in (10) can be estimated with
‘7111

R (n—1)—1 R
V= Y, (Ez',OLS X di,OLS) ; (18)
i=—(n-1)+1



where

Giors = (n — 1) Z €t € iy Jz‘,OLS =mn-1)" Z (Ze — Zon)(Zpyi — ZQ:n)Ta

2<t,t+i<n 2<t,t+i<n

and e; are the residuals from the OLS estimation:

Ct - 62:71 = (Zt - Z2:n)TB2:n,OLS + €¢, t= 27 37 s

Similarly, V55 can be estimated with 1722:

N (n—1)—1 R
Voo = > (@,FD X dz‘,FD) :
i=—(n—1)+1
where

Grp=(Mm—-1)"1 > erperirp,
2<t,t+i<n

~

dinD = (n - 1)_1 Z (AZt - EZ:H)(AZH-Z' - EZ:H)T7

2<t,t+i<n

and e, pp are the residuals from the FD estimation:

R R T ~
ACy = ACy,, = (AZ — DZy,,) Buyp +erp, t=2,3,...,n.

In a similar vein, Vi5 in (10) can be estimated with Via:

N (n—1)—1 N
Vig = Z (Ez X di) )
i=—(n—1)+1
such that

¢ =(n-— 1)_1 >.  €1eiiFD,
2<t t+i<n

-~

, M.

di - (TL - 1)71 Z (Zt - 721%)(AZt+i - EQ:n)Tv

2<t,t+i<n

(19)

(20)

(21)

(23)

(24)

(25)

Table 1 contain the RMSE of the OLS, FD, and shrinkage estimators in estimating the

regression coefficient 3. The results shows that, for a given value of ¢, the performance of the

OLS estimator deteriorates with the increasing value of ¢.. This is what we expect because

we note that the OLS estimator achieve the Gauss-Markov bound when the error term is a

Gaussian white noise. On the other hand, the efficiency of the FD estimator improves with

the increasing value of ¢.. This corresponds to the findings in Chipman (1979) and Kramer

(1982) that the FD estimator is an approximation to the generalized least squares (GLS)

estimator when estimating the coefficient of the linear trend.



For ease of comparison, we define RMSE, as the RMSE of the estimator § in estimating
3 of the model in (6), and compare the finite sample relative efficiency of OLS estimator to

its shrinkage counterpart as:

RMSEoLs

RMSE3; ‘ (26)

relative efficiency of OLS to shrinkage estimator in estimating § =

The shrinkage estimator is more efficient than the OLS counterpart in estimating (3 if we find
the ratio in (16) is greater than 1.

Table 2 shows that the shrinkage estimator performs much better than the OLS estimator
for the 81 cases considered in Table 2, especially when ¢, is larger. Indeed, we only find 10 out
of 81 cases where the OLS can beat the shrinkage estimators when 7" = 100 . Even within
these 10 cases, the relative efficiency of the OLS estimator as compared to the shrinkage
estimator are very much close to each other, because the ratio are very close to 1. Moreover,
we also find the relative performance of shrinkage estimator as compared to the OLS ones
improves when the sample increases. For example, we now observe 9 out of 81 cases that
the OLS estimator can beat the shrinkage estimator when n = 200. Moreover, there are
only 3 cases that the shrinkage estimator is inferior to the OLS estimator as the sample size
increases to be 400, and the ratios from these 3 cases are very close to 1.

Table 3 shows that the shrinkage estimator also performs much better than the FD esti-
mator when ¢, is not close to the boundary of 0.9. Indeed, we only find 18 out of 81 cases
where the FD can beat the shrinkage estimators when 7" = 100. Even within these 18 cases,
the relative efficiency of the OLS estimator as compared to the shrinkage estimator are very
much close to each other. Again, we find the relative performance of shrinkage estimator as
compared to the OLS counterpart improves with an increasing sample size. For example, we
observe only 10 out of 81 cases that the FD estimator outperform the shrinkage one when

T = 200, the ratio are more close to 1 as compared to the case T' = 100.

4 Conclusion

REFERENCES



Chipman, J.S. (1979) Efficiency of least squares estimation of linear trend when residuals are

autocorrelated. Fconometrica 47, 115-128.

Hannan, E.J. (1963) Regression for time series, in Time Series Analysis ed. by M. Rosenblatt.
New York: John Wiley.

Hannan, E.J. (1965) The estimation of relationship involving distributed lags. Econometrica

33, 206-224.

Hannan, E.J., R.D. Terrel (1972). Time series regression with linear constraints. Interna-

tional Economic Review 13, 189-200.

Hannan, E.J.; R.D. Terrel (1973). Multiple equation systems with stationary errors. Econo-
metrica 41, 299-320.

Hausman, J.A. (1978) Specifications tests in Econometrics. Econometrica 46, 1251-1272.

Hidalgo, J, Robinson, P.M., (2002) Adapting to unknown disturbance autocorrelation in

regression with long memory. FEconometrica 70, 1545-1581.

Hoeting, J.A., Madigan, D., Rafferty, A.E., Volinsky, C.T. (1999). Bayesian model average:
A tutorial. Statistical Science 14, 382-401.

Hoeting, J.A., Rafferty, A.E., Madigan, D. (2002) Bayesian variable and transformation
selection in linear regression. Journal of Computational and Graphical Statistics 11, 485-

507.

Judge, G.G., Mittelhammer, R.C. (2004) A semiparametric basis for combining estimation
problems under quadratic loss. Journal of the American Statistical Association 99, 479-

487.

Kréamer, W. (1982) Note on estimating linear trend when residuals are autocorrelated. Econo-

metrica 50, 1065-1067.

Maeshiro, A. (1976) Autoregressive transformation, trended independent variables and au-

tocorrelated disturbance term. Review of Economics and Statistics 58, 497-500.



Plosser, C.I., Schwert, G.W., White, H. (1982) Differencing as a test of specification. Inter-
national Economic Review 23, 535-552.

Robinson, P.M., Hidalgo, F.J., (1997) Time series regression with long-range dependence.
The Annals of Statistics 25, 77-104.

Wu, D. (1973) A alternative tests of independence between stochastic regressors and distur-

bances. Econometrica 41, 733-750.



Table 1. RMSE from Estimating the Regression Coefficient 5: n = 100

bz

¢. Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 0.104 0.104 0.106 0.105 0.108 0.111 0.114 0.118 0.129
FD 0.122 0.128 0.132 0.139 0.152 0.166 0.191 0.229 0.312
6] 0.105 0.105 0.107 0.105 0.109 0.113 0.116 0.120 0.131

0.2 OLS 0.103 0.108 0.108 0.112 0.112 0.115 0.120 0.129 0.144
FD 0.112 0.119 0.124 0.130 0.140 0.158 0.178 0.213  0.299
154 0.101  0.105 0.106 0.109 0.111 0.115 0.119 0.128 0.146

0.3 OLS 0.105 0.107 0.111 0.114 0.119 0.123 0.130 0.137 0.154
FD 0.102 0.109 0.113 0.121 0.131 0.145 0.164 0.197 0.274
6] 0.097 0.099 0.102 0.107 0.112 0.117 0.125 0.134 0.151

0.4 OLS 0.107 0.109 0.115 0.120 0.123 0.130 0.138 0.148 0.167
FD 0.095 0.098 0.104 0.114 0.120 0.135 0.154 0.183 0.253
1G] 0.092 0.094 0.099 0.105 0.109 0.116 0.126 0.138  0.160

0.5 OLS 0.107 0.111 0.116 0.121 0.128 0.139 0.146 0.160 0.179
FD 0.084 0.089 0.094 0.099 0.109 0.120 0.137 0.166 0.234
3 0.083 0.087 0.091 0.095 0.103 0.111 0.121 0.138 0.165

0.6 OLS 0.105 0.112 0.119 0.127 0.135 0.146 0.160 0.177  0.202
FD 0.074 0.078 0.083 0.090 0.096 0.108 0.123 0.147 0.208
6] 0.073 0.077 0.081 0.088 0.094 0.104 0.117 0.134 0.169

0.7 OLS 0.106 0.112 0.120 0.133 0.141 0.154 0.169 0.189  0.230
FD 0.062 0.066 0.071 0.077 0.083 0.091 0.104 0.128 0.178
B 0.062 0.065 0.071 0.077 0.082 0.090 0.103 0.123 0.163

0.8 OLS 0.105 0.114 0.125 0.132 0.152 0.164 0.184 0.213 0.261
FD  0.050 0.053 0.058 0.061 0.067 0.073 0.086 0.104 0.147
6] 0.050 0.053 0.058 0.061 0.067 0.074 0.086 0.105 0.148

0.9 OLS 0.103 0.112 0.121 0.135 0.150 0.166 0.191 0.228  0.292
FD 0.035 0.037 0.039 0.042 0.045 0.052 0.061 0.072 0.103
16 0.035 0.037 0.039 0.042 0.046 0.053 0.061 0.074  0.109

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and B; = 1. [ is the shrinkage estimator defined in (4).
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Table 2. Relative Efficiency of OLS Estimator to the Shrinkage Counterpart

from Estimating the Regression Coefficient 3

¢z
¢- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 0.9927 0.9883 0.9927 0.9951 0.9875 0.9850 0.9883 0.9806 0.9853
0.2 1.0225 1.0225 1.0183 1.0201 1.0115 1.0031 1.0011 1.0034 0.9896
0.3 1.0851 1.0784 1.0812 1.0651 1.0592 1.0530 1.0428 1.0258 1.0200
0.4 1.1600 1.1549 1.1638 1.1399 1.1323 1.1271 1.0951 1.0754 1.0445
0.5 1.2903  1.2760 1.2732 1.2810 1.2463 1.2536 1.2088 1.1616 1.0894
0.6 1.4337 1.4530 1.4653 1.4416 1.4432 1.4012 1.3669 1.3200 1.1929
0.7 1.7015 1.7163 1.7066 1.7347 1.7184 1.7189 1.6359 1.5386 1.4060
0.8 2.0998 2.1511 2.1567 2.1750 2.2528 2.2238 2.1449 2.0226 1.7683
0.9 29363 3.0215 3.1114 3.1987 3.2812 3.1448 3.1218 3.0856 2.6802

n = 200

0.1 0.9988 0.9964 0.9983 1.0019 0.9965 0.9927 0.9993 0.9944 0.9950
0.2 1.0437 1.0298 1.0283 1.0202 1.0231 1.0200 1.0202 1.0051 0.9990
0.3 1.0900 1.0861 1.0933 1.0746 1.0658 1.0646 1.0515 1.0339 1.0095
0.4 1.1756  1.1680 1.1728 1.1604 1.1461 1.1402 1.1080 1.0811 1.0449
0.5 1.2875  1.2978 1.2954 1.2829 1.2725 1.2300 1.2179 1.1665 1.0916
0.6 1.4653 1.4743 1.4977 14716 1.4655 1.4293 1.3958 1.3167 1.2072
0.7 1.6822  1.7379 1.7563 1.7862 1.7523 1.7258 1.6646 1.5688 1.3979
0.8 21147 2.2099 2.2650 2.2325 2.2573 2.2542  2.2389 2.1143 1.8576
0.9 3.0284  3.1638 3.2378 3.3515 3.3323 3.3569 3.3152 3.3012 2.9232

n = 400

0.1 1.0040 1.0039 1.0051 1.0031 1.0016 0.9999 0.9998 1.0009 0.9984
0.2 1.0371  1.0379 1.0329 1.0283 1.0270 1.0247 1.0140 1.0145 1.0015
0.3 1.0905 1.0954 1.0891 1.0824 1.0757 1.0794 1.0557 1.0331 1.0241
0.4 1.1620 1.1803 1.1767 1.1758 1.1650 1.1569 1.1240 1.1032 1.0520
0.5 1.3104 1.3126 1.3058 1.2833 1.2833 1.2558 1.2285 1.1557 1.1012
0.6 1.4536  1.4726 1.4863 1.5035 1.4795 1.4403 1.4123 1.3148 1.2021
0.7 1.7533  1.7560 1.7767 1.7674 1.7785 1.7382 1.6775 1.5760 1.3966
0.8 21574 2.2205 23092 2.2825 2.2976 2.2803 2.2484 2.0852 1.8654
0.9 3.0666 3.1960 3.2935 3.4127 3.4700 3.5189 3.4484 3.3625 3.0185

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and 3y = 1.

11



Table 3. Relative Efficiency of FD Estimator to the Shrinkage Counterpart

from Estimating the Regression Coefficient 3

¢z
¢- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 100

0.1 1.1604 1.2109 1.2357 1.3193 1.3872 1.4704 1.6506 1.9038 2.3840
0.2 1.1093  1.1298 1.1718 1.1904 1.2684 1.3722 1.4948 1.6626 2.0467
0.3 1.0562 1.0946 1.1015 1.1307 1.1749 1.2377 1.3102 1.4724 1.8097
0.4 1.0334 1.0439 1.0538 1.0864 1.1056 1.1694 1.2283 1.3312 1.5780
0.5 1.0119 1.0221 1.0310 1.0470 1.0629 1.0815 1.1299 1.2060 1.4210
0.6 1.0071  1.0067 1.0165 1.0243 1.0267 1.0362 1.0532 1.1012 1.2281
0.7 0.9990 1.0031 1.0063 1.0002 1.0097 1.0127 1.0102 1.0450 1.0899
0.8 0.9984  0.9977 0.9967 0.9993 0.9953 0.9958 1.0014 0.9887 0.9916
0.9 0.9984 0.9962 0.9976 0.9966 0.9920 0.9930 0.9936 0.9791 0.9476

n = 200

0.1 1.1657  1.2067 1.2718 1.3342 1.4258 1.5191 1.7158 1.9365 2.5396
0.2 1.1080 1.1590 1.1801 1.2145 1.2657 1.3631 1.4989 1.6791 2.2373
0.3 1.0684 1.0911 1.1115 1.1383 1.1982 1.2629 1.3544 1.5557 2.0074
0.4 1.0333  1.0579 1.0618 1.0900 1.1254 1.1583 1.2372 1.3816 1.6644
0.5 1.0182 1.0280 1.0360 1.0568 1.0761 1.1048 1.1557 1.2148 1.4661
0.6 1.0113 1.0124 1.0198 1.0231 1.0330 1.0516 1.0695 1.1328 1.2534
0.7 1.0036  1.0025 1.0063 1.0038 1.0119 1.0266 1.0290 1.0614 1.1265
0.8 1.0010  1.0007 0.9987 1.0024 1.0034 1.0052 0.9989 1.0102 1.0415
0.9 0.9985 1.0003 0.9992 0.9991 0.9970 0.9986 0.9969 0.9992 0.9864

n = 400

0.1 1.1759 1.1997 1.2670 1.3370 1.4171 1.5464 1.7130 1.9882 2.6262
0.2 1.1208 1.1496 1.1904 1.2567 1.2944 1.3799 1.5254 1.7701 2.3178
0.3 1.0741  1.0928 1.1180 1.1636 1.2055 1.2606 1.3819 1.5705 2.0247
0.4 1.0470  1.0543 1.0703 1.0997 1.1176 1.1679 1.2432 1.4070 1.7281
0.5 1.0217  1.0339 1.0368 1.0606 1.0651 1.1143 1.1525 1.2538 1.4761
0.6 1.0060 1.0130 1.0239 1.0225 1.0340 1.0552 1.0851 1.1608 1.3101
0.7 1.0023 1.0077 1.0115 1.0100 1.0138 1.0231 1.0389 1.0636 1.1613
0.8 1.0018 1.0032 0.9989 1.0052 1.0064 1.0039 1.0158 1.0177 1.0582
0.9 1.0001  0.9999 0.9997 0.9993 1.0002 0.9990 0.9995 1.0016 1.0038

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and 3y = 1.
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Table 4. Rejection Percentages of the Shrinkage Estimator under the Null

¢z
R n 01 02 03 04 05 06 07 08 0.9

0.1 100 702 688 696 644 696 7.44 800 8.04 10.66
200 6.12 6.02 570 6.02 583 6.36 6.32 6.82 8.24
400 514 6.04 554 540 566 588 586 6.22 7.34

0.2 100 6.60 726 6.60 646 7.06 7.10 7.70 8.66 11.24
200 5.60 544 583 6.22 6.66 6.18 6.88 6.68 7.94
400 5.32 558 526 532 596 524 6.02 6.28 6.98

0.3 100 6.86 6.38 6.38 6.60 7.06 7.28 7.96 848 9.80
200 598 540 554 610 584 626 6.66 7.12 7.84
400 5.10  5.16 528 508 494 554 564 6.20 7.00

0.4 100 708 650 660 6.62 658 6.78 806 9.00 11.06
200 582 6.10 6.08 554 576 638 6.22 6.90 8.16
400 5.22 5.02 522 522 528 532 57 580 6.48

0.5 100 6.38 6.20 6.74 6.02 7.04 6.76 748 826 1048
200 584 588 574 560 540 6.28 592 7.04 8.36
400 482 466 558 514 558 540 6.06 6.18 6.56

0.6 100 558 630 632 650 640 6.76 7.78 838 1048
200 2.24 534 552 556 562 560 6.18 6.84 8.62
400 5.82 526 532 508 516 556 498 5.78 6.74

0.7 100 6.02 554 583 682 584 588 6.78 780 10.30
200 5.60 566 578 594 580 530 6.32 6.66 8.20
400 5.00 512 508 572 532 574 580 5.78 5.98

0.8 100 6.20 6.00 652 594 6.10 588 6.16 7.36 9.78
200 5.58 512 536 584 578 516 5.72 544 6.78
400 536 538 512 526 548 542 524 586 5.84

0.9 100 5.78 5776 576 562 560 632 684 6.64 8.68
200 5.84 550 586 580 594 564 592 586 6.48
400 542 536 530 532 488 516 544 4.88 .66

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and B, = 1. 3 is the shrinkage estimator defined in (4).
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Table 5. Rejection Percentages of the OLS Estimator under the Null

¢z
¢- n 01 02 03 04 05 06 0.7 0.8 0.9

0.1 100 6.48 584 6.26 552 644 642 714 7.38 9.96
200 546 550 534 570 588 592 6.18 6.46 7.88
400 5.08 568 518 524 572 578 5.70 6.08 7.34

0.2 100 5.64 6.34 604 632 640 6.62 7.34 8.32  10.46
200 564 504 566 586 628 583 6.70 6.68 7.76
400 5.02 532 474 496 6.12 522 552 6.12 6.80

0.3 100 6.12 582 624 6.04 6.8 694 7.66 8.32 9.76
200 2.88 522 532 578 590 6.04 6.50 7.10 7.48
400 522 512 502 524 506 588 5.36 5.86 6.74

0.4 100 6.86 576 6.52 642 6.52 6.72 7.58 8.94 11.24
200 5.84 566 642 550 572 6.70 6.32 6.90 8.20
400 450 504 530 478 552 556 5.62 2.88 6.68

0.5 100 6.44 6.10 596 6.18 6.46 7.02 7.78 8.76  10.24
200 5.82 596 552 542 540 6.24 6.26 7.38 8.56
400 5.56 4.88 5.68 546 552 548 6.50 6.28 6.76

0.6 100 528 584 666 638 6.72 7.82 8.80 9.46  10.98
200 540 556 576 576 6.36 556 6.86 7.04 8.78
400 236 574 494 560 570 560 5.74 5.64 7.24

0.7 100 582 5.60 596 748 7.04 7.58 8.08 9.30  12.00
200 5.32 536 552 6.66 636 592 7.32 7.42 9.84
400 042 540 546 554 532 572 584 6.22 6.86

0.8 100 586 510 6.74 6.18 756 7.60 840 10.60 13.78
200 530 576 538 6.00 590 636 7.32 7.96  10.04
400 512 538 578 482 542 6.12 548 6.90 7.02

0.9 100 520 562 568 696 726 738 880 11.00 14.90
200 478 508 558 578 590 648 6.94 8.32  10.86
400 470 516 534 528 496 590 6.04 6.50 8.22

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and B, = 1. 3 is the shrinkage estimator defined in (4).
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Table 6. Rejection Percentages of the FD Estimator under the Null

¢z
R n 01 02 03 04 05 06 07 08 09

0.1 100 6.64 628 620 540 6.16 6.12 6.18 556 5.46
200 6.02 6.02 544 526 592 558 558 5.08 4.74
400 5.38 480 566 530 534 522 518 536 5.16

0.2 100 6.26 646 580 544 586 646 598 562 6.28
200 5.70 562 550 6.02 496 546 578 428 5.32
400 5.62 532 514 524 538 508 538 514 520

0.3 100 588 644 6.00 586 6.28 562 534 592 532
200 6.06 526 5.08 534 506 522 548 548 554
400 2.20 498 530 544 498 520 532 580 492

0.4 100 6.44 6.14 596 646 560 656 6.02 574 574
200 5.76  6.22 572 518 578 534 526 542 4.84
400 5.30 518 496 512 472 458 470 510 5.08

0.5 100 596 564 584 566 564 552 532 564 530
200 544 542 538 560 532 568 552 520 5.60
400 482 468 526 512 532 478 538 524 5.12

0.6 100 536 578 6.02 596 568 582 6.08 566 5.74
200 5.22 536 574 562 528 534 550 556 5.04
400 5.50  5.20 522 472 494 518 476 552 5.04

0.7 100 6.06 528 586 636 554 520 536 620 5.42
200 2.2 564 546 562 526 522 596 540 5.46
400 5.10 514 490 580 5.12 562 534 540 524

0.8 100 6.24 596 6.14 562 598 534 566 552 6.14
200 5.50 5.28 522 578 574 494 512 518 5.10
400 5.38 556 504 530 542 534 490 530 4.82

0.9 100 5.70 558 558 554 536 6.12 6.70 586  5.68
200 5.68 548 564 564 578 572 552 538 552
400 548 536 544 520 474 526 520 518 524

Notes: All the results are based on 5,000 replications of the simulated data defined in (14),
(15), (16), and B, = 1. 3 is the shrinkage estimator defined in (4).
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Table 7. Emprical Power Performance of Three Estimator: n = 200

bz

¢. Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 2936 27.68 2896 2844 2842 2810 27.66 27.76 29.02
FD 2356 2094 1944 1894 1724 1498 12.60 9.14 7.72
I} 29.98  29.02 29.64 2948 29.22 2886 28.38 28.30 29.24

0.2 OLS 28.66 28.38 27.18 2648 26.80 25.38 25.74 2454 24.60
FD 2472 23.80 2220 2046 18.76 1570 13.38 10.38 7.94
B 30.74  30.62 28.64 29.30 2824 2648 2648 2558 25.36

0.3 OLS 28.72 26.62 26.42 25.12 24.60 23.58 23.04 2296 22.76
FD 30.10 27.70 24.18 22.06 20.54 1720 1444 11.32 8.86
154 33.62  31.80 2994 2932 2776 26.74 2472 23.82  23.26

0.4 OLS 2886 26.92 25.80 2388 23.80 21.32 20.32 19.68 20.10
FD 3492 31.76 2772 25.06 2348 1940 1582 12.68 8.84
14 37.38 3494 3218 30.10 29.60 26.28 23.16 21.70 21.66

0.5 OLS 2948 26.58 26.02 22.06 21.14 19.50 19.46 19.28 18.78
FD 40.70 3756 3556 30.30 26.54 2256 1856 13.80 10.00
6] 4290 39.86 38.12 33.14 3044 27.68 24.84 2318 20.76

0.6 OLS 2830 26.10 2398 2234 20.70 1854 1812 1724 17.14
FD 51.12 4540 4198 36.52 3222 2698 2144 17.02 10.88
I} 52.64 46.96 43.68 40.02 35.18 30.42 26.22 23.14 1892

0.7 OLS 28.62 26.32 23.28 21.18 20.04 17.58 16.74 1556 15.60
FD 63.16 59.12 52.12 4718 43.14 3492 2852 21.18 12.72
B 63.60 59.58 53.46 4838 44.70 37.80 30.98 24.80 19.00

0.8 OLS 29.54 2642 23.84 2152 1828 16.80 16.20 15.00 14.80
FD 81.52 7810 71.24 67.04 5790 48.72 39.06 27.80 17.02
6] 81.78 7790 T71.80 67.54 58.66 49.28 40.88 30.64 20.86

0.9 OLS 3354 29.70 26.54 2228 19.32 16.86 15.88 14.78 14.78
FD 9818 97.22 9474 91.14 8720 7824 6830 50.32 29.22
16 98.16 97.22 9474 91.02 8706 7836 68.34 50.86 31.12

Notes: All the results areAbased on 5,000 replications of the simulated data defined in (14),
(15), (16), and B; = 0.9. (3 is the shrinkage estimator defined in (4).
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Table 8. Emprical Power Performance of Three Estimator: n = 400

¢z

¢. Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 OLS 50.36  50.90 4990 48.82 48.72 46.98 46.46 46.96 46.58
FD 39.36  36.76 34.60 30.86 27.54 24.02 18.60 15.04 9.76

~

I} 01.82  51.94 50.76  49.90 49.48 47.84 47.28 4758 47.04

0.2 OLS 51.26  49.40 47.70  46.04 44.72 43.10 4230 40.62  40.52
FD 45.04 42.04 3758 3450 30.72 25.82 2236 1638 11.12

~

B 04.34  53.08 50.42 48.84 4822 4558 44.14 4176  41.26

0.3 OLS 48.56 4856 4540 4288 40.50 39.96 37.82 36.62 35.00
FD 50.94  47.80 42.46 38.52 33,50 28.82 2356 18.10 11.60

~

6] 07.30  55.84 51.90 49.52 46.08 4450 41.76 39.20 36.38

0.4 OLS 48.82 4512 4458 41.60 37.00 35.64 3258 33.20 30.26
FD 58.74  52.80 48.46 4534 38.04 3232 26.78 20.14 13.04

~

I} 62.40 58.24 55.92 53.20 46.44 4422 38.82 37.32 3228

0.5 OLS 4762 4552  40.56  38.20 35.28 3248 29.78 28.04  26.66
FD 66.78 6292 57.44 5274 46.14 39.26 31.84 2420 13.80

~

6] 69.44 66.00 60.86 58.06 52.48 46.84 4146 36.20 30.10

0.6 OLS 48.14 4338  39.70 3592 33.14 2940 26.16 24.48 21.58
FD 78.54 7240 68.66 62.86 57.08 46.24 37.78 28.64 16.44

~

16 79.66 73.80 71.06 65.20 60.40 50.70 44.58 36.62  27.68

0.7 OLS 47.60 4258 38.46 34.02 2992 26.00 23.94 2122 18.72
FD 89.62 86.28 81.32 76.10 67.50 59.58 49.20 35.32 20.72

~

B 89.96 87.06 82.08 7722 69.20 62.36 52.32 4040 28.72

0.8 OLS 46.02 41.84 37776 33.78 27.62 2496 21.86 17.80 17.54
FD 98.02 96.54 9454 9158 8584 7722 66.34 4830 29.16

o~

6] 98.06 96.70 94.66 91.96 8590 7744 67.66 51.50 33.90

0.9 OLS 48.78 4432 38.14 3192 28.00 22.62 19.26 1596 14.38
FD 100.00 99.96 99.94 99.54 99.30 97.42 9230 79.22 50.80
B 100.00  99.96 99.94 99.56 99.26 9744 9224 7890 52.10

Notes: All the results areAbased on 5,000 replications of the simulated data defined in (14),
(15), (16), and B; = 0.9. (3 is the shrinkage estimator defined in (4).
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Table 9. Empirical Power Performance of the Shrinkage Estimator
relative to both the OLS and FD Counterparts

¢z
o8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 200

0.1 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000  0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.0000  1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000

n = 400

0.1 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 1.0000  1.0000 1.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Notes: The results are based on the findings in Tables 7 and 8. The value of each entry
equals 1 when the power of the shrinkage estimator is better than that of the OLS and that
of the FD estimators at the same time. Otherwide, it equals 0.

18



FREATHEL R EHB RPN L REF A REE N B2

97 &# 9 7 2 F

FE A 4 1 PRA S A DESERE SRR g S
ks
pE R |27-31 August, 2008 *E P
£ & University of Bocconi, A NSC 97-2752-H-004 -002 -PAE
b B Milan, Italy } '
£ & : o
3 European Meeting of the Econometric Society
s
= % A Simple Hybrid
o~

o Bootstrap Test for Prediction Ability Based on Autoregressions

-~ St §RITE

AZ B E ERO RN - o g 5AE ¢ (European Economics Association )
Eye AERI2BEAREREE - £ #d H X JIF e Boceconi +~ F Ao 2~ F ik f 3
B Leg i«’ g hrzkent g & (Financial Times ¢ Newsweek) & 7]% 4 o A &F &
o b E SR ETREE L QR AR T AR T AT R R RS
Bocconi ~ Hd »y3F R4 > W& HE § > S &g RS glz‘!;,j]-‘ﬁ,{" SR B A g R
7 °€z*1‘gmf’b\ FROVFURTENEYE IR EREF T ROk R4 AHE
4k g RS EFA £ 9% LB T BB A 0 30 R e 01 E L g R AT
jﬁ "5—“ Ao AT Rz B A EA YR AEE- BLOpPEY > Y T LT A 3 5N
R A R ] W R o gtk i (presentation) HIT o A o~ it BES EaLE o

\v

(NN

[a
o+ @p g
T

I

RIS AP - AT ble o RS E T TRM Gen

By A SR EF SR A :é‘_% R dete §rE ARk F Ao

R IR AERE NG RE IS N TR F A o LA R EHEE R AT

o AW M XA yTALAREE ST i’”ﬁ'f’.l“im“ BT P S MOEAT L W LIAT

FIFATF ORI - BFTAERERST > CHHAHA I EAREL R EFE
ﬁﬂ\u‘zﬂ WM IRRME A g RY MAFIFIFHIF L c WHRE R FHFIT

- ~ Prof. Baltagi 4| * # %7% 3 & {7 5g:p| - Prof. Baltagi 3 BeF R3] chE £ 77 L 5% -
o s AR TIRA REG HF AT MR ATRIFRE - B O E kT o B A
Bt e T FRRIEFE R T e R e A A R g LA e Y R Ty
FEAEDE A RBML BN AP SR A T ERY YRFIERLY 0 A Prof,
Baltagl ALE A * B F #'x?‘lmzﬂ;g o

o FTMEFRFREIETRE > RRLERRE -1 0F NEXE O MR
Tt

=

g

&)

o

B

R
4

%

4

—=\ /;Jg
L a IRy
.

. &L

P A A Rk R G BT F ket I;t,au.ww qurz«cmfo 3



b

g
&

s
#

L ar B e

i

QRS

&

El

R

J
Py

SRR

- H

g

.w.ﬁm

o/

BT 4T e g
g

=)
E %
T M
oy
= oo
ﬁ%
=
.Wf -
-
+ 3l
FICRW
ol
L .
P ml
BN

=2

2
¥

£

0
e
.J,?

il

e
=

L\

ﬁwu °
abe ,ﬁ
!
ﬁawf w%ar
B e
¢
t

% Y04



