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Abstract

In this thesis, we study the basic theory of value distribution of mero-
morphic function of class A. We prove that every meromorphic function
of class A has at most two multiple values and the result is sharp. Also,
we prove that if a meromorphic function f of class A and its derivative

%) ghare a non-zero complex value, then f = f®.
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1 Introduction

In this thesis, a meromorphic function will mean meromorphic in the whole
complex plane C. Given two non-constant meromorphic functions f and ¢ and
a € C., the extended complex plane. We say that f and g share a IM (ignoring
multiplicities) if f — a and g — a have the same zeros ignoring multiplicities. We
say that f and g share a CM (counting multiplicities) if f — a and g — a have the

same zeros with the same multiplicities.

In 1929, R. Nevanlinna [8] proved the following remarkable results which play
an important role in the area of value distribution of meromorphic functions. Thus
the theory of value distribution became a fascinating topic. Thereafter, more and

more people participated in the research of this theory.

Theorem 1.1 [§] Let f and g be two non-constant meromorphic functions. If f

and g share five distinct values in Cy, then f = g.

Theorem 1.2 [§] Let f and g be two non-constant meromorphic functions. If f
and g share four distinct values ay,as,as, and ay, CM, then f is a Mébius transfor-
mation of g, two of the values, say ay and as, must be Picard exceptional values of

f and g, and the cross ratio (ay, as,az,ay) = —1.

After having these results, one question may be arised. What happen if two
non-constant meromorphic functions share four values but not all CM ? Does the

conclusion in Theorem [1.2] still hold for the other cases?

In 1979 and 1983, G. G. Gundersen [4,5] proved the following results. The
results say that two non-constant meromorphic functions sharing either three values
CM and one value IM or two values CM and two values IM are not different from

sharing all four values CM.



Theorem 1.3 [4] Let f and g be two non-constant meromorphic functions. If f
and g share three values CM and share a forth value IM, then they share all four
values CM, and hence the conclusion of Thereom[1.9 holds.

Theorem 1.4 [5] Let f and g be two non-constant meromorphic functions sharing
four values ay, as, a3, and ay. If f and g share ay,as CM, and as,aq IM, then f and

g share all four values CM, and hence the conclusion of Theorem [1.9 holds.

The remaining case, f and g share one value CM and the other three values

IM, is still open and is an interesting research problem.

In view of Nevanlinna and Gundersen’s results, it is natural to ask what happen

if two meromorphic functions share the number of values less than four.

In this thesis, we will study some value distribution of meromorphic functions
of class A. Some well-known properties will be discussed and some new results will

be obtained.

The thesis will be divided into five sections. In section 1, we give some intro-
ductions of the sharing value problems. In section 2, we review some basic theory
of value distribution. In section 3, we discuss the basic properties of meromorphic
functions of class A. In section 4, we study the multiple values of meromorphic
functions of class A. In section 5, we consider the unicity of meromorphic functions
of class A. In the end of section 4 and section 5, we get our main results in this

thesis.



2 Basic Theory of Value Distribution

In this section, we introduce and review some basic facts and notations in
complex analysis and value distribution which will be used throughout the rest of
the thesis. For the sake of brevity, proofs are omitted because they are standard

and can be found in [1}3},6,9}/10].

In Nevanlinna’s value distribution theory, the following Poisson-Jensen’s for-

mula plays a very important role.

Theorem 2.1 (Poisson-Jensen’s formula) Let 0 < R < oo and f be meromor-
phic in |z| < R and a, and b, be the zeros and poles of f in |z| < R, 1 < pu < M,
1 <v <N, respectively. If z=re?, 0 <r < R, and f(z) # 0,00, then we have

R2 AN 7“2
dg
— 2Rrcos(0 — ) + 12

g‘; 'R2—bz)

1 [ .
log /() = 5 [ Tog IR

Z log

R2—az

By taking z = 0 in Theorem [2.1 we get the Jensen’s formula.

Theorem 2.2 (Jensen’s formula) Under the assumptions of Theorem[2.], if f(0)

0,00, then we have

2

1 [ R R
log (0) = 5= | log| (e ldo - Zlog—+zlog’b,
0

pn=1

The assumption f(0) # 0,00 in Theorem can be eliminated. In fact, for
0 < r < oo, let n(r, f) denote the number of poles of f in |z| < r counting

multiplicities. Consider the Laurent expansion of f at the origin

f(2) = +enp 24



1
Note that A = n(0, ?) —n(0, f). Consider the function

£(2) (g)A if 2 £0

e R if z=0,

9(z) =

then we have the generalized Jensen’s formula.

Theorem 2.3 (Generalized Jensen’s formula) Under the assumptions of The-

orem without the condition f(0) # 0,00, then we have

1 [ R
loglea| = 5 / log | f(Rei#) dip Zlog——nm Hiog R
0

|2l

S
Zloglb—’+n (0, f)log R,

where ¢y is the first non-zero coefficient of the Laurent expansion of f at 0.

From now on, meromorphic function means meromorphic in the whole complex

plane. First of all, we introduce the positive logarithmic function.

Definition 2.4 For x >0,

logx ife>1
0 if0<z <1

log* x = max{logz,0} =

Obviously, log™ z is a continuous non-negative increasing function on 0, 00)

1
satisfying logz = log" 2 — log™ — and |logz| = log™ o + log™ —
x

Let f be a meromorphic function, Nevanlinna [8] introduced the following

notations.

Definition 2.5 For (0 <r < oo,



Definition 2.6 For 0 < r < oo,

N(r, f) = /T n(t, /) ZTL(O’ f)dt +n(0, f)logr,

0
where n(t, f) denotes the number of poles of f in the disc |z| < t counting multi-

plicities. N(r, f) is called the counting function of f.

For 0 <r < oo, n(r, f) denotes the number of poles of f(z) in |z| < r count-
ing multiplicities; T(r, f) denotes the number of poles of f(z) in |z| < r ignoring
multiplicities; ngy(r,1/f) (resp. nu(r,1/f)) denotes the number of zeros of f(z)
in |z| < r with order < k (resp. > k) counting multiplicities; Ty (r,1/f) (resp.
nw(r,1/f)) denotes the number of zeros of f(z) in |z| < r with order < k (resp.

> k) ignoring multiplicities.

Definition 2.7 For 0 < r < oo, the function T(r, f) defined by
T(r, f)=m(r, )+ N(r, f)
is called the (Nevanlinna) characteristic function of f.
It is clear that T'(r, f) is a non-negative increasing function and a convex func-

tion of logr. Let f be given in Theorem It follows from the integration by

parts in Riemann-Stieltjes integral, we have

M En(t, ) —n(0,1
ZlogR:/ (t,7) —n( f)dt
P || 0 t
and u
R
t —
— "l Jo t

On the other hand, the generalized Jensen’s formula can be rewritten as

1 2m ) N
%/0 log"™ | f(Re™) | dyp + ;logi +n(0, f)log R

|0y |
1 2m
= — logt
27?/0 o9

|au‘ f

1 U R 1
——— ldp+ )Y log—— +n(0,=)log R+ log|cy|.
Flrew) | 1 2



Therefore, we obtain
1 1

that is,
1) +logei|
y o 0g |Cr|,

/

which is another form of the generalized Jensen’s formula and is also known as the

T(R, f)=T(R

Nevanlinna-Jensen’s formula.

Theorem 2.8 (Nevanlinna-Jensen’s formula) Let f be a meromorphic func-
tion, then for r > 0,
1
T(Ta f) - T(Tu ?) + IOg |C>\\,

where ¢y, 1s the first non-zero coefficient of the Laurent expansion of f at 0.

By the Nevanlinna-Jensen’s formula, we can get the Nevalinna’s first funda-

mental theorem.

Theorem 2.9 (Nevanlinna’s First Fundamental Theorem) Let f be a mero-

morphic function and a be a finite complex number. Then, for r >0, we have

T(r,

) =0 )+ loglesl + <(a.r).

where ¢y s the first non-zero coefficient of the Laurent expansion of at 0, and

1
f—a
le(a.r)| <log™ |a| + log 2.

Usually, Nevanlinna’s first fundamental theorem is written as

)=T(r, f)+O(1).

Now, we come to the most important theorem in the theory of value distribu-

tion, namely, Nevanlinna’s second fundamental theorem.



Theorem 2.10 (Nevanlinna’s Second Fundamental Theorem) Let f be a non-

constant meromorphic function and a; € C, 1 < j < g, be q distinct finite values
(¢ >2). Then
: 1
mir, f)+ > mr, ——
f—a;

J=1

) <2T(r, f) = Na(r) + 5(r, f),
where Ny(r) = 2N(r, f) — N(r, f') + N(r, %) and

f/
f—a;

S(r, f) :m(r,f7/)+m(r,z )+ O(1).

Given a € C, by Nevanlinna’s first fundamental theorem,

1 1
}ijg)ZZTUUf)—]VUBEjj5)+CX1)

Hence, Nevanlinna’s second fundamental theorem can be rewritten as follows.

m(r,

Theorem 2.11 Let f be a non-constant meromorphic function and a; € C, 1 <

Jj < gq, be q distinct values (¢ > 3). Then

L) M) + 50 £),

(4= 276,0) < NG 5=

where Ni(r) and S(r, f) are given as in Theorem[2.10,

Note that, in Theorem [2.11} if some a; = oo, then N(r,
as N(r, f).

) should be read

1
f—a;

1
Let nq(t) = 2n(t, f) — n(t, f') + n(t, F) and let 7(t, f) denote the number of
distinct poles of f in |z| < ¢. Define

N(r, f) = /O?" . f) ;ﬁ(O,f) dt + (0, f)logr,

which is called the reduced counting function of f.



Note that, if zy is a pole of f of order k in |z| < ¢, then 2 is counted k — 1
times by nq(r). Similarly, for a finite value a, if 2y is a zero of f — a of order k in

|z| <'t, then zq is also counted k — 1 times by n4(r). Hence,

1 1
;N(r,f_ <ZN _a]

Therefore, we have the third form of Nevanlinna’s second fundamental theorem.

Theorem 2.12 Let f be a non-constant meromorphic function and a; € Cy,1 <

Jj <gq, be q distinct values (¢ > 3). Then

(q—2) <ZN o )+ S(r, f),

where S(r, f) is given as in Theorem |2.10.

In Nevanlinna’s second fundamental theorem, the remainder term S(r, f) is
a complicated object which can be estimated by using the method of logarithmic
derivative. It turns out that S(r, f) is small comparing to 7'(r, f). In order to make

it clear, we need the concept of the growth of meromorphic function.

Classically, we use the maximum modulus to measure the growth of an entire

function.

Definition 2.13 Let f be a meromorphic function. The order \ of f is defined to

be
1 +
A = lim sup 08 1 \nhJ) GY)
r—00 log r

and the lower order p of f is defined to be

Definition 2.14 Let f(z) and a(z) be meromorphic functions. If T'(r,a) = S(r, f),
then a(z) is called a small function of f(z).



Let f be an entire function. Define, for » > 0,

M(r, f) = max |f(2)].

|z|<r

Then the relation between M (r, f) and T'(r, f) is given as follows.

Theorem 2.15 Let 0 <r < R < oo and f be an entire function, we have

T(r,f) < log" M(r, ) < it

T(R, f).

—r
In particular,

T(r, f) < log" M(r, f) < 3T(2r, ).

By Theorem [2.15, the order and lower order of an entire function are unam-

biguous. Now, we can state the properties of S(r, f).

Lemma 2.16 Let f be a mon-constant meromorphic function. If f is of finite

order, then
/

m(r, f?) = O(logr), (r— ).

If f is of infinite order, then

fTI) =O0(log(rT(r,f))), (r— oo,r ¢ E),

where E is a set of finite measure.

m(r,

Theorem 2.17 Let f be a non-constant meromorphic function and S(r, f) be de-

fined in Theorem 210, If f is of finite order, then
S(r, f) = O(logr), (r — o).
If f is of infinite order, then
S(r, f) = O(log (rT(r, f))), (r— oco,r ¢ E),

where E is a set of finite measure.



In the thesis, we will denote by S(r, f) any quantity satisfy S(r, f) = o(T(r, f))
as r — oo if f is of finite order, and S(r, f) = o(T'(r, f)) as r — oo, r ¢ E if f is of

infinite order, where FE is a set of finite measure.

/
: f7) = S(r, f). Moreover, Milloux |7] proved the following.

By Lemma/|2.16, m(r

Theorem 2.18 Let f be a non-constant meromorphic function and k be a positive

integer and let

9= ai(2) )

where a1(z),az(2),...,ax(z) are small functions of f. Then
m(r, 7) = 50, £)

For three small functions, we still have the generalization of second fundamental

theorem.

Theorem 2.19 9] Let f be a non-constant meromorphic function and a;(z), as(2)

and a3(z) are three distinct small functions. Then

£ <) N, ———)+5f).

j=1 4

In 1929, Nevanlinna [9] introduced the quantity d(a, f) to measure the degree

of a meromorphic function misses a value a.

Definition 2.20 Let f be a non-constant meromorphic function and a € C,. The

deficiency of a with respect to f is defined by

d(a, f) = liminfm(r’—f%“) -1 limsupw
9 T—00 T(T7 f) r—00 T(T7 f) .

10



Definition 2.21 Let f be a non-constant meromorphic function and a € C,,. We

define o
(a, f) =1—limsup ———— NG, a)
rooo L(r f)
and ) 7 .

Clearly, 0 < d(a, f) < 1,0 < O(a,f) < 1and 0 < f(a, f) < 1. Also, 0 <
(a, f) +6(a, f) < O(a, f). By Theorem [2.12] we have

Theorem 2.22 Let f be a non-constant meromorphic function. Then

Zéaf +0(a, f) < Z@af

In order to study uniqueness theorems of meromorphic functions, we state a

Nevanlinna theorem which plays an important role.

Theorem 2.23 [9] Suppose fi, ..., fn are linearly independent meromorphic func-

tions satisfying the following identity

Then for 1 < j < n, we have
(r, f;) <ZN (r, f;) + N(r, D)
—ZNrfk )+0(T( ),
where D is the Wronskian of fi,..., fn, and
T(r) = max {T'(r, fu)},

E is a set with finite linear measure.

11



Moreover, we can get a useful result in the uniqueness theorem of meromorphic

functions.

Theorem 2.24 [9] Let f;(j = 1,2,3) be meromorphic functions where f, be not a

constant function. If
3
Z fi(z) =
and
3 3
DN p) 423 N0 i) < Ot ol)TC) (7 €D

Jj=1

where A < 1,

T(r) = max{T(r, f;)},

1<5<3

and I is a set of r € (0,00) with infinite measure, then fa(z) =1 or f3(z) =1
Finally, we review some theorems which will be needed in the following sections.

Theorem 2.25 [9] Suppose that [ is a meromorphic function in |z| < R and
_af(z)+0b
9(2) = cf(z)+d

0 <r < R, we have

, where a, b, c, and d are constant satisfying ad —be # 0. Then for

T(r,g)=T(r, f)+O(1).

Theorem 2.26 (9] If f is a transcendental meromorphic function in the complex

plane, then
lim T, f) =00
r—00 lOgT

12



3 Meromorphic Functions of Class A

Let A denote the collection of all non-constant meromorphic functions f sat-
isfying
N(r, f)+N(r,7) = S(r, f).

Such functions are called meromorphic functions of class A. Clearly, e, ze*, . ..

are functions of class A.

Proposition 3.1 If f is a non-constant rational function, write

ap?? + ap_1 2P 4+ ag

zZ) = )
1) byz9 + bg—12971 4+ - - - + by
where ay(# 0),ap_1,...,a0 and by(# 0),b41,...,by are complex numbers, p,q are
non-negative integers satisfying p +q > 1, and a,z¥ + ap_lzp_l + -+ ag and

by2? + by_1297 + - + by have no common factors. Then

(p—q)logr +0(1) ifp > g,
O(1) ifp<gq
and

N(r, f) = qlogr + O(1)

holds for a sufficiently large r. Thus,

T(r, f) = max {p,q}logr + O(1).

(p—q)logr +0(1) ifp>gq,

Proof. First, we prove that m(r, f) =
O(1) ifp<g,

P(Z> = apzp + ap—lzp_1 +---+ap and Q(z) = quq + bq_lzq_l + -+ bp.

_lap|1 |aol 1

Let A(r) = 44 _ |bq—1|l - |bo| 1

byl 7 [bg] 79°

and B(r)

|ap| r |ap| TP

13



Given € > 0 , there exists ro > 0, such that |A(r)| < e and |B(r)| < € for r > 7.

So for all r > rg and |z| =7,

(1 =e)lay|r” < |P(2)] < (1 +¢)lap|r”

and
(1= &)[bg|r? < [Q(2)] < (1 4 €)]bg|r?.
Let a = w and g = w, then for all r > ry,
(1 +)[bg] (1 —¢)lbg]

ar” 1 < |f(z)] < pri7.
If p > q and r > 0, then there exists M > 0, such that
im(r, f) = (p—q)logr| < M,

which means that m(r, f) = (p — ¢)logr + O(1).

If p = g, then for all » > ry and |z| = r,

a <|f(2)] < 8.

So we get loga™ < m(r, f) < log 8%, which means that m(r, f) = O(1).
If p < g, then by choosing r > 0, such that 0 < ar’”? < 1 and 779 < 1,
we get m(r, f) = O(1).

Now, we prove N(r, f) = qlogr + O(1) for a sufficiently large r.
Choose 19 > 0 such that Q(z) has ¢ zeros in |z| < rq.

We may assume that () has a zero at z = 0 of multiple m > 0. Then for all > r,

N(r,f) = /07" n(t. f) ;n(o, f)dt—f—n(O,f) log r

/T n(t, f) — n(o, f)
t

)

dt +n(0, f)logr

= (¢g—m)(logr —logd) + mlogr
= qlogr — (¢ —m)logd
= qlogr+ O(1),

14



where § > 0 is small.
Therefore, we have T'(r, f) = max {p, ¢} logr + O(1) for a sufficiently large r.

Q

In general, the following class of meromorphic function is of class A.

Proposition 3.2 Let a be a non-constant entire function and h be a non-zero

rational function. Then
f(2) = h(z)e"

is a meromorphic function of class A.

P
Proof. Let h(z) = QE? be a nonzero rational function, deg P(z) = p, deg Q(z) =
2
q, (P(2),Q(z)) = 1. Choose ry > 0, so that all zeros of P(z) and Q(z) lie in |z| < ro.

Then by Theorem [3.1], for all » > rq, we have

N(r,h) =qlogr

and

1
N(r, E) = plogr.

By assumption, e**) is an entire function without zeros, so we have
N(r, f) = N(r,h) < N(r,h) = qlogr

and

N(r, %) = N(r,—) < N(r, %) = plogr,

| =

which imples that

— — 1
N(r, f) +N(r,?) < qlogr +plogr.

Therefore, we get

Nir, f) + N(r, %) — 5(r. /)

by Theorem [2.26] So we conclude that f € A. a

15



1
Proposition 3.3 If f is a meromorphic function of class A, then so is —.

Proof. Since f € A, we have N(r, f) + N(r, l) =S(r, f).

1
By the Theorem [2.25(, T'(r, f) = T(r, ?) + O(1), we have

— — 1 1
N(r,f)+ N(r,=) = S(r,—),
(r, )+ N( f) ( f)
and 1/f is a meromorphic function of class A. Q

However, if f and g are of functions of class A, f 4+ g and fg may not be of

z

class A; for example, f(z) = €*, g(z) = —¢® and h(z) = e ° are of meromorphic

functions of class A, but f + ¢g and fh are not meromorphic functions of class A.

Proposition 3.4 All functions in A are transcendental meromorphic functions.
P(z)
Proof. Let f(z) =

e
degQ(2) = q, (P(2),Q(2)) =1 and p+ ¢ > 1. Choose ry > 0, so that all zeros of
P(z) and Q(z) lie in |z| < ro. Then by Theorem [3.1] for all 7 > rg,

be a non-constant rational function, deg P(z) = p,

N(r, f) = qlogr,
1
N(r,?) =plogr,

and
T(r, f) = max {p, ¢} logr + O(1).

Now, assume that P(z) has s distinct zeros and Q(z) has ¢ distinct zeros, then,

s <p,t<gq,and for all » > ry, we have
N(r, f) =tlogr
and

— 1
N(r, ?) = slogr.

16



Therefore,

li N(Ta f) +N<T7%) r+s

im =

r—00 T(r, f) max {p, q}

which is not zero. So f is not a meromorphic function of class A. Q

Proposition 3.5 Let f be a meromorphic function with ©(0, f) = O(c0, f) = 1,
then f € A.

Proof. Since 6(0, f) = O(oc0, f) = 1, we have

— N(ry)
e0,f)=1- hglj)ljp o) =<
and o
O(cc. f) =1 ~timsup 7. "7 1
which imply
R H+NGY ey L Wb
EE (N I e YOV e )

=1-0(0,f)+1—-0(c0, f)
=0.

1
T, =
f

Remark. In the literature, a non-constant meromorphic function f satisfying

Therefore, N(r, f) + N(r, =) = o(T(r, f)) = S(r, f) and f € A. Q

©(0, f) = ©(c0, f) = 1 is called meromorphic functions of class K.

Proposition 3.6 Let f be a meromorphic function with §(0, f) = d(oo, f) = 1, then
feA

Proof. Since 6(0, f) = d(oc0, f) = 1, we have
(0, f) = O(o0, f) = 1.

By Proposition [3.5] we get f € A. Q
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Remark. In the literature, a non-constant meromorphic function f satisfying

3(0, f) = (o0, f) = 1 is called meromorphic functions of class F.

For further properties of meromorphic functions of class A, we recall the fol-

lowing proposition.

Proposition 3.7 [9] If f € A and k is a positive integer, then

- f(k) g '
(1) (T,T)— (r, f);

(ii) T(r, f*) = T(r, f) + S(r, f);
(iii) f®(z2) € A.

Proof. Since f € A, we have N(r, f)+N(r, %) = S(r, f). In particular, N(r, f) =

S(r, f) and N(r, %) =S(r, f).

By Lemma [2.16[, m(r, %k)) = S(r, f). Therefore,
162 = 2 4 ?)
< k{N(r, f) + N(r, ?)} +5(r.f)
— S(T7 f)?

which implies (i).

By the basic property of characteristic function & (i), we have

T(r, f) < T, % FT( ) TG f) + S0, f).

Similarly, we have

T(r.f) <T(r, f®)+T(r, %)
(k)
=T(r, ™) +T(r, fT) +O(1)

=T(r, f*) + 5, f).
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We obtain T'(r, f*¥)) = T(r, f) + S(r, f). So, (i) holds.

Finally, by (i) & (ii), we have

N(r, f) = N(r, f) = S(r, f) = S(r, fV),

and
1 R
N(ﬁm) SN(TaW)—{_N(T??)
< (s, 55) + 500, )
o
ST =)+ 50 1)
=5(r,f)
Therefore, N (r, f*)) 4 N (r, f("’)) S(r, f®) and (iii) holds. Q

Now, we can prove the main result in this section.

Theorem 3.8 Let a and b be distinct complex numbers and f be a non-constant

r’ﬁ) + N(r = S(r,f). Then f is a

Mobius transformation of a function in class A

meromorphic function satisfies N(

1
7m>

Proof. Consider the meromorphic function g defined by

flz)—b
f(z) —a

Then, by Theorem [2.25] T'(r, f) = T'(r,g) + O(1). Obviously, we have

9(z) =

N(r.g) = N(r,7—)
and

B | — 1

N ) = N =)

19



Therefore, by assumption, we have

which says that ¢ is a function of class A. By a simple calculation, we get

ag —b
f:
g—1

which says that f is a Mobius transformation of g.
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4 Multiple Values of Meromorphic Functions of Class A

Definition 4.1 Let f be a non-constant meromorphic function, and a € C. We

say that a is a multiple value of f if all the zeros of f(z) — a are multiple.

Example 4.2 0 is a multiple value of f(z) = (z — 1)*(z + 1)

Example 4.3 0,00 are multiple values of e*

For general meromorphic functions, we have the following well-known result

about multiple values.

Theorem 4.4 Let f be a non-constant meromorphic function, then f has at most

four distinct multiple values.

Proof. Suppose that f has five distinet multiple values, say aq, as, az, a4, a5 € C.

By Theorem [2.12]

M -
E
=

(5_2>T(Taf) < —)+S(T7f)

=R
1 o 1

“d] e

<3 jZIMr, 7o) P )
135

< 5 T(T,f)+S(7’,f)
57

= §T(7’,f) +S(7”,f),

which is a contradiction. So f has at most four multiple values. Q

In fact, there exists a meromorphic function which has exact four multiple
values, namely, the well-known Weierstrass p-function p(z) which satisfies the dif-

ferential equation



where eq, €9, e3 are distinct constants. It is obvious that eq, es, e3 and oo are multiple

values of p(z). Therefore, Theorem is sharp.

Now, we consider the case of meromorphic function of class A and prove our

main result in this section as follows.

Theorem 4.5 Let f be a meromorphic function of class A, then f has at most two

multiple values.

Proof. Suppose that f has three distinct multiple values, say aq, as, a3z € C.

Since f € A, we have

Case 1. ay, as, az are different from 0 and oco. Then, by Theorem [2.12]

62T ) < SN =)+ N )4 N ) + 50
<] >N ) +50 D
< ST, )+ 50 1),

which is impossible.

Case 2. One of ay,as,az is 0 or co.

4-2)T(r,f) < ZN(T,%)‘FW(T, )+N(r,%)+5(r,f)

- — Q;
]1:12 1
< 5 JZIN(nm)—i_S(T?f)

< T(r,f)+S(r [),

which is also impossible.
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Case 3. Two of ay,as,as are 0 and oo.

_ — 1. = 1
(3_2)T(T,f) < N(T,f)—f-N(T,?) N(nf_a)—i_s(,ruf)

— 1

= N

(=) + S f)

< IN(r—) 4 S(r.f)

— 2 T? f —a r?
1

S §T<T7f) +S(7",f),

which is a contradiction.
Therefore, f has at most two multiple values. a

The function f(z) = z%¢* is of class A by Proposition , and it has exact two

multiple values, namely, 0 and oco. Therefore, Theorem [4.5|is sharp.
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5 The Unicity of Meromorphic Functions of Class A

In this section, we will discuss the sharing value problem of meromorphic func-

tion of class A and obtain some results.

In order to state and prove the theorems, we need some preliminaries.

Lemma 5.1 [9] If f € A and a is a finite non-zero number, then

1
f—a

Nl)(ra ):T(T,f)—i-S(T,f),

where Nl)(r, ) denotes the counting function of simple zeros of f — a.

1
f—a
The following result is stated without proof in [9]. For completeness, we give

a proof.

Theorem 5.2 [9] Let f and g be meromorphic functions of class A and a be a

non-zero complex number. If f and g share a IM, then either f = g or fg = a°.

Proof. By considering i and 7 if necessary, we may assume that a = 1.
a a

By Lemma [5.1} we have

— 1
Nl)(r7f_1) :T(T,f)+S<T,f>
and
NU(T, il)zT(r,g)+S(T,g)
Hence,
1
N(r, 7 1) =S(r, f)
and
1
Nao(r, ﬁ) = S(r,9),
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where No(r, —1) is the counting function of f — 1 with multiplicities greater or
1
-1 )

g

equal to 2, similarly for N(r,

Since f and g are meromorphic functions of class A and they share 1 IM, by

Theorem [2.12| we have
T(r,g) =T(r, f)+ S(r, f).

Set
_flr) -1
M=) = g(z) =1’

Obviously, we have

and

T(r,h) <T(r,f)+T(r,g)+O(1) <2T(r, f) + S(r, ).

3
Let fi =f, fa=h, fgz—hg.Theanjzland

J=1

SNG, fij) +23 N fy) = S(r.f).

By Theorem [2.24], we conclude that either fy = 1 or f3 = 1 which imply that either

f=gor fg=1 and the proof is completed. Q

Finally, we consider the sharing value problem of a meromorphic function with

its derivative.

The following well-known result has been proved by Frank-Weissenborn [2] in

1986.

Theorem 5.3 Let f be a non-constant meromorphic function and k > 1. If f and

f®) share distinct finite value a and b CM, then f = f®).
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For meromorphic functions of class A, we can use Theorem to obtain the

following result.

Theorem 5.4 Let f be a non-constant meromorphic function of class A, a be a

non-zero complexr number and k > 1. If f and f% share a IM, then f = f®,

Proof. Since f € A, by Proposition , e A

Thus, we can apply Theoremto conclude that either f = f® or ff*) = a2,
If £f® = a? holds, then

(k) 2
|

= 2T(r, )+ O(1).

(k)
Which contradicts to Proposition , namely, T'(r, fT) = S(r, f).

Therefore, we must have f = f®. Q
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