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1 Introduction

Many applied researchers use statistical inference for different models in practice. An

important issue in inferential methods for econometrics models is that some tests can

exhibit nonmonotonic power (see, e.g., Nelson and Savin (1990), Vogelsang (1999),

and Deng and Perron (2008)). That is, as the distance that alternative hypothesis

deviates from the null grows, the power of the test actually decreases. The problem

of nonmonotonic power is noted in a variety of tests such as tests in linear/nonlinear

regression models of Hauck and Donner (1977), Bates and Watts (1988), and Nelson

and Savin (1990), in the generalized method of moments (GMM) of Hall (2000) and

Hall, Iuoue and Peixe (2003), and models with structural breaks in the mean of

Andrews and Monahan (1992), Deng and Perron (2008), and Vogelsang (1999).

Applied researchers use consistent estimators for the variance covariance matrix

when testing parameter restrictions on linear regressions such as the heteroskedas-

ticity consistent covariance matrix estimators (HCCME) of White (1980) and the

heteroskedasticity and autocorrelation consistent estimators (HACE) of Newey and

West (1987). In the GMM literatures, Hall (2000) shows that the non-centered

HACE in GMM method is not consistent when model is misspecified. Therefore,

the overidentifying restriction test of GMM method base on the non-centered HACE

may not be consistent under the alternative and exhibits nonmonotonic power in

large sample. Hall (2000) considers a centered HACE and shows that the resulting

overidentifying restriction test is consistent under both null and alternative; see also

Hall and Inoue (2003), Chang (2005, 2007). However, Hall, Iuoue and Peixe (2003)

shows that when the presence of neglected structural instability under the alterna-

tive, even the HACE is based on non-centered or centered autocovariances, the rate

of increase of the overidentifying restrictions test is depending on the form of the

instability.

Most Monte Carlo studies indicate that the main reason for nonmonotonic power

is that in finite samples some nuisance parameters such as the variance estimator

are poorly estimated under the (global) alternative; see Hall (2000), Crainiceanu

and Vogelsang (2007), Juhl and Xiao (2009). Allen (2007) compares the powers

of the overidentifying restriction tests using the centered and non-centered HACEs,

but his Monte Carlo simulation shows that very little power is gain. MacKinnon

and White (1985), Flachaire (2005), Godfrey (2006) and Godfrey and Orme (2004)
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propose several different forms of a variance-covariance matrix to control the finite

sample significance levels. They find that hypothesis testings using the wild or

jackknife bootstrap perform better in small samples. Goncalves and White (2005)

show that tests based on the moving blocks bootstrap estimators have better finite

samples performances. Recently, several authors impose a boundary condition for

the HACE to restore the monotone power of tests; see Sul et al. (2005). Juhl and

Xiao (2009) propose a modified variance estimator based on the nonparametrically

demeaned data and show that the modified estimator diverges at a slower rate than

the unmodified version; thus, tests based on the modified estimator retain their

consistency under various diverging alternative hypotheses.

In many econometric and statistical applications, there often exist conditional

moment (CM) restrictions that characterize the behavior of models of interest. For

example, specifications for regression models and specifications for conditional prob-

ability models can be represented as CM restrictions. Once a model is specified, it

is important to have specification tests on its validity. A CM test based on CM

restrictions is a general framework that includes most model specification tests. For

example, Newey (1985), Tauchen (1985), Wooldridge (1990), Bierens (1982, 1990),

Bierens and Ploberger (1997), Bierens and Ginther (2001), Zheng (1998) to mention

only a few. Although the nonmonotonic power problem have been studied in many

testing literature, this problem is not discussed in the framework of CM tests. As

Nelson and Savin (1990) pointed, “While the existence of nonmonotonic power is not

new, the surprising results are that this phenomenon occurs ... and it can be quite

severe”. In this paper, the nonmonotonic power problem in the CM tests is investi-

gated in finite samples by using Monte Carlo simulation. We show that the standard

variance estimator used in the CM tests is consistent only under the null. Under the

alternative, nonmonotonic power could arise from using an inconsistent estimate;

CM tests can not retain their consistency under global alternatives. Therefore, the

variance estimator is the main source of the nonmonotonic power problem in CM

tests. Since the source of nonmonotonic power problem in CM test is the variance

estimator, we suggest using the centered variance estimator in test with the aim of

gaining power under global alternative. We examine the small sample performances

of tests by Monte Carlo simulations. It is seen that the power functions of the tests

are very sensitive to the behavior of the variance estimates.
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2 Non-Centered Variance Estimators

Let yt be a finite-dimensional vector of dependent variable(s) with index t, and

Xt be the information set available in explaining yt. Suppose that it is interested

in estimating and testing a CM model of yt|Xt with a r × 1 vector of generalized

residuals mt := mt(yt, xt; θ) for some finite r ≥ dim(yt), in which xt denotes a

vector of Xt-measurable explanatory variables and θ ∈ Θ ⊂ Rp stands for a p × 1

parameter vector. This CM model is defined to be correctly specified, if and only

if, the martingale difference condition:

H0 : IE[mot|Xt] = 0, mot := mt|θ=θ0 ,

is satisfied for some unique θo ∈ Θ. Let zt be a q × r matrix of Xt-measurable mis-

specification indicators, the q×1 testing function: ztmt must satisfy the martingale-

difference condition:

IE[ztmot|Xt] = zt IE[mot|Xt] = 0,

which further implies the unconditional moment restriction: IE[ztmot] = 0. The CM

test checks this restriction by examining whether the estimated moment: T−1
∑T

t=1 ztm̂t

is significantly different from zero, in which m̂t := mt|θ=θ̂T with θ̂T representing es-

timator of θo.

Let ut be the error term of the specified regression model. Suppose that the CM

test is based on an estimator of θo which is solved from the estimating equation:

T−1
∑T

t=1 xtût = 0, from some p × 1 estimating function that does not contain the

same components of the testing function ztm̂t, x
′
t = −∇θut is X -measurable function

and ût := ut|θ=θ̂T . The estimator θ̂T has the following representation:

√
T (θ̂T − θo) = −

[
1

T

T∑
t=1

xt∇θut

]−1
1√
T

T∑
t=1

xtut + op(1)

= IE(xtx
′
t)
−1 1√

T

T∑
t=1

xtut + op(1)
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If mt = ut, then ∇θmt = ∇θut = −x′t.

1√
T

T∑
t=1

ztm̂t =
1√
T

T∑
t=1

ztmt +

(
1

T

T∑
t=1

zt∇θmt

)
√
T (θ̂T − θo) + op(1)

=
1√
T

T∑
t=1

ztmt − IE(ztx
′
t)IE(xtx

′
t)
−1 1√

T

T∑
t=1

xtut + op(1)

=
1√
T

T∑
t=1

[zt − IE(ztx
′
t)IE(xtx

′
t)
−1xt]ut + op(1).

Let z∗t := zt − IE(ztx
′
t)IE(xtx

′
t)
−1xt, we can rewrite the above equation as follows:

1√
T

T∑
t=1

ztût =
1√
T

T∑
t=1

z∗t ut + op(1).

When model is correctly specified or say under the null hypothesis, one has

IE(ut|Xt) = 0, and the test statistic converges to a normal distribution by central

limit theorem under suitable regularity conditions:

1√
T

T∑
t=1

ztût
d→ N(0, V ),

where the asymptotic variance V := IE[z∗t utu
′
tz
∗
t
′] is a q × q variance covariance

matrix. Follow Hall’s (2000) suggestion, the non-centered and centered variance

estimators are considered. The non-centered variance estimator is specified as:

Σ̂u
T :=

1

T

T∑
t=1

(z∗t ût)(z
∗
t ût)

′,

and a centered variance estimator of the variance

Σ̂c
T :=

1

T

T∑
t=1

(
z∗t ût −

1

T

T∑
t=1

z∗t ût

)(
z∗t ût −

1

T

T∑
t=1

z∗t ût

)′
.

Considering two test statistics for testing CM restrictions, I first define the statis-

tic with normalizing centered variance estimator as

Mu
T :=

[
1√
T

T∑
t=1

ztût

]′
(Σ̂u

T )−1

[
1√
T

T∑
t=1

ztût

]
,
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and define the statistic with non-centered variance estimator as

M c
T :=

[
1√
T

T∑
t=1

ztût

]′
(Σ̂c

T )−1

[
1√
T

T∑
t=1

ztût

]
.

Under H0, both variance estimators converge to the asymptotic variance V , and it is

derived that Mu
T

d→ χ2(q) and M c
T

d→ χ2(q), where χ2(q) the chi-square distribution

with q degrees of freedom. This result demonstrates that “centering” in construct-

ing normalizing matrices leads to correct size and does not affect the asymptotic

behavior when model is correctly specified.

If the model is incorrectly specified, the limiting distribution of the statistic is

different from that under correctly specified model. In the following, I consider two

types of alternatives; one is a global alternative and the other is the local alternative.

Consider a general alternative hypothesis:

H1 : IE[ut|Xt] = w′tδ.

This test is expected to be powerful against H1 because the conditional expectation

of ztut becomes IE[ztut|Xt] = ztw
′
tδ under H1, which implies that IE[ztut] = IE[ztw

′
t]δ

is a q× 1 nonzero vector provided that IE[ztw
′
t] is positive definite. The asymptotic

behavior of M c
T or Mu

T depends on two terms: one is the asymptotic behavior of

T−1/2
∑T

t=1 ztût and the other is the asymptotic behavior of Σ̂u
T and Σ̂c

T . Because

1√
T

T∑
t=1

ztût =
1√
T

T∑
t=1

z∗t (ut − w′tδ) +
1√
T

T∑
t=1

z∗tw
′
tδ + op(1),

under H1 the first term on the right-hand-side of the above equation converges to dis-

tribution N(0, IE[z∗t utu
′
tz
∗
t
′]) which is Op(1), and the asymptotics of T−1/2

∑T
t=1 ztût

depends on the second term T−1/2
∑T

t=1 z
∗
tw
′
tδ. In addition, under H1, the centered

variance estimator Σ̂c
T

p→ V and the non-centered variance estimator

Σ̂u
T

p→ V + IE(ztw
′
t)δδ

′ IE(wtz
′
t),

which follows from

1

T

T∑
t=1

ztût = IE(ztw
′
t)δ + op(1).

The limits of Σ̂c
T and Σ̂u

T differ by an extra term: IE(ztw
′
t)δδ

′ IE(wtz
′
t). When T →∞,

M c
T diverges but the asymptotic distribution of Mu

T is unknown by the extra term.
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The power of the test based on M c
T approaches 1 but the power of Mu

T is unknown

depending on the functional form of the alternative hypothesis and the additional

term IE(ztw
′
t)δδ

′ IE(wtz
′
t). This is the first finding of this paper that the CM test

based on uncentered variance may constitute nonmonotonic power.

Consider one special case that IE(ztw
′
t)δ = O(1) such as a constant function,

then Mu
T diverges and the power of Mu

T approaches 1. The other special case is the

local alternatives:

HA
1 : IE[ut|Xt] = γ/

√
T .

This local alternative is approaching to the null when T goes to infinity. Under HA
1 ,

both Σ̂c
T

p→ V and Σ̂u
T

p→ V . Therefore, under HA
1 , when T → ∞, both statistics

M c
T and Mu

T diverge and the power of the tests approach 1. Note that in these cases,

although the asymptotic power of Mu
T and M c

T approach 1 and both CM test are

consistent, it is found that when T is small, the finite sample power of Mu
T and M c

T

are different. It is argued that the divergence rate of Mu
T is slower than that of M c

T .

Therefore, in practice, when the sample size is not large, the finite sample power of

Mu
T is smaller than that of M c

T . This is the motivation of this paper which focuses

on the finite sample comparison of two CM tests.

3 Monte Carlo Simulation

In this section, three Monte Carlo experiments to examine the effectiveness of the

proposed tests are conducted. In particular, we compare the powers of Mu
T and M c

T

in sample mean and conditional mean examples. All examples consider sample sizes

of T = 10, 20, 50, the nominal size is 5%, and the number of replication is 2000.

3.1 Sample Mean Example

For the following two hypotheses,

H0 : xt ∼ N(0, σ2
0), H1 : xt ∼ N(µ, σ2

0), (1)

then ztût = xt, Σ̂u
T := (σ̂uT )2 = T−1

∑T
t=1 x

2
t , Σ̂c

T := (σ̂cT )2 = T−1
∑T

t=1(xt − x̄)2, with

x̄ =
∑T

t=1 xt/T . In the sample mean example, we consider cases with σ2
0 = 1, 2, 4.

The rejection rates of sample mean example are presented in Figure 1. In the figure,
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the horizontal axis is µ which represents the deviation from the null, the vertical

axis is the rejection rate of tests, the dashed line represents the rejection rate of Mu
T

and the solid line shows those of M c
T . From Figure 1, we can find that when the

sample size is small, the finite sample power of M c
T is higher than that of Mu

T ; the

difference between the powers becomes smaller as the sample size gets larger. In

addition, for fixed sample size T , the difference between powers of M c
T and Mu

T are

smaller for σ2
0 = 1 and are larger when σ2

0 = 4.

3.2 Conditional Mean Example

Ho : yt = x′tβ + ut, ut|Xt−1 ∼ N(0, σ2
1t);

H1 : yt = x′tβ + ut, ut|Xt−1 ∼ N(w′tδ, σ
2
2t),

(2)

with β a k×1 vector of parameters. The CM restriction is IE(ut|Xt−1) = 0. Suppose

that xt is independent and identically distributed N(0, 1). The conditional mean

example is also considered with w′tδ = µ, σ2
1t = σ2

2t = 1, 2, 4. In this example, let β̂

be the least square estimator, ût = yt − x′tβ̂, ztût = xtût, Σ̂u
T := T−1

∑T
t=1 xtû

2
tx
′
t,

Σ̂c
T :=

1

T

T∑
t=1

[
xtût −

1

T

T∑
t=1

xtût

][
xtût −

1

T

T∑
t=1

xtût

]′
.

The rejection rates of conditional mean example is presented in Figure 2. In

the figure, the horizontal axis is µ which represents the deviation from the null, the

vertical axis is the rejection rate of tests, the dashed line represents the rejection

rate of Mu
T and the solid line shows those of M c

T . From Figure 2, we can find that

when the sample size is small, the finite sample power of M c
T is much higher than

that of Mu
T ; the difference between the powers becomes smaller as the sample size

gets larger. In addition, for fixed sample size T , the difference between powers of

M c
T and Mu

T are smaller for σ2
0 = 1 and are larger when σ2

0 = 4.

4 Conclusions

In this paper, a modified CM test with centered variance estimator is proposed. The

nonmonotonic power problem can be alleviated with considering the modified CM

test. Our Monte Carlo simulation shows that the CM test based on centered variance

has lower finite sample powers, while the CM test based non-centered variance has

higher finite sample powers.
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T = 10 T = 20 T = 50

T = 10 T = 20 T = 50

T = 10 T = 20 T = 50

Figure 1: Finite Sample Powers in Sample Mean Examples with σ2
0 = 1 for upper

panel, σ2
0 = 2 for middle panel, σ2

0 = 4 for lower panel.
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T = 10 T = 20 T = 50

T = 10 T = 20 T = 50

T = 10 T = 20 T = 50

Figure 2: Finite Sample Powers in Conditional Mean Examples with σ2
0 = 1 for

upper panel, σ2
0 = 2 for middle panel, σ2

0 = 4 for lower panel.
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值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 
■達成目標 
□未達成目標（請說明，以 100 字為限） 

□實驗失敗 

□因故實驗中斷 
□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 
論文：□已發表 ■未發表之文稿 □撰寫中 □無 

專利：□已獲得 □申請中 ■無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 

 


