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1 Introduction

Many applied researchers use statistical inference for different models in practice. An
important issue in inferential methods for econometrics models is that some tests can
exhibit nonmonotonic power (see, e.g., Nelson and Savin (1990), Vogelsang (1999),
and Deng and Perron (2008)). That is, as the distance that alternative hypothesis
deviates from the null grows, the power of the test actually decreases. The problem
of nonmonotonic power is noted in a variety of tests such as tests in linear /nonlinear
regression models of Hauck and Donner (1977), Bates and Watts (1988), and Nelson
and Savin (1990), in the generalized method of moments (GMM) of Hall (2000) and
Hall, Tuoue and Peixe (2003), and models with structural breaks in the mean of
Andrews and Monahan (1992), Deng and Perron (2008), and Vogelsang (1999).

Applied researchers use consistent estimators for the variance covariance matrix
when testing parameter restrictions on linear regressions such as the heteroskedas-
ticity consistent covariance matrix estimators (HCCME) of White (1980) and the
heteroskedasticity and autocorrelation consistent estimators (HACE) of Newey and
West (1987). In the GMM literatures, Hall (2000) shows that the non-centered
HACE in GMM method is not consistent when model is misspecified. Therefore,
the overidentifying restriction test of GMM method base on the non-centered HACE
may not be consistent under the alternative and exhibits nonmonotonic power in
large sample. Hall (2000) considers a centered HACE and shows that the resulting
overidentifying restriction test is consistent under both null and alternative; see also
Hall and Inoue (2003), Chang (2005, 2007). However, Hall, Iuoue and Peixe (2003)
shows that when the presence of neglected structural instability under the alterna-
tive, even the HACE is based on non-centered or centered autocovariances, the rate
of increase of the overidentifying restrictions test is depending on the form of the
instability.

Most Monte Carlo studies indicate that the main reason for nonmonotonic power
is that in finite samples some nuisance parameters such as the variance estimator
are poorly estimated under the (global) alternative; see Hall (2000), Crainiceanu
and Vogelsang (2007), Juhl and Xiao (2009). Allen (2007) compares the powers
of the overidentifying restriction tests using the centered and non-centered HACEs,

but his Monte Carlo simulation shows that very little power is gain. MacKinnon

and White (1985), Flachaire (2005), Godfrey (2006) and Godfrey and Orme (2004)



propose several different forms of a variance-covariance matrix to control the finite
sample significance levels. They find that hypothesis testings using the wild or
jackknife bootstrap perform better in small samples. Goncalves and White (2005)
show that tests based on the moving blocks bootstrap estimators have better finite
samples performances. Recently, several authors impose a boundary condition for
the HACE to restore the monotone power of tests; see Sul et al. (2005). Juhl and
Xiao (2009) propose a modified variance estimator based on the nonparametrically
demeaned data and show that the modified estimator diverges at a slower rate than
the unmodified version; thus, tests based on the modified estimator retain their
consistency under various diverging alternative hypotheses.

In many econometric and statistical applications, there often exist conditional
moment (CM) restrictions that characterize the behavior of models of interest. For
example, specifications for regression models and specifications for conditional prob-
ability models can be represented as CM restrictions. Once a model is specified, it
is important to have specification tests on its validity. A CM test based on CM
restrictions is a general framework that includes most model specification tests. For
example, Newey (1985), Tauchen (1985), Wooldridge (1990), Bierens (1982, 1990),
Bierens and Ploberger (1997), Bierens and Ginther (2001), Zheng (1998) to mention
only a few. Although the nonmonotonic power problem have been studied in many
testing literature, this problem is not discussed in the framework of CM tests. As
Nelson and Savin (1990) pointed, “While the existence of nonmonotonic power is not
new, the surprising results are that this phenomenon occurs ... and it can be quite
severe”. In this paper, the nonmonotonic power problem in the CM tests is investi-
gated in finite samples by using Monte Carlo simulation. We show that the standard
variance estimator used in the CM tests is consistent only under the null. Under the
alternative, nonmonotonic power could arise from using an inconsistent estimate;
CM tests can not retain their consistency under global alternatives. Therefore, the
variance estimator is the main source of the nonmonotonic power problem in CM
tests. Since the source of nonmonotonic power problem in CM test is the variance
estimator, we suggest using the centered variance estimator in test with the aim of
gaining power under global alternative. We examine the small sample performances
of tests by Monte Carlo simulations. It is seen that the power functions of the tests

are very sensitive to the behavior of the variance estimates.



2 Non-Centered Variance Estimators

Let y; be a finite-dimensional vector of dependent variable(s) with index ¢, and
X; be the information set available in explaining y;. Suppose that it is interested
in estimating and testing a CM model of y;|X; with a r X 1 vector of generalized
residuals my; = my(y;, 24;0) for some finite r > dim(y;), in which x; denotes a
vector of Aj-measurable explanatory variables and § € © C R? stands for a p x 1
parameter vector. This CM model is defined to be correctly specified, if and only

if, the martingale difference condition:
Ho @ E[me|X:] = 0, mo := my|o=g,,

is satisfied for some unique 6, € ©. Let z; be a ¢ X r matrix of X;-measurable mis-
specification indicators, the ¢ X 1 testing function: z;m; must satisfy the martingale-

difference condition:
]E[Ztm0t|Xt] = Zt]E[mot|Xt] = 0,

which further implies the unconditional moment restriction: E[zmy] = 0. The CM
test checks this restriction by examining whether the estimated moment: 7! Zthl Zimy
is significantly different from zero, in which 7, := my| 9=4, With O representing es-
timator of 8,.

Let u; be the error term of the specified regression model. Suppose that the CM
test is based on an estimator of #, which is solved from the estimating equation:
T-! Ethl xyuy = 0, from some p x 1 estimating function that does not contain the
same components of the testing function z;m;, x, = —Vju, is X-measurable function

and Uy 1= uy =i The estimator éT has the following representation:

T -1 T
. 1 1
\/T(OT —0,)=—|= E xtV9ut] — E x4+ 0,(1)
T t=1 VT t=1

E

1
= E(z2})  —= zyuy + 0,(1)
VT “

1



If my = wg, then Vym; = Vyu, = —x;.

1 & 1 & 1 « A
- Zztmt = — Zztmt + (T Z thth> \/T(QT —0,) +0,(1)

t=1

zemy — E(z) B (xp))” zuy + 0p(1

Z[zt — E(z)) E(ziz}) " 2dus + 0,(1).

@‘“ @‘*‘ ~
NgE
IIM%

Let 2} := 2z — E(z,) IE(zx}) 'z, we can rewrite the above equation as follows:

T T
1 1

— E 2l = —= E ziur + 0p(1)
VT = VT3

When model is correctly specified or say under the null hypothesis, one has
[E(u|X;) = 0, and the test statistic converges to a normal distribution by central

limit theorem under suitable regularity conditions:

\/_Zztut—ﬂ\f(o V),

where the asymptotic variance V := IE[zfuu},z'] is a ¢ X ¢ variance covariance
matrix. Follow Hall’s (2000) suggestion, the non-centered and centered variance

estimators are considered. The non-centered variance estimator is specified as:

T
VU 1 * [N

t=1

and a centered variance estimator of the variance

1« 1« /
Py =7 E (zt*ut—— E 2 U ) <zfut—f E ztﬁt> :
t=1 t=1

Considering two test statistics for testing CM restrictions, I first define the statis-

tic with normalizing centered variance estimator as
T ! T
—\/— E zty | (X7) E 2ty |
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and define the statistic with non-centered variance estimator as

L= LTZQIACALTZ&
MT.—[ﬁ;M] (25) [ﬁ;tt].

Under Hy, both variance estimators converge to the asymptotic variance V', and it is
derived that M2 -% v2(¢) and M& -5 x2(g), where y2(q) the chi-square distribution
with ¢ degrees of freedom. This result demonstrates that “centering” in construct-
ing normalizing matrices leads to correct size and does not affect the asymptotic
behavior when model is correctly specified.

If the model is incorrectly specified, the limiting distribution of the statistic is
different from that under correctly specified model. In the following, I consider two
types of alternatives; one is a global alternative and the other is the local alternative.

Consider a general alternative hypothesis:
H1 . ]E[Ut’Xt] = wZ(s

This test is expected to be powerful against H; because the conditional expectation
of zyu; becomes E[zu,|X;] = zyw,é under Hy, which implies that IE[zu,] = E[zw;]d
is a ¢ x 1 nonzero vector provided that IE[zw;] is positive definite. The asymptotic
behavior of M7 or My depends on two terms: one is the asymptotic behavior of

T2 Zthl 20, and the other is the asymptotic behavior of i% and i]CT Because

T T T
1 1 , 1
— ) = —= Y 2(u—wd)+ —= > Zwid +o,(1),
ﬁ;tt ﬁ;t(t t) ﬁ;tt P()
under H; the first term on the right-hand-side of the above equation converges to dis-
tribution N (0, IE[z}u,u}2"]) which is O,(1), and the asymptotics of T-2 3" 24,
depends on the second term 7~1/2 Zthl zfw;o. In addition, under Hy, the centered

variance estimator iCT % V and the non-centered variance estimator
U BV 4 B(zw))00 T (w2)),

which follows from
L I
T Z 2ty = E(zw})d + 0,(1).
t=1

The limits of 3¢ and 2% differ by an extra term: IE(zw))66'E(w,2,). When T — oo,

M7 diverges but the asymptotic distribution of M7} is unknown by the extra term.
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The power of the test based on M. approaches 1 but the power of M} is unknown
depending on the functional form of the alternative hypothesis and the additional
term IE(zw;)00'E(w:z;). This is the first finding of this paper that the CM test
based on uncentered variance may constitute nonmonotonic power.

Consider one special case that E(zw;)0 = O(1) such as a constant function,
then M7 diverges and the power of M7 approaches 1. The other special case is the

local alternatives:
HY : Elu X)) = v/VT.

This local alternative is approaching to the null when 7" goes to infinity. Under H{,
both fJCT 2V and f]% By, Therefore, under HlA, when T" — o0, both statistics
Mg and M diverge and the power of the tests approach 1. Note that in these cases,
although the asymptotic power of M7} and M approach 1 and both CM test are
consistent, it is found that when 7" is small, the finite sample power of M7} and M.
are different. It is argued that the divergence rate of My is slower than that of M.
Therefore, in practice, when the sample size is not large, the finite sample power of
M7 is smaller than that of M¢. This is the motivation of this paper which focuses

on the finite sample comparison of two CM tests.

3 Monte Carlo Simulation

In this section, three Monte Carlo experiments to examine the effectiveness of the
proposed tests are conducted. In particular, we compare the powers of M# and M
in sample mean and conditional mean examples. All examples consider sample sizes
of T'= 10, 20, 50, the nominal size is 5%, and the number of replication is 2000.

3.1 Sample Mean Example
For the following two hypotheses,

Hy: 2y~ N(0,02), Hy:x,~ N(u,o02), (1)

A

N ~ _ T - ~ _ T _ .
then zy =y, X% = (64)2 =Ty, 22, 355 = (65)* =T13,_,(z;, — z)?, with
T = Zthl z¢/T. In the sample mean example, we consider cases with o2 = 1,2, 4.

The rejection rates of sample mean example are presented in Figure 1. In the figure,
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the horizontal axis is p which represents the deviation from the null, the vertical
axis is the rejection rate of tests, the dashed line represents the rejection rate of M}
and the solid line shows those of M. From Figure 1, we can find that when the
sample size is small, the finite sample power of M{ is higher than that of Mp; the
difference between the powers becomes smaller as the sample size gets larger. In
addition, for fixed sample size T', the difference between powers of M and M} are

smaller for 03 = 1 and are larger when o7 = 4.

3.2 Conditional Mean Example

Hy o ye=aif+u, wlXy ~ N(0,0h) @)
Hy @y = iﬂfﬁ + Uy, Ut’Xt—l ~ N(wéd U%t)?

with £ a k x 1 vector of parameters. The CM restriction is IE(u|X;—1) = 0. Suppose
that x; is independent and identically distributed N(0,1). The conditional mean
example is also considered with w6 = p, 02, = 02, = 1,2,4. In this example, let

. N N ~ - _ T ~
be the least square estimator, u; = y; — x}8, 24ty = x4y, L% =T Dot T 0T,

T T !
o1 Z X 1 Z X
LU — T LUt TiUs — ? Tl | -
t=1 t=1

The rejection rates of conditional mean example is presented in Figure 2. In

T

SEEESS

t=1

the figure, the horizontal axis is p which represents the deviation from the null, the
vertical axis is the rejection rate of tests, the dashed line represents the rejection
rate of M} and the solid line shows those of M. From Figure 2, we can find that
when the sample size is small, the finite sample power of M is much higher than
that of MF; the difference between the powers becomes smaller as the sample size
gets larger. In addition, for fixed sample size T', the difference between powers of

M and M3 are smaller for o3 = 1 and are larger when o2 = 4.

4 Conclusions

In this paper, a modified CM test with centered variance estimator is proposed. The
nonmonotonic power problem can be alleviated with considering the modified CM
test. Our Monte Carlo simulation shows that the CM test based on centered variance
has lower finite sample powers, while the CM test based non-centered variance has

higher finite sample powers.
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Figure 1: Finite Sample Powers in Sample Mean Examples with 02 = 1 for upper

panel, o2 = 2 for middle panel, o2 = 4 for lower panel.
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