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摘要

近年來, 模型中待估參數可能產生的 「弱認定」 問題逐漸受到學術界的關注。 一般而言, 推斷這個問題的存

在與否都是依據 「非條件動差限制式」 而來。 在此研究計畫中, 我首先舉例說明當理論所推衍出的模型為

「條件動差限制式」 時, 文獻上依據所選擇有限個數的 「非條件動差限制式」 來推論參數弱認定問題的方式

是不適當的。 這是因為如果我們要表徵 「條件動差限制式」 中所有關於待估參數的訊息, 我們必須能同時考

慮無窮多條其所衍生出的 「非條件動差限制式」 才行。 針對此問題, 我首先直接考慮在 「條件動差限制式」

下參數的 「弱認定」 問題, 並會對相關的研究文獻作一完整探討。 在此研究計畫的第二部份中, 我將會利用

「條件動差限制式」 所推衍出無窮多條 「非條件動差限制式」 建立一個可行的一般化的動差估計式。 此估計

式被證明具有一致性且其相關極限理論性質也都建立。 在計畫的最後一部份, 我藉由蒙地卡羅模擬來檢驗

估計式的小樣本性質。 在 「弱認定」 的分析架構下, 此計畫所提出的方法和所建立的極限性質在文獻上具有

一定的貢獻且應會有相當的參考價值。

關鍵詞:弱認定, 條件動差限制式, 一般化的動差估計式

Abstract

In recent years, the “weak identification” problem of the parameters of interest in models has drawn
much attention. Typically, this problem is identified by some “unconditional” moment restrictions.
In the first part of this project, I show that, given the conditional moment restrictions, to identify
weak identification only based on some selected finite unconditional moments may be misleading.
This is because all of the information in the conditional moment restrictions is accounted for only
when we consider infinitely many implied unconditional moments. In this project, I identify the weak
identification problem directly based on the conditional moments, and I review the weak identification
problems in detail in the literature. In the second part of this project, I construct a GMM type estimator
based on a continuum of unconditional moments that reveals all the information of the parameters
of interest contained in conditional moment restrictions. The proposed estimator is shown to be
consistent and the corresponding theoretical properties are also established. The last part of this
project examines finite sample performance of the proposed estimators, via extensive Monte Carlo
simulations. When identifying the weak identification problem by conditional moment restrictions,
the proposed estimation approach and the asymptotics in this project are new in the literature.

Keywords: weak identification, conditional moment restrictions, generalized method of moment



1 Introduction

Moment restrictions usually arise in economic or financial models. In particular, conditional moment
restriction plays a major role since we usually build models conditioned on some information sets
in an uncertain environment. Therefore, how to “accurately” estimate the parameters of interest in
the models via those moment restrictions is an important task. In recent years, many researchers are
attracted to the “weak identification” problem in generalized method of moment (GMM) framework
based on some “unconditional” moment restrictions induced from the conditional ones. Typically,
the weak identification means that the selected (unconditional) moment restrictions do not provide
enough information about the parameters of interest. In linear instrumental variables regression mod-
els, this problem corresponds to the well-known “weak instruments” when the instruments are weakly
correlated with the endogenous variables. In the presence of weak identification (or weak instru-
ments), the conventional first-order asymptotic analysis is misleading, and the resulting inference be-
comes unstable. Given a set of unconditional moment restrictions, there have been many researches
focus on the issues related to weak identification, Staiger and Stock (1997), Stock and Wright (2000),
Hahn and Hausman (2003), and Stock, Wright and Yogo (2002) are only a few examples.

Given the conditional moment restrictions, however, it is not a good way to consider the iden-
tification problem of the parameters only based on a finite set of selected unconditional moment
restrictions. This is because all of the information in the conditional moment restrictions is ac-
counted for only when we consider infinitely many implied unconditional moments. Without any
prior knowledge, the finite set of selected unconditional moments may contain less information about
the parameters and then we may conclude that the parameters are weak identified by applying some
well-established approaches in the literature, even the parameters actually are well identified by the
conditional moment restrictions. From this viewpoint, the weak identification problem may be over-
stated if we infer based on some finitely implied unconditional moment restrictions. To my best
knowledge, no work on the weak identification problem emphasizes this point in the literature.

When identifying the problem of weak identification based on the conditional moment restric-
tions directly, it follows that any induced unconditional moment restriction is “weak” to identify the
parameters of interest. How to construct a consistent estimator is thus the main part of this project.
In the framework of linear instrumental variables regression, Chao and Swanson (2005) show that as
the number of weak instruments increases to the infinity at some suitable rate, there may be a consis-
tent estimator. It indicates that we may still have enough information for identifying the parameters
and thus the consistent estimation is achievable even when instruments are all “weak”. Their work
motivates us to consider an infinite number of induced unconditional moment restrictions in the weak
identification problem.
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On the other hand, when the parameters of interest are well identified by the conditional moment
restrictions, many consistent (and efficient) estimation methods have been proposed in the literature.
In particular, trying to take all induced unconditional moment restrictions into account in estimation
is popular. For example, Bierens(1990) consider a set of unconditional moment restrictions generat-
ing by the exponentials of the conditioning variables. Donald et. al. (2003) form the unconditional
moments by using the power series and splines. Hsu and Kuan (2008) consider a continuum set of un-
conditional moments based on generically comprehensively revealing functions of Stinchcombe and
White (1998) and further construct a class of consistent estimators by introducing Fourier analysis. It
should be noted that, however, the asymptotic properties of these approaches are valid only when the
parameters of interest are well identified by the conditional moment restrictions.

2 Weak Identification

Let us consider a conditional moment restriction as

IE[hhh(Yt , θo)|Z t ] = 0, with probability one (w.p.1), (1)

where hhh(·) is an s × 1 vector of known functions, Yt is data variable, Z t is conditioning variable with
dimension one, and θo ∈ 2 is a q × 1 vector of unknown parameters of interest.

Given this conditional moment restriction (1), the weak identification problem is typically ad-
dressed as follows. Selecting some finite-dimensional vector of measurable functions of Z t , fff (Z t)

say, the conditional moment restriction (1) implies a set of unconditional moment restrictions

IE[hhh(Yt , θo) ⊗ fff (Z t)] = 0, (2)

by the law of iterated expectations. If IE[hhh(Yt , θ) ⊗ fff (Z t)] is nearly zero for θ 6= θo, then θo is
thought as being weak identified; see e.g., Stock and Wright (2000), Stock, Wright and Yogo (2002)
and Wright (2003).

As stated above, to address the weak identification problem based on the unconditional moment
restriction (2) is “risky” since this set of unconditional moments does not contain all of the information
about θo. We may draw the wrong inference from this set of unconditional moments. The following
example points out this possibility.

Example: Assume the random variable Y satisfies the simple nonlinear model IE[Y |X ] = exp(Xθo),
where θo is an unknown parameter of interest and X follows a normal distribution with a zero
mean and an nonzero variance. The corresponding conditional moment restriction is then given by
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IE[Y − exp(Xθo)|X ] = 0. Based on this conditional restriction, we consider three valid, implied
unconditional moment restrictions to illustrate the identification problem, they are, respectively, (i)
IE[Y − exp(Xθ)] = 0; (ii) IE[(Y − exp(Xθ))X ] = 0; and (iii) IE[(Y − exp(Xθ))X2] = 0. Some
calculations show that restrictions (i) and (iii) can not help to identify θo since −θo also satisfies these
two restrictions. Instead, moment restriction (ii) gives the unique solution θo and thus is helpful to
identify θo. It means that if only the unconditional moment restrictions (i) and (iii) are considered,
we may conclude that θo cant not be identified (or θo is weak identified) by that conditional moment
restriction.

As a result, in this project, I say the parameters are weak identified if it satisfies the following
definition:

Definition (Weak Identification)
θo is weak identified in (1) if IE[hhh(Yt , θ)|Z t ] is nearly zero for θ 6= θo, θ ∈ 2.

3 The Proposed Approaches

Given that θo is weak identified in the conditional moment restriction (1), I will consider a class of
sets of induced unconditional moment restrictions in this proposed estimation approach. Note that
not matter what θo is well or weak identified in conditional moment restriction (1), it is necessary to
take all induced unconditional moments, which are infinitely many, into account in order to contain
the equivalent information about θo in the original conditional moments. This point of view has been
emphasized by Donald et al. (2003) and Hsu and Kuan (2008.)

In this project, I consider a continuum of unconditional moments based on the generically com-
prehensive revealing functions of Z t . Any real analytic function but not a polynomial is generically
comprehensive revealing, so this class of functions is not particular. Let τττ := [τ0, τ1]′ ∈ IR2 and A

denote the affine transformation of Z t such that A(Z t , τττ ) = τ0 + τ1 Z t , and function G is generically
comprehensive revealing, we have

IE
[
hhh(Yt , θo) ⊗ G

(
A(Z t , τττ )

)]
= 0, for almost all τττ ∈ T ⊂ IR2, (3)

where T has nonempty interior. This continuum of unconditional moment restrictions reveals all
the information of θo contained in the conditional one. The details can be found in Stinchcombe
and White (1998) and Hsu and Kuan (2008). For any z in the complex vector space, z̄ denotes
the complex conjugate of z, and the magnitude |z|

2
= z′z̄. Following the approach in Hsu and

Kuan (2008), I jointly consider all moment restrictions indexed by τττ in (3) via computing L2-norm
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by the integration and invoking Paserval’s Theorem. Apart from a scaling factor, we obtain∫
T

∣∣ IE [hhh(Yt , θo) ⊗ G
(
A(Z t , τττ )

)]∣∣2 dτττ =

∞∑
k0,k1=−∞

∣∣9t,G,kkk(θo)
∣∣2 = 0,

where

9t,G,kkk(θ) =

∫
T

IE [hhh(Yt , θ) ⊗ G(A(Z t , τττ ))] exp (−ikkk ′τττ)dτττ

= IE
[

hhh(Yt , θ) ⊗

∫
T

G(A(Z t , τττ )) exp (−ikkk ′τττ)dτττ

]
:= IE

[
hhh(Yt , θ) ⊗ γt,G,kkk(θ)

]
is a Fourier coefficient induced by projecting the function IE [hhh(Yt , θ) ⊗ G(A(Z t , τττ ))] along the
exponential Fourier series, and γt,G,kkk can be viewed as the function which incorporates the full con-
tinuum of the original unconditional moment restrictions indexed by τττ . By imposing the sample
counterpart, we obtain the estimator

θ̂ (KT ) = argmin
θ∈2

KT∑
k0,k1=−KT

∣∣∣∣∣ 1
T

T∑
t=1

hhh(yt , θ) ⊗ γt,G,kkk(θ)

∣∣∣∣∣
2

, (4)

where KT is some positive integer and needs to grow with the sample size T to ensure proper asymp-
totic properties. This estimator (4) is first proposed by Hsu and Kuan (2008). However, as stated
before, Hsu and Kuan (2008) deal with the conditional moments that θo is well identified. In subse-
quent section, the corresponding asymptotics for the proposed estimator will be established when θo

is weakly identified. It is an extension of the work in Hsu and Kuan (2008).

4 The Asymptotic Properties

For kkk = (k0, k1), k0, k1 = −KT , −KT + 1, · · · , 0, 1, 2, · · · , KT − 1, KT , let

gtkkk(θ) = hhh(yt , θ) ⊗ γt,G,kkk(θ), ḡT kkk(θ) =
1
T

T∑
t=1

gtkkk(θ),
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and ḡT (θ) be the corresponding column s × (2KT + 1)2-vector of ḡT kkk(θ). Then we represent the
objective function, QT (θ) denoted, in (4) as

QT (θ) =

KT∑
k0,k1=−KT

∣∣∣∣∣ 1
T

T∑
t=1

hhh(yt , θ) ⊗ γt,G,kkk(θ)

∣∣∣∣∣
2

=

KT∑
k0,k1=−KT

∣∣∣∣∣ 1
T

T∑
t=1

gtkkk(θ)

∣∣∣∣∣
2

=

KT∑
k0,k1=−KT

[
1
T

T∑
t=1

gtkkk(θ)

]′ [
1
T

T∑
t=1

gtkkk(θ)

]

=

KT∑
k0,k1=−KT

1
T 2

∑
t 6=τ

gtkkk(θ)′gτkkk(θ) +

T∑
t=1

gtkkk(θ)′gtkkk(θ)


=

KT∑
k0,k1=−KT

|ḡT kkk |
2

= |ḡT (θ)|2 = ḡT (θ)′ḡT (θ).

We define the population versions of ḡT kkk(θ) and ḡT (θ), respectively, as m̄T kkk(θ) = IE[ḡT kkk(θ)] and
m̄T = IE[ḡT (θ)]. For any kkk, the difference between ḡT kkk and m̄T kkk multiplied by

√
T is defined as

ζT kkk(θ) =
√

T [ḡT kkk(θ) − m̄T kkk(θ)],

and the corresponding column s × (2KT + 1)2-vector of ζT kkk(θ) is defined as ζT (θ). Besides, for
each kkk and t , we define ξT kkk(θ, t) be the difference between hhh(yt , θ) ⊗ γt,G,kkk(θ) and its expectation
IE[hhh(yt , θ) ⊗ γt,G,kkk(θ)], that is

ξT kkk(θ, t) = hhh(yt , θ) ⊗ γt,G,kkk(θ) − IE[hhh(yt , θ) ⊗ γt,G,kkk(θ)],

and the corresponding column s × (2KT + 1)2-vector of ξT kkk(θ) is defined as ξT (θ, t).

The following conditions are imposed as Hsu and Kuan (2008) and Han and Phillips (2006):

(A1) The observed data (yt , Z t)
′, t = 1, 2, . . . , T are independent realization of (Y, Z)′.

(A2) For each θ ∈ 2, hhh(., θ) is measurable, and for each y ∈ IRr , hhh(y, ·) is continuous on 2. Also,
θo in 2 is the unique solution to IE[hhh(Yt , θ)|Z t ] = 0.

(A3) IE[hhh(Yt , θ)|Z t ] is nearly zero for θ 6= θo, θ ∈ 2.

(A4) The eigenvalues of IE[ξT (θ, t)ξT (θ, t)]′ are bounded from above for all θ ∈ 2, for all t , and
for all KT and T .

(A5) δT (θ) := K −2
T IE[|ζT (θ)|2] → δ(θ) uniformly in θ ∈ 2.
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(A6) There is a sequence of positive numbers cT such that
γT (θ) := c−1

T |m̄T (θ)|2 → γ (θ) uniformly in θ ∈ 2.

(A7) αT := K 2
T /(T cT ) → α ∈ [0, ∞) and T cT → ∞ as T → ∞.

(A1) and (A2) are standard conditions when θo is well identified by the conditional moment
restriction; (A3) assumes the situation that the conditional moment restriction is weak; (A4)–(A7),
which are also introduced in Han and Phillips (2006), regulate the related sequences while deriving
the asymptotics of the proposed estimator. Given (A1), (A5), (A6) and (A7), we have the following
decomposition as in Han and Phillips (2006):

IE[T −1 QT (θ)] = IE[|
√

T ḡT (θ)|2]

= IE

 KT∑
k0,k1=−KT

1
T

∑
t 6=τ

gtkkk(θ)′gτkkk(θ) +

T∑
t=1

gtkkk(θ)′gtkkk(θ)


= IE

 KT∑
k0,k1=−KT

1
T

∑
t 6=τ

gtkkk(θ)′gτkkk(θ)

+

KT∑
k0,k1=−KT

1
T

(
T∑

t=1

gtkkk(θ)′gtkkk(θ)

)
= |

√
T m̄T (θ)|2 + IE[|ζT (θ)|2]

= T cT γT (θ) + K 2
T δT (θ)

= T cT [γT (θ) + αT δT (θ)] .

Given this decomposition and the conditions (A5), (A6) and (A7), we have the following property of
the proposed estimator.

Theorem 4.1 (Consistency)
Given (A1)-(A7), θ̂ (KT )

P
−→ θo, if either (i) both γ (θ) and δ(θ) are minimized at θo;

or (ii) γ (θ) is minimized uniquely at θo and KT = o(
√

T cT ) as T → ∞.

Denote fT (θ) = c−1
T ḡT (θ)′ḡ(θ), f̄T (θ) = γT (θ) + αT δT (θ), and WT (·) = fT (·) − f̄T ·, then we

have a local linear approximation of WT (·):

(T cT )1/2
∇wT (θ) =2T −1/2

T∑
t=1

c−1/2
T ∇{m̄T (θ)′ξT (θ, t)}

+ α
1/2
T K −1/4

T

∑
kkk

∇{ζ 2
T kkk(θ) − IE[ζ 2

tkkk(θ)]}.

Then the following two conditions is needed to establish the asymptotic distributions of the proposed
estimator.
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(A8) ∇ f̄T (·) permits a linear approximation

∇ f̄T (θ) = ∇ f̄T (θo) + VT (θ̄) + (θ − θo)

with VT (θT ) → V (θo) if θT → θo, where V (θo) is nonsingular.

(A9) At θo ∈ 2,

2T −1/2
T∑

t=1

c−1/2
T ∇{m̄T (θ)′ξT (θ, t)}

d
−→ N (0, A).

Theorem 4.2 (Asymptotic Normality)
Given (A1)–(A9), KT = o({T cT }

1/4) as T → ∞, then

(T CT )1/2(θ̂(KT ) − θo)
d

−→ N (V −1 AV −1).

Note that the growth rates of KT in these two Theorems heavily depends on cT , which measures
the strength of signal. These results are different from the well identified case in Hsu and Kuan (2008).

5 Simulations

In this section, I focus on the finite-sample performance of the proposed estimator when the parameter
of interest is weak identified. Two simulations are constructed, one is linear model and the other is
nonlinear. Our comparison is based on the bias, standard error (SE), and mean squared error (MSE)
of these estimators, and percentage changes when KT increases.

5.1 Linear model

The model specification is:

Y = θo Z + ε,

and Z = pX + ν, with[
ε

ν

]
∼ N

(
0,

[
1 ρ

ρ 1

] )
,
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where θo = 1, ρ = 0.5, and X ∼ N (0, 1) is independent of ε and ν. Sample size T = 200. Given this
specification, IE(ε|X) = 0. In the setting, p is determined by the equality p2

= R2(1 − R2)−1, where
the theoretical R2 is equal to 0.0001 and 0.3. When R2

= 0.001, this is actually the weak identified
case, and R2

= 0.3 represents the well identified case. In this experiment, we compare the proposed
estimator with 2-Step-least-square (2SLS) estimator. The simulation results are collected in Table 1.

In Table 1, we observe that the bias and SE of 2SLS estimator are very large when θo is weakly
identified in the case with R2

= 0.0001, and the proposed estimator θ̂ (KT ) outperforms the 2SLS
estimator very much. When θo is well identified (R2

= 0.3) the performance of 2SLS estimator is
better, but the difference between these two estimators is not quite large.

5.2 Nonlinear model

The model specification is:

Y = θ2
o Z + θo Z2

+ ε,

and Z = pX + ν, with[
ε

ν

]
∼ N

(
0,

[
1 ρ

ρ 1

] )
,

where θo = 1.25, ρ = 0.9, and X ∼ N (0, 1) is independent of ε and ν. Sample size T = 500.

Given this specification, IE(ε|X) = 0. In this experiment, we compare the proposed estimator with
nonlinear-least-square (NLS) estimator. The simulation results are collected in Table 2.

Based on this result, we observe that the proposed estimator outperforms the NLS estimator when
R2

= 0.0001. Even in the case that R2
= 0.3, the proposed estimator still has a smaller bias than the

NLS estimator.

6 Concluding Remarks

This project is concerned with consistent estimation of conditional moment restrictions when the pa-
rameters of interests are weakly identified. There are some contributions in this project. First, I show
that weak identification may be overstated in conditional moment restrictions by an example. Second,
I clearly address the problem of weak identification based on the conditional moment restrictions, and
construct a consistent estimation approach. To this end, I follow the approach proposed in Hsu and
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Kuan (2008). I systematically generate the sets of infinitely many weak unconditional moment re-
strictions, by using a set of generically comprehensively revealing functions of conditioning variables.
Based on these sets of unconditional moment restrictions, I construct a GMM type estimator by using
Fourier analysis, cf. Hsu and Kuan (2008). Besides, I establish the corresponding theoretical proper-
ties based on the framework in Han and Phillips (2006). I also examine finite sample performance of
the proposed estimators, via extensive Monte Carlo simulations. In sum, this project reviews the weak
identification problems in the literature and theoretically extend Hsu and Kuan’s (2008) work to the
case that the parameters are weak identified in conditional moment restrictions. Besides, this work
also shows how to find a large number of weak unconditional moments and guides us to construct a
consistent estimator in practice.

Moreover, based ont the framework of this project, we may construct jackknife type estimator as

θ̂J (KT ) = argmin
θ∈2

KT∑
k0,k1=−KT

1
T 2

∑
t 6=τ

gtkkk(θ)′gτkkk(θ)

 . (5)

This jackknife estimator may have better finite sample properties since it removes the second order
bias, cf. Chao and Swanson (2005) and Newey and Windmeijer(2008). In this framework, the jack-
knife estimator (5) is new in the literature. All properties of this jackknife estimator are left to future
research.
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Table 1: The performance of θ̂ (KT ) with various KT .

R2
= 0.0001

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 0.51557 0.00000 2.47658 0.00000 6.39801 0.00000
2 0.51348 -0.40552 2.42898 -1.92188 6.16242 -3.68229
3 0.51278 -0.13611 2.41875 -0.42132 6.11210 -0.81653
4 0.51243 -0.06786 2.41534 -0.14059 6.09531 -0.27473
5 0.51222 -0.04077 2.41395 -0.05775 6.08836 -0.11400
6 0.51208 -0.02726 2.41331 -0.02656 6.08512 -0.05318
7 0.51198 -0.01954 2.41300 -0.01294 6.08351 -0.02644
8 0.51190 -0.01472 2.41284 -0.00634 6.08269 -0.01341
9 0.51185 -0.01148 2.41277 -0.00291 6.08230 -0.00656
10 0.51180 -0.00922 2.41275 -0.00106 6.08212 -0.00281
15 0.51166 -0.02783 2.41284 0.00365 6.08240 0.00458
20 0.51158 -0.01404 2.41297 0.00565 6.08299 0.00960

2SLS 1.83313 77.23494 5967.40257

R2
= 0.3

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 -0.02930 0.00000 0.28524 0.00000 0.08220 0.00000
2 -0.02763 -5.71355 0.27111 -4.95383 0.07425 -9.67729
3 -0.02711 -1.87063 0.26622 -1.80301 0.07159 -3.57488
4 -0.02686 -0.90181 0.26378 -0.91626 0.07029 -1.82383
5 -0.02672 -0.52515 0.26233 -0.55077 0.06952 -1.09798
6 -0.02663 -0.34205 0.26137 -0.36646 0.06901 -0.73108
7 -0.02657 -0.23991 0.26069 -0.26099 0.06865 -0.52087
8 -0.02652 -0.17733 0.26018 -0.19515 0.06838 -0.38956
9 -0.02648 -0.13629 0.25978 -0.15135 0.06818 -0.30217
10 -0.02646 -0.10797 0.25947 -0.12077 0.06801 -0.24113
15 -0.02637 -0.31750 0.25854 -0.35981 0.06752 -0.71747
20 -0.02633 -0.15530 0.25807 -0.17873 0.06728 -0.35666

2SLS -0.00453 0.11004 0.01213
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Table 2: The performance of θ̂ (KT ) with various KT .

R2
= 0.0001

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 -0.00381 0.00000 0.04919 0.00000 0.00243 0.00000
2 -0.00389 1.97901 0.04959 0.81099 0.00247 1.64270
3 -0.00392 0.92784 0.04977 0.36435 0.00249 0.73695
4 -0.00394 0.52738 0.04987 0.20356 0.00250 0.41155
5 -0.00396 0.33774 0.04993 0.12916 0.00251 0.26108
6 -0.00397 0.23407 0.04998 0.08900 0.00251 0.17989
7 -0.00397 0.17151 0.05001 0.06495 0.00252 0.13128
8 -0.00398 0.13096 0.05004 0.04945 0.00252 0.09996
9 -0.00398 0.10322 0.05006 0.03889 0.00252 0.07861
10 -0.00399 0.08342 0.05007 0.03138 0.00252 0.06342
15 -0.00400 0.25490 0.05012 0.09553 0.00253 0.19317
20 -0.00400 0.12978 0.05014 0.04849 0.00253 0.09803

NLS 0.23839 0.01130 0.05696

R2
= 0.3

KT Bias Bias(+%) SE SE(+%) MSE MSE(+%)

1 -0.00007 0.00000 0.02296 0.00000 0.00053 0.00000
2 -0.00007 -6.98614 0.02270 -1.13857 0.00052 -2.26428
3 -0.00006 -3.41847 0.02260 -0.46138 0.00051 -0.92068
4 -0.00006 -1.96558 0.02254 -0.24547 0.00051 -0.49037
5 -0.00006 -1.26232 0.02251 -0.15136 0.00051 -0.30251
6 -0.00006 -0.87480 0.02249 -0.10235 0.00051 -0.20461
7 -0.00006 -0.64030 0.02247 -0.07371 0.00050 -0.14738
8 -0.00006 -0.48823 0.02246 -0.05557 0.00050 -0.11111
9 -0.00006 -0.38426 0.02245 -0.04337 0.00050 -0.08672
10 -0.00006 -0.31011 0.02244 -0.03477 0.00050 -0.06954
15 -0.00006 -0.94020 0.02242 -0.10462 0.00050 -0.20915
20 -0.00006 -0.47776 0.02240 -0.05246 0.00050 -0.10490

NLS 0.01696 0.01168 0.00042
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成果自評

In this project, I obtain the following results.

1. Demonstrating that the weak identification problem may be overstated in conditional moment
restriction models by some examples.

2. Constructing an GMM type estimator.

3. Establishing the corresponding asymptotics under Han and Phillips’s(2006) framework.

4. Simulation results of the proposed estimators.

5. Providing a possible extension based on the approach used in this project.

In this project, some contributions to this topic are as follows.

• In this project, we clearly learn the problem of weak identification based on the conditional
moment restrictions.

• This project extends the work of Hsu and Kuan (2008) to the case that parameters of interest is
weakly identified. And the properties of the proposed estimator are also uncovered.

• When addressing the problem of weak identification based on the conditional moment restric-
tions directly, this project shows how to find a large number of weak unconditional moments
and guides us to construct a consistent estimator in practice.
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