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1 Introduction

Many economic and econometric models are represented by conditional moment restrictions,

for example, the rational expectation model, the market disequilibrium model, the conditional

probability model, the discrete choice model and the nonlinear simultaneous equations model.

The validity of those model specifications is evaluated by testing the associated moment

conditions. The resulting test is the conditional moment test or M-test which has been

developed by Newey (1985), Tauchen (1985), and White (1987). However, these conditional

moment tests may not be consistent because they check only necessary conditions of the

conditional moment restrictions and there exist alternatives that cannot be detected by these

testing procedures. Therefore, our research focuses on constructing consistent conditional

moment tests.

There is an abundance of literature on constructing conditional moment tests. The non-

parametric tests employ a nonparametric estimator to a parametric conditional moment

function that equals zero under the null. See, for example, Eubank and Spiegelman (1990),

Lewbel (1995), Hong and White (1995), Fan and Li (1996), Li and Wang (1998), Chen

and Fan (1999), Zheng (1998a, 1998b, 2000), Horowitz and Spokoiny (2001), Delgado and

González Manteiga (2001), Li, Hsiao, and Zinn (2003) and Tripathi and Kitamura (2003),

among others. However, the test statistics of nonparametric tests are subjective in choos-

ing smoothing parameters and could be computationally costly. Another approach of the

conditional moment test is based on infinitely many unconditional moment functions with

uncountably many weighted functions indexed by continuous nuisance parameters (Stich-

combe and White, 1998). Therefore, a consistent conditional moment test can be obtained

by checking these orthogonality functions. Bierens (1982, 1984, 1990), de Jong (1996), Bierens

and Ploberger (1997), and Bierens and Ginther (2001) choose the exponential function while

Stute (1997), Stute, Thies and Zhu (1998), Koul and Stute (1999), and Stute and Zhu (2002)

use the indicator function as the weight functions. The former tests are henceforth called the

Bierens test while the latter tests are the the Stute test.

It is noted that both the Bierens and the Stute tests are not asymptotically pivotal in

general; that is their limiting distributions depend on model characteristics and critical val-

ues cannot be tabulated. For example, the auxiliary nuisance parameters in the exponential

weight function of the Bierens test lead to the limiting distributions depending on the data

generating process. Although Bierens and Ploberger (1997) derived case-independent upper

bounds of the critical values to solve this problem, their test may be too conservative in

practice. The Stute test is also not asymptotically pivotal because of the estimation effects

(Durbin, 1973) and it is case dependent. Stute, González Manteiga and Presedo Quind̈ımil
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(1998), Whang (2000, 2001, 2004), and Dominguez and Lobato (2006) try to avoid the prob-

lem by using the bootstrap to approximate the limiting distributions. Stute, Thies and Zhu

(1998), Koul and Stute (1999) and Stute and Zhu (2002) employe the martingale transforma-

tion of Khmaladze (1981) to obtain asymptotically distribution-free test statistics. However,

due to the difficulty of having a proper definition of a multitime parameter martingales, these

tests, except for Song (2007), cannot be carried out with multivariate regressors. Note that

in Song (2007), the nonparametric estimation of the conditional moment function is required

but a high dimensional nonparametric estimation is very complicated to compute. Kuan and

Lin (2008) propose a test which centers the estimation effect out by an average of empirical

processes and thus obtained an asymptotically pivotal test. Their test can be applied to

multivariate regressor cases and the limiting distribution is a sup-norm of a multi-parameter

Kiefer type process.

This paper proposes a consistent conditional moment test by checking an infinite set of

unconditional moment conditions with indicator weight functions. The test statistic is based

on the subsampling marked empirical process with sample size b instead of the whole size

n such that b < n. The subsampling, investigated by Politis and Romano (1994) and Poli-

tis, Romano and Wolf (1999) is a method of estimating the distribution of an estimator or

test statistic by drawing subsamples from the original data. Existing studies in the litera-

ture include Andrews and Guggenberger (2005), Chernozhukov and Fernándes-Val (2005),

Guggenberger and Wolf (2004), Hong and Scaillet (2006), Linton, Massoumi and Whang

(2005) and Whang (2004). The subsampling method has not been used to construct the test

statistics, which is done in this article. Other advantages of this paper are: (i) Instead of

computing the sample average of the conditional moment function with the whole sample,

the test statistic is obtained by the subsampling marked empirical process. The estimation

effect disappears when the relative sample size of subsampling to that of the whole sample is

zero asymptotically. Therefore, the proposed test does not suffer from the Durbin problem

and is asymptotically pivotal. (ii) The present paper differs from the Stute test in that they

use a martingale transformation technique which is applied to the model with a univariate

regressor, and the test subsamples the marked empirical processes and can be applied to

models with multivariate regressors. (iii) Unlike the tests using nonparametric smoothing

methods, the proposed test therein avoids the user-chosen smoothing methodology. (iv) The

test statistic can be computed using any
√
n-consistent estimator and different estimation

methods can be applied. (v) The proposed test does not use the bootstrap, the martingale

transformation, or the nonparametric method, resulting in significant simplifications in com-

puting the test statistics. One disadvantage of our test is that it is powerful against local

alternatives with rates b−1/2, but the proposed test is incapable of detecting local alterna-

2



tives at rate n−1/2. Our test shares the same disadvantage of most nonparametric tests. The

Monte Carlo simulations show that the proposed test has good finite sample performances

and the test is robust with respect to different values of b.

This paper is arranged as follows. Section 2 presents the conditional moment restriction

and the proposed test. Section 3 shows the consistency of the test and the asymptotic behavior

under different local alternatives. Section 4 shows the Monte carlo simulation results and

follows the conclusions in section 5. All proofs are given in the Appendix.

2 A New Test

2.1 Conditional Moment Restrictions

Consider general conditional moment restrictions

IE[m(y,x,βo)
∣∣x] = 0, (1)

where IE[·|x] denotes the expectation conditional on the information set of x and m(·) is a

function on data, and {y,x} is a sequence of random variables with x = (x1, · · · , xk)′ and

parameters β ∈ B with B ∈ Rk. The conditional moment restrictions can be obtained

from existing models such as the parametric nonlinear regression models where m(y,x,βo)

is the difference between y and g(x′,β), with g(·) a nonlinear function. To test the condition

moment restrictions, the null and alternative hypotheses are as follows. The null hypothesis

is the conditional moment function being equal to zero:

H0 : IP
{

IE(m(y,x,βo)
∣∣x) = 0

}
= 1, for some βo ∈ B,

against the alternative hypothesis is, for all β ∈ B, IE(m(y,x,β)
∣∣x) 6= 0 with a positive

probability:

H1 : IP
{

IE(m(y,x,β)
∣∣x) = 0

}
< 1, for all β ∈ B,

with B ∈ Rk a compact set.

As has been shown by Stinchcombe and White (1998), the conditional moment condition

(1) equals infinitely many unconditional moment functions

IE[m(y,x,βo)ω(x, ξ)] = 0, ∀ξ ∈ Rk, (2)

where ω(·) is an infinite set of weights indexed by continuous parameters ξ and ω(·) may be

any analytic function that is not polynomial. Therefore, testing (2) constructs a consistent

conditional moment test. For example, Bierens (1982, 1984, 1990), de Jong (1996) and Bierens
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and Ploberger (1997) and Bierens and Ginther (2001) use the exponential weighted function

ω(x, ξ) = exp(x′ξ) for their integrated conditional moment test. Stute (1997), Stute, Thies

and Zhu (1998), Koul and Stute (1999) and Stute and Zhu (2002) take the indicator function

ω(x, ξ) = 11{x≤ξ} := 11{x1≤ξ1} · · · 11{xk≤ξk},

where 11A denotes the indicator function of even A. The present paper implements the indi-

cator function and the conditional moment restrictions (1) can be rewritten by the infinitely

many unconditional moment functions as follows:

IE[m(y,x,βo)11{x≤ξ}] = 0,∀ξ = (ξ1, · · · , ξk)′ ∈ Rk. (3)

The above moment functions allow for multivariate regressors.

2.2 Test Statistics

The specification test considered in this paper examines infinitely many unconditional mo-

ment functions (3) that are equivalent to the conditional moment restriction (1) and therefore

it is a consistent conditional moment test. To test the moment function IE[m(y,x,βo)11{x≤ξ}]

being equal to zero, it is natural to consider the normalized sample average of the moment

function:

Mn(ξ;βo) :=
1√
n

n∑
t=1

m
(
yi,xi,βo

)
11{xi≤ξ},

with {yi,xi}ni=1 a sequence of random variable, and 11{xi≤ξ} = 1{xi1≤ξ1} · · · 1{xik≤ξk}. The

function m
(
yi,xi,β

)
11{xi≤ξ} is considered the marked empirical process with marks given by

the moment function m. The function Mn is the average of the market empirical processes

with sample size n. Our objective is to test that Mn(ξ;βo) is close to zero or not. If

Mn(xi;βo) is close to zero, then we do not reject the null hypothesis; otherwise, we reject

the null hypothesis and conclude that the conditional moment restriction does not hold.

Since the true parameter βo is unknown, we replace βo by its consistent estimator, β̂n,

and the sample average of the marked empirical processes becomes

Mn(ξ; β̂n) =
1√
n

n∑
i=1

m(yi,xi, β̂n)11{xi≤ξ}.

Now, rewrite the process Mn:

Mn(ξ; β̂n) = Mn(ξ;βo) +
1√
n

n∑
i=1

(
m(yi,xi, β̂n)−m(yi,xi,βo)

)
11{xi≤ξ}.
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If m(yi,xi,β) is once differentiable with first derivative ∇βm(yi,xi,βo), then

Mn(ξ; β̂n) = Mn(ξ;βo) +
1√
n

n∑
i=1

∇βm(yi,xi,βo)(β̂n − βo)11{xi≤ξ} + op(1)

= Mn(ξ;βo) +
√
n(β̂n − βo)

1
n

n∑
i=1

∇βm(yi,xi,βo)11{xi≤ξ} + op(1).

It is seen that Mn(ξ; β̂n) and Mn(ξ;βo) are not asymptotically equivalent due to the

presence of the second term on the right hand side of the second equality. This term is

the estimation effect discussed in Durbin (1973). The second term depends on a model

characteristic that makes the test based on Mn(ξ; β̂n) not asymptotically pivotal; this is

the well know Durbin’s problem. To eliminate the estimation effect, Stute, Thies and Zhu

(1998), Koul and Stute (1999), and Stute and Zhu (2002) use the martingale transformation of

Khmaladze (1981). However, due to the difficulty of having a proper definition of a multitime

parameter martingales, these tests are used for univariate x; see also Bai (2003). Song (2007)

extends the research to multiparameter processes but because a nonparametric estimation of

the conditional moment restriction is required, his test is complicated to compute.

This paper considers a subsampling version of the Mn process. Instead of using the whole

sample of data with sample size n to compute the process, we use a subsample of data with

sample size b to compute the sample average and construct the following process, for b < n:

Mb(ξ; β̂n) :=
1√
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ},

where β̂n can be any
√
n-estimator associated with the model of interest by the whole sample.

Mb permits the following expansion:

Mb(ξ; β̂n) = Mb(ξ;βo) +
1√
b

b∑
i=1

∇βm(yi,xi,βo)(β̂n − βo)11{xi≤ξ} + op(1)

= Mb(ξ;βo) +

√
b

n

√
n(β̂n − βo)

[
1
b

b∑
i=1

∇βm(yi,xi,βo)11{xi≤ξ}

]
+ op(1).

It is interesting to see that if b → ∞, n → ∞ and b/n → 0, and there are some regularity

conditions, then the second term on the right-hand-side of the second equality of the above

equality converges to zero. Thus, Mb(ξ; β̂n) and Mb(ξ;βo) are asymptotically equivalent.

Subsampling the marked empirical process annihilates the estimation effect. Kuan and Lin

(2008) considers a partial sum of the data and eliminate the estimation effect by centering

a sequentially marked empirical process. Let D(Rk) be the space of the cadlag function

on Rk endowed with the Skorohod topology. Here, Mb is in D(Rk). In what follows, let
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⇒ denote the convergence in distribution, and
p−→ denote the convergence in probability.

The following assumptions are sufficient for the weak convergence of the subsampling marked

empirical processes.

[A1] {yi,xi}ni=1 is ergodic and strictly stationary where xi has the continuous distribution

function F and the density function is f .

[A2] (i) IE[m(yi,xi,β)2|xi] <∞,

(ii) IEm(yi,xi,β)4 = κ <∞,

(iii) IE[m(yi,xi,β)4||xi||1+η] <∞, for some η > 0.

[A3] The conditional density fxi|Fi−1
is bounded and continuous, where Fi−1 is the σ algebra

generated by x1, · · · ,xi−1.

[A4] m(·) is once continuously differentiable in a neighborhood βo and satisfies

IE

[
sup
β∈Bo

|∇βm(yi,xi,β)|

]
<∞,

where Bo denotes a neighborhood of βo.

[A5] β̂n is a
√
n-consistent estimator; that is

√
n
(
β̂n − βo

)
= Op(1).

Assumption [A1] permits data with weak dependence. Assumptions in [A2] restrict the

dependence of the moment function. Given [A2] (i), the conditional variance function σ2(xi)

of m(yi,xi,β) is defined with

σ2(u) := var
[
m(yi,xi,β)

∣∣xi = u].

For ξ = (ξ1, · · · , ξk)′ and u = (u1, · · · , uk)′, define

V (ξ) := IE
[
σ2(xi)11{xi≤ξ}

]
=
∫ ξ

−∞
σ2(u)Fx(du),

with
∫ ξ
−∞ :=

∫ ξ1
−∞ · · ·

∫ ξk
−∞. Following Koul and Stute (1999), assumptions [A2](ii) and (iii)

together with [A3] are required to obtain the uniform tightness in the space D[−∞,∞].

Assumption [A4] is a standard smoothness assumption. [A4] can be relaxed to non-smooth

moment function when considering the stochastic equicontiunity of m. Assumption [A5] is

weak and could be applied to most existing estimation method. In the following, we obtain

the weak convergence of Mb.

Theorem 2.1. Under H0 and assumptions [A1]-[A5], if b→∞, n→∞ and b/n→ 0, then

one has:

Mb(ξ; β̂)⇒ B
(
V (ξ)

)
,

where B(·) denotes a Brownain sheet process.
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The limiting distribution of Mb is a centered Gaussian process which is a multi-parameter

Brownian motion process on [0, 1]k with covariance function

V (ξ1 ∧ ξ2) =
∫ ξ1∧ξ2

−∞
σ2(u)F (du),

where
∫ ξ1∧ξ2
−∞ =

∫ ξ11∧ξ21
−∞ · · ·

∫ ξ1k∧ξ2k

−∞ . In particular, when xi is a univariate, the process B

is the standard Brownian motion. The limit of Mb(ξ;βo) and that of Mb(ξ; β̂n) are the

same and the Durbin problem disappears because of the convergence rate of b to infinity

is slower that that of n. In addition, it is seen that V (ξ) plays an important in the test.

Since V (ξ) still depends on the distribution of xi and σ2, the process Mb(ξ; β̂n) is not

asymptotically distribution free. When σ2(xi) = σ2
0 (the conditional homoskedasticity case),

which is a constant, we obtain V (ξ) = σ2
0F (ξ). We follow Koul and Stute (1999) to consider

an estimator of V (ξ):

V̂n(ξ) =
1
n

n∑
i=1

m2(yi,xi,β)11{xi≤ξ}, ξ ∈ R
k.

Tests for H0 can be based on an appropriately scaling of Mb. Consider a consistent estimator

σ̂2
b for σ2

0 in homoskedasticity case. We have the “scale invariant”version of subsampling

marked empirical processes:

M̃b(ξ; β̂n) :=
1√
b
σ̂−1
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ}.

Theorem 2.2. Under H0 and assumptions [A1]-[A5], if b → ∞, n → ∞, b/n → 0 and

σ̂2
b → σ2

0, then one has

M̃b(ξ; β̂n)⇒ B
(
F (ξ)

)
,

with B(·) a standard Brownian sheet.

The computational counterpart of the scaled invariant version of M̃b(ξ; β̂) is considered

as follows:

M̃b(xj ; β̂n) :=
1√
b
σ̂−1
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤xj}, j = 1, · · · , n,

where each realization xj is used as a ξ in the indicator function. Consider two goodness-of-fit

statistics, the Kolmogorov-Smirnov and Cramer-von Mises test statistics:

KSn = sup
xj∈Rk

∣∣M̃b(xj ; β̂n)
∣∣,
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CMn =
1
n

n∑
j=1

M̃b(xj ; β̂n)2.

By Theorem 2.2 and the continuous mapping theorem, for large n, one has, with ω ∈ [0, 1]k

KSn ⇒ sup
ξ∈Rk

∣∣B(F (ξ)
)∣∣ = sup

0≤ω≤1

∣∣B(ω)
∣∣,

and

CMn =
∫ ∞
−∞

M̃b(ξ; β̂n)2F (dξ)⇒
∫ ∞
−∞

B
(
F (ξ)

)2
F (dξ) =

∫ 1

0
B(ω)2dω.

The critical values of the test statistics KSn and CMn can be found in existing literature;

see the book of Shorack and Wellner (1986). It is interesting to note that the proposed test

is asymptotically pivotal and the limiting distribution of the proposed test does not depend

on a data generating process. Therefore, we have the following corollary.

Corollary 2.3. Under all the assumptions in Theorem 2.2.

KSn ⇒ sup
0≤ω≤1

∣∣B(ω)
∣∣,

CMn ⇒
∫ 1

0
B(ω)2dω,

with B(·) the standard Brownian sheet.

3 Power of the Tests

To investigate the power performance of the proposed test, two types of alternatives are

considered. One is the general type of alternatives:

H1 : IE[m(y,x,βo)|x] = µ(x) 6= 0, ∀ ξ = (ξ1, · · · , ξk) ∈ Rk,

and the other is the local alternatives:

HL
1 : IE

[
m(y,x,βo)

∣∣x] =
δ(x)√
b
,

with δ(x) 6= 0. We then have the following theorem.

Theorem 3.1. Assume assumptions [A1]-[A5] hold. Assume also b → ∞, n → ∞ and

b/n→ 0. Therefore:

(i) Under the fixed alternative H1:

M̃b(ξ; β̂n)→∞.
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(ii) Under the local alternatives HL
1 :

M̃b(ξ; β̂n)⇒ B(F (ξ)) + σ−1
0 IE[δ(xi)11{xi≤ξ}].

By Theorem 3.1 and the continuous mapping theorem, we additionally have the following

corollary.

Corollary 3.2. Assume assumptions [A1]-[A5] hold. Assume also b → ∞, n → ∞ and

b/n→ 0. Therefore:

(i) Under the fixed alternative H1:

KSn →∞,

CMn →∞.

(ii) Under the local alternatives HL
1 :

KSn ⇒ sup
ξ∈Rk

∣∣B(F (ξ)) + σ−1
0 IE[δ(xi)11{xi≤ξ}]

∣∣
CMn ⇒

∫ 1

0

(
B(F (ξ)) + σ−1

0 IE[δ(xi)11{xi≤ξ}]
)2
dω.

The first part of Corollary 3.2 gives the consistency of the proposed test and the second

part implies that the proposed test has nontrivial powers against local alternatives at rate

b−1/2. However, there may exist local alternatives at rate n−1/2 as follows.

HL
2 : IE

[
m(y,x,βo)

∣∣x] =
δ(x)√
n
.

We have Theorem 3.3.

Theorem 3.3. Assume assumptions [A1]-[A5] hold. Assume also b → ∞, n → ∞ and

b/n→ 0. Under the local alternatives HL
2 :

M̃b(ξ; β̂n)⇒ B(F (ξ)).

Under the local alternatives HL
2 , the limiting distribution of M̃b(ξ; β̂n) is the same as

that under the null hypothesis; see Theorem 2.1. The proposed test is incapable of detecting

local alternatives at rate n−1/2. Therefore, our test shares the same disadvantage of most

nonparametric tests; see the discussion in Whang (2000) therein. The proposed test has no

local power against this type of alternatives. Thus our test cannot be used in this scenario.
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4 Monte Carlo Simulations

This section reports some simulation results to examine the finite sample performance of the

test statistic KSn. We consider the following null data generating processes (DGPs).

(A) yi = xi1 + ei,

(B) yi = xi1 + 5 + ei,

(C) yi = xi1 + exp(zi) + ei,

(D) yi = xi2 + xi3 + ei,

(E) yi = xi2 + xi3 + 5 + ei,

(F) yi = xi2 + xi3 + exp(zi) + ei.

Here xi1, xi2, xi3 and zi are independent and identically distributed (i.i.d.) N(0, 1) distribu-

tion and ei is i.i.d. N(0, σ2
0) with σ2

0 = 1, 2, 3, 4. The test statistic KSn for one regressor

is:

KS1 = max
j

∣∣∣∣ 1√
b
σ̂−1

1

b∑
i=1

(yi − x′i1β̂1)11{xi1≤xj}

∣∣∣∣,
for DGPs (A), (B) and (C) and a statistic for two regressors:

KS2 = max
j

∣∣∣∣ 1√
b
σ̂−1

2

b∑
i=1

(yi − x′i2β̂2 − x′i3β̂3)11{xi2≤xj1}11{xi3≤xj2}

∣∣∣∣,
for DGPs (D), (E) and (F) where β̂1, β̂2, β̂3 are least square estimates, σ̂2

1 = b−1
∑b

i=1(yi −
x′i1β̂1)2 and σ̂2

2 = b−1
∑b

i=1(yi − x′i2β̂2 − x′i3β̂3)2. In each simulation experiment, the number

of replications is 2000. The significance level is 0.05. We choose different values of b in this

simulation. The choice of b is considered for the formula b = np with p = 0.5, 0.55, · · · , 0.95.

Table 1, given σ2
0 = 1, reports the rejection frequencies of the tests for different values

of n and p. For DGPs (A) and (D), the rejection values are finite sample sizes of the test.

In the column of DGP (A), all values are close to the significance level 0.05 except at the

values of p = 0.5. However, in the column of DGP (D), the proposed test is under-sized for

large p. We can see that when the number of regressors of the regression increases, or if b

increases, then the sizes of the test are lower. For DGPs (B), (C), (E) and (F), the rejection

rates are the finite sample powers of the proposed test. In columns of DGPs (B) and (E)

that have fixed alternatives, the finite sample powers are 1 showing that the test has good

power performances in different values of n and b(orp). In addition, the values on columns of
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DGPs (C) and (F) present that the test performs well when the alternatives are a random

variable. For DGP (C), there are good power performances of the test for large values of p.

When n increases, the powers of the test are closer to 1. For DGP (F), powers are lower for

n = 100, and as n and b(orp) increase, the powers increase. To sum up, the test has correct

sizes for one regressor and is slightly under-sized for two regressors in the regression. When

there are fixed alternatives, the power performances are very good. The powers of the test

increase along with both n and b. Table 2 reports the rejection frequencies of the test for

six DGPs with different σ2
0 and p. The sample size is 500. The finite sample performances

in Table 2 are similar to those in Table 1. Moreover, we find that when the variety of error

term increases, the powers of the test decrease.

5 Conclusions

This paper proposes a consistent conditional moment test based on infinitely many uncondi-

tional moment conditions. The test statistic is a subsampling marked empirical processes and

the Durbin problem is eliminated as the convergence rate of the subsampling size is slower

than that of the whole sample size. We thus obtain an asymptotically pivotal test. The

proposed test is consistent against a general type of alternatives and is powerful against local

alternatives at rates b−1/2. However, our test is not powerful against n−1/2 local alternatives.

In addition, the test performs well in finite sample simulations and the power performances

are good with most values of b.
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Table 1: Rejection frequencies of the conditional moment tests

KS1 KS2

n p (A) (B) (C) (D) (E) (F)

100 0.50 0.076 1.000 0.742 0.057 1.000 0.596

0.55 0.067 1.000 0.817 0.043 1.000 0.661

0.60 0.057 1.000 0.877 0.037 1.000 0.775

0.65 0.048 1.000 0.947 0.038 1.000 0.847

0.70 0.044 1.000 0.977 0.036 1.000 0.919

0.75 0.047 1.000 0.992 0.031 1.000 0.968

0.80 0.049 1.000 0.999 0.024 1.000 0.985

0.85 0.042 1.000 1.000 0.021 1.000 0.995

0.90 0.046 1.000 0.999 0.025 1.000 0.999

0.95 0.041 1.000 1.000 0.018 1.000 0.999

200 0.50 0.063 1.000 0.863 0.046 1.000 0.783

0.55 0.045 1.000 0.937 0.038 1.000 0.867

0.60 0.051 1.000 0.978 0.040 1.000 0.950

0.65 0.053 1.000 0.992 0.031 1.000 0.981

0.70 0.039 1.000 0.997 0.035 1.000 0.990

0.75 0.054 1.000 1.000 0.023 1.000 0.998

0.80 0.048 1.000 1.000 0.028 1.000 1.000

0.85 0.043 1.000 1.000 0.023 1.000 1.000

0.90 0.042 1.000 1.000 0.025 1.000 1.000

0.95 0.049 1.000 1.000 0.022 1.000 1.000

500 0.50 0.068 1.000 0.964 0.057 1.000 0.950

0.55 0.042 1.000 0.989 0.030 1.000 0.982

0.60 0.047 1.000 0.998 0.035 1.000 0.994

0.65 0.044 1.000 0.999 0.036 1.000 0.998

0.70 0.045 1.000 1.000 0.040 1.000 0.999

0.75 0.040 1.000 1.000 0.030 1.000 1.000

0.80 0.055 1.000 1.000 0.028 1.000 1.000

0.85 0.040 1.000 1.000 0.029 1.000 1.000

0.90 0.036 1.000 1.000 0.019 1.000 1.000

0.95 0.035 1.000 1.000 0.028 1.000 1.000

Note: The significant level is 0.05. b = np. The values in the

3rd and 6th columns are the finite sample sizes and the values

in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Table 2: Rejection frequencies of the conditional moment tests

KS1 KS2

σ2
0 p (A) (B) (C) (D) (E) (F)

2 0.50 0.058 1.000 0.906 0.037 1.000 0.862

0.55 0.053 1.000 0.972 0.041 1.000 0.955

0.60 0.043 1.000 0.995 0.036 1.000 0.984

0.65 0.044 1.000 0.999 0.037 1.000 0.998

0.70 0.049 1.000 1.000 0.039 1.000 0.999

0.75 0.044 1.000 1.000 0.029 1.000 1.000

0.80 0.052 1.000 1.000 0.030 1.000 1.000

0.85 0.040 1.000 1.000 0.033 1.000 1.000

0.90 0.040 1.000 1.000 0.022 1.000 1.000

0.95 0.036 1.000 1.000 0.023 1.000 1.000

3 0.50 0.060 1.000 0.843 0.050 1.000 0.797

0.55 0.050 1.000 0.942 0.039 1.000 0.915

0.60 0.054 1.000 0.987 0.037 1.000 0.972

0.65 0.051 1.000 0.999 0.039 1.000 0.994

0.70 0.048 1.000 1.000 0.034 1.000 0.999

0.75 0.037 1.000 1.000 0.033 1.000 1.000

0.80 0.046 1.000 1.000 0.038 1.000 1.000

0.85 0.052 1.000 1.000 0.030 1.000 1.000

0.90 0.040 1.000 1.000 0.023 1.000 1.000

0.95 0.041 1.000 1.000 0.027 1.000 1.000

4 0.50 0.048 1.000 0.776 0.042 1.000 0.703

0.55 0.053 1.000 0.897 0.042 1.000 0.845

0.60 0.044 1.000 0.969 0.037 1.000 0.949

0.65 0.042 1.000 0.992 0.031 1.000 0.988

0.70 0.048 1.000 0.999 0.033 1.000 0.999

0.75 0.046 1.000 1.000 0.035 1.000 1.000

0.80 0.053 1.000 1.000 0.038 1.000 1.000

0.85 0.047 1.000 1.000 0.027 1.000 1.000

0.90 0.043 1.000 1.000 0.024 1.000 1.000

0.95 0.042 1.000 1.000 0.029 1.000 1.000

Note: The significant level is 0.05. b = np. The values in the

3rd and 6th columns are the finite sample sizes and the values

in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.

13



Appendix

Proof of Theorem 2.1. By assumption [A4], the subsampling marked empirical process

Mb permits the Taylor expansion:

1√
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ}

=
1√
b

b∑
i=1

m
(
yi,xi,βo

)
11{xi≤ξ} +

1√
b

b∑
i=1

∇βm
(
yi,xi,βo

)
(β̂n − βo)11{xi≤ξ} + op(1).

Because b/n→ 0 and assumption [A5],

√
b(β̂n − βo) =

√
b

n

√
n(β̂n − βo)

p−→ 0.

In addition, by assumptions [A1] and [A4], Hölder’s inequality and ergodic theorem, we have

the following law of large numbers of ergodic and stationary sequence:

1
b

b∑
i=1

∇βm
(
yi,xi,βo

)
11{xi≤ξ}

p−→ IE
[
∇βm

(
yi,xi,βo

)
11{xi≤ξ}

]
,

we then obtain

1√
b

b∑
i=1

∇βm
(
yi,xi,βo

)
(β̂n−βo)11{xi≤ξ} =

[
1
b

b∑
i=1

∇βm
(
yi,xi,βo

)
11{xi≤ξ}

]
√
b(β̂n−βo)

p−→ 0.

Therefore,

1√
b

b∑
i=1

m
(
yi,xi, β̂

)
11{xi≤ξ} =

1√
b

b∑
i=1

m
(
yi,xi,βo

)
11{xi≤ξ} + op(1).

Mb(ξ; β̂n) and Mb(ξ;βo) are asymptotically equivalent. Estimating parameter β does not

affect the limiting distribution of the statistic and the Durbin problem does not appear.

The process Mb belongs to the Shorohod space D(Rk) and the weak convergence of

Mb(ξ;βo) in the space D(Rk) to a continuous limit is implies by the tightness of Mb and

the finite dimensional convergence of Mb(ξ;βo). In the following, we first follow Bickel

and Wichura (1971), Koul and Stute (1999) and Domı́nguez and Lobato (2004) to show

the tightness of Mb and then the weak convergence of Mb(ξ;βo). Define I1 = (s1, t1] =

×kj=1(s1j , t
1
j ], and I2 = (s2, t2] = ×kj=1(s2j , t

2
j ] be two subsets in Rk. Then I1 and I2 are

neighbor subsets if and only if for some j∗ ∈ {1, 2, · · · , k}, (s1j∗ , t
1
j∗ ] 6= (s2j∗ , t

2
j∗ ], ×kj 6=j∗(s1j , t1j ] =

×kj 6=j∗(s2j , t2j ] and t1j∗ = s2j∗ ; that is they are next to each other and share the j∗th face. Then
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the process Mb indexed by a parameter in Rk has an associated process indexed by the

intervals as follows: for h = 1, 2,

Mb(Ih;β) :=
1√
b

b∑
i=1

m(yi,xi;β)11{xi∈Ih}

=
1∑

e1=0

· · ·
1∑

ek=0

(−1)k−
∑

j=1,··· ,k ejMb(sh1 + e1(th1 − sh1), · · · , shk + ek(thk − shk);β),

which is the increment of Mb around Ih. Let m(yi,xi;β) = mi. Following Bickel and Wichura

(1971, Theorem 3 and example II), if

IE
(
Mb(I1;β)2,Mb(I2;β)2

)
=

1
b2

IE

[ b∑
i=1

mi11{xi∈I1}

]2 [ b∑
i=1

mi11{xi∈I2}

]2
 .

is bounded, then for any λ > 0 and γ > 1,

IP(Mb ≥ λ) ≤ λ−4µ(I1 ∪ I2)γ ,

with some measure µ. The above result asserts that the process Mb is tight.

Let Fi denote the natural filtration. Under H0 and assumption [A1], {mi11{xi≤τ},Fi−1}
is a strictly stationary and ergodic martingale difference sequence. When a subindex appears

once in the summation, the corresponding term is zero by the law of iterated expectation

and the martingale difference property. Moreover, since I1 and I2 are disjoint sets, when

a subindex appears more than twice, the corresponding term is zero. Therefore, similar to

Koul and Stute (1999) and Domı́nguez and Lobato (2004),

IE
(
Mb(I1;β)2,Mb(I2;β)2

)
=

1
b2

IE

 b∑
i=1

m2
i 11{xi∈I1}

 i−1∑
j=1

mj 11{xj∈I2}

2+
1
b2

IE

 b∑
i=1

m2
i 11{xi∈I2}

 i−1∑
j=1

mj 11{xj∈I1}

2 .
The first and the second terms in the above equation are similar and the only difference is

the indexing set Ih; we then focus on the first term. By assumption [A2](i),

1
b2

b∑
i=1

IE

m2
i 11{xi∈I1}

 i−1∑
j=1

mj 11{xj∈I2}

2
=

1
b2

b∑
i=1

IE

σ2(xi,Fi−1)11{xi∈I1}

 i−1∑
j=1

mj 11{xj∈I2}

2
=

1
b2

b∑
i=1

IE

∫
I1

σ2(u,Fi−1)fxi|Fi−1
(u)du

 i−1∑
j=1

mj 11{xj∈I2}

2 .
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By Fubini’s Theorem, the above equation equals

1
b2

b∑
i=1

∫
I1

IE

σ2(u,Fi−1)fxi|Fi−1
(u)

 i−1∑
j=1

mj 11{xj∈I2}

2 du.
Using Cauchy-Schwarz’s inequality, we have

1
b2

b∑
i=1

∫
I1

IE

σ2(u,Fi−1)fxi|Fi−1
(u)

 i−1∑
j=1

mj 11{xj∈I2}

2 du
≤ 1
b2

b∑
i=1

∫
I1

{IE
[
σ2(u,Fi−1)fxi|Fi−1

(u)
]2}1/2

IE

 i−1∑
j=1

mj 11{xj∈I2}

4
1/2
 du.

By Burkholder’s inequality and the moment inequality yield, with some constant C,

IE

 i−1∑
j=1

mj 11{xi∈I2}

4

≤ C IE

 i−1∑
j=1

m2
j 112
{xi∈I2}

2

≤ C(i− 1)2 IE(m4
111{x1∈I2}).

It follows that

1
b2

b∑
i=1

IE

m2
i 11{xi∈I1}

 i−1∑
j=1

mj 11{xj∈I2}

2
≤ 1
b2

b∑
i=1

∫
I1

[{
IE
[
σ2(u,Fi−1)fxi|Fi−1

(u)
]2}1/2 {

C(i− 1)2 IE(m4
111{x1∈I2})

}1/2
]
du

=
1
b2
[
C IE(m4

111{x1∈I2})
]1/2 b∑

i=1

(i− 1)
∫
I1

{
IE
[
σ2(u,Fi−1)fxi|Fi−1

(u)
]2}1/2

du.

IE(m4
111{x1∈I2}) ≤ IE(m4

1) which is bounded by assumption [A2] (ii). In addition, from

Koul and Stute (1999),
∫
I1
{IE[σ2(u)fxi|Fi−1

(u)]2}1/2du is bounded by assumptions [A2](iii)

and [A3]; see more detail discuss therein. Therefore, under H0 and assumptions [A1]–[A3],

the process Mb is tight. Note that our assumption [A2] (ii) and (iii) are similar to the

assumption (A)(a) in Koul and Stute (1999). In Domı́nguez and Lobato (2004), they use

stricter conditions (see, [A7] and [A8]) and Hölder’s inequality to obtain the boundness of

IE(m4
111{x1∈I1}).

Under assumptions [A1] and [A2] (i), and by a central limit theorem for the ergodic

stationary martingale difference sequence, we have for any τ ∈ Rk,

Mb(ξ;βo)⇒ N(0, V (ξ)).
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For ξ1, ξ2 ∈ Rk,

Cov
(
Mb(ξ1;βo),Mb(ξ2;βo)

)
=

1
b

b∑
i=1

IE
[
m(yi,xi;βo)

211{xi≤ξ1}11{xi≤ξ2}
]

p−→
∫ ξ1∧ξ2

−∞
σ2(u)F (du)

= V (ξ1 ∧ ξ2),

where the first equality holds by the property of martingale difference sequence. Since V (ξ)

is nondecreasing and nonnegative, Mb admits a asymptotically distributed as B(V (ξ)), where

B(·) is a standard Brownian sheet. 2

Proof of Theorem 2.2. In this proof, we show that using a consistent estimator σ̂2
b to

replace σ2
0 does not affect the asymptotics of the scale invariant subsampling marked empirical

process. Rewrite the process M̃b(ξ; β̂n) :

1√
b
σ̂−1
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ}

=
(
σ̂−1
b − σ

−1
0

) 1√
b

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ} +

1√
b
σ−1

0

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ}.

Since σ̂−1
b − σ

−1
0 = op(1), and by Theorem 2.1,

b−1/2
b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ} = Op(1),

then

M̃b(ξ; β̂n) =
1√
b
σ−1

0

b∑
i=1

m
(
yi,xi, β̂n

)
11{xi≤ξ} + op(1).

Denote

M̃o
b (ξ,β) :=

1√
b
σ−1

0

b∑
i=1

m
(
yi,xi,β

)
11{xi≤ξ}.

The processes M̃b(ξ; β̂n) and M̃o
b (ξ, β̂n) have the same limiting distribution. In addition, sim-

ilar to the proof of Theorem 2.1, replacing βo by β̂n in M̃o
b does not affected the asymptotics

of M̃o
b . It follows that

M̃b(ξ; β̂n) ≈ M̃o
b (ξ; β̂n) ≈ M̃o

b (ξ;βo), (4)
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and it suffices to focus on the limiting behavior of M̃o
b (ξ;βo). The tightness of Mb can be ob-

tained in Theorem 2.1 as σ2
o is continuous. Since {m

(
yi,xi,β

)
11{xi≤ξ},Fi−1} is a martingale

difference sequence, we then use the central limit theorem for ergodic and stationary martin-

gale difference sequence to obtain the limiting distribution, which is a Gaussian process with

zero mean and for ξ1, ξ2 ∈ Rk,

Cov
(
M̃o
b (ξ1,βo), M̃

o
b (ξ2,βo)

)
=

1
b
σ−2

0

b∑
i=1

IE
[
m(yi,xi;βo)

211{xi≤ξ1}11{xi≤ξ2}
]

p−→
∫ ξ1∧ξ2

−∞
F (du)

= F (ξ1 ∧ ξ2).

Hence, M̃b(ξ; β̂n)⇒ B(F (ξ)), with B a Brownian sheet. 2

Proof of Theorem 3.1. M̃b(ξ; β̂n) and M̃o
b (ξ;βo) are asymptotically equivalent from (4).

It suffices to discuss the limit of M̃o
b (ξ;βo) under two different types of alternatives.

For part (i), rewrite M̃o
b (ξ;βo):

1√
b
σ−1

0

b∑
i=1

m
(
yi,xi,βo

)
11{xi≤ξ}

=
1√
b
σ−1

0

b∑
i=1

[
m
(
yi,xi,βo

)
− µ(xi)

]
11{xi≤ξ} +

1√
b
σ−1

0

b∑
i=1

µ(xi)11{xi≤ξ}.

Under H1 and assumptions [A1]–[A5], by the previous proofs, the first part of the above

equation converges to B(F (ξ)). In addition, if IE|µ(xi)11{xi≤ξ}| < ∞, the probability limit

of b−1/2σ−1
0

∑b
i=1µ(xi)11{xi≤ξ} will be

1√
b
σ−1

0

b∑
i=1

IE[µ(xi)11{xi≤ξ}] =
√
bσ−1

0 IE[µ(xi)11{xi≤ξ}].

As b→∞, M̃o
b (ξ;βo)→∞. Thus

M̃b(ξ; β̂n)→∞.

For part (ii), rewrite M̃o
b (ξ;βo):

1√
b
σ−1

0

b∑
i=1

m
(
yi,xi,βo

)
11{xi≤ξ}

=
1√
b
σ−1

0

b∑
i=1

[
m
(
yi,xi,βo

)
− δ(xi)√

b

]
11{xi≤ξ} +

1
b
σ−1

0

b∑
i=1

δ(xi)11{xi≤ξ}.
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Under HL
1 and assumptions [A1]–[A5], by the previous proofs, the first part of the above equa-

tion converges toB(F (ξ)). If IE|δ(xi)11{xi≤ξ}| <∞, the probability limit of b−1σ−1
0

∑b
i=1 δ(xi)11{xi≤ξ}

will be σ−1
0 IE[δ(xi)11{xi≤ξ}]. Therefore, under HL

1 , M̃b(ξ; β̂n) converges to a Brownian sheet

process plus a non-zero constant term σ−1
0 IE[δ(xi)11{xi≤ξ}]. 2

Proof of Theorem 3.3. Similar to the proof of Theorem 3.1, rewrite M̃o
b (ξ;βo):

1√
b
σ−1

0

b∑
i=1

m
(
yi,xi,βo

)
11{xi≤ξ}

=
1√
b
σ−1

0

b∑
i=1

[
m
(
yi,xi,βo

)
− δ(xi)√

n

]
11{xi≤ξ} +

1√
b
√
n
σ−1

0

b∑
i=1

δ(xi)11{xi≤ξ}.

The probability limit of the second term on the right-hand-side of the above equation will be

1√
b
√
n
σ−1

0

b∑
i=1

δ(xi)11{xi≤ξ} =

√
b√
n

[
σ−1

0

1
b

b∑
i=1

δ(xi)11{xi≤ξ}

]
p−→ 0,

with b/n → 0 and b−1
∑b

i=1 δ(xi)11{xi≤ξ}
p−→ IE[δ(xi)11{xi≤ξ}]. Therefore, M̃b(ξ; β̂n) con-

verges to a Brownian sheet process under bothH0 andHL
2 . 2
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