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1 Introduction

Many economic and econometric models are represented by conditional moment restrictions,
for example, the rational expectation model, the market disequilibrium model, the conditional
probability model, the discrete choice model and the nonlinear simultaneous equations model.
The validity of those model specifications is evaluated by testing the associated moment
conditions. The resulting test is the conditional moment test or M-test which has been
developed by Newey (1985), Tauchen (1985), and White (1987). However, these conditional
moment tests may not be consistent because they check only necessary conditions of the
conditional moment restrictions and there exist alternatives that cannot be detected by these
testing procedures. Therefore, our research focuses on constructing consistent conditional

moment tests.

There is an abundance of literature on constructing conditional moment tests. The non-
parametric tests employ a nonparametric estimator to a parametric conditional moment
function that equals zero under the null. See, for example, Eubank and Spiegelman (1990),
Lewbel (1995), Hong and White (1995), Fan and Li (1996), Li and Wang (1998), Chen
and Fan (1999), Zheng (1998a, 1998b, 2000), Horowitz and Spokoiny (2001), Delgado and
Gonzdalez Manteiga (2001), Li, Hsiao, and Zinn (2003) and Tripathi and Kitamura (2003),
among others. However, the test statistics of nonparametric tests are subjective in choos-
ing smoothing parameters and could be computationally costly. Another approach of the
conditional moment test is based on infinitely many unconditional moment functions with
uncountably many weighted functions indexed by continuous nuisance parameters (Stich-
combe and White, 1998). Therefore, a consistent conditional moment test can be obtained
by checking these orthogonality functions. Bierens (1982, 1984, 1990), de Jong (1996), Bierens
and Ploberger (1997), and Bierens and Ginther (2001) choose the exponential function while
Stute (1997), Stute, Thies and Zhu (1998), Koul and Stute (1999), and Stute and Zhu (2002)
use the indicator function as the weight functions. The former tests are henceforth called the

Bierens test while the latter tests are the the Stute test.

It is noted that both the Bierens and the Stute tests are not asymptotically pivotal in
general; that is their limiting distributions depend on model characteristics and critical val-
ues cannot be tabulated. For example, the auxiliary nuisance parameters in the exponential
weight function of the Bierens test lead to the limiting distributions depending on the data
generating process. Although Bierens and Ploberger (1997) derived case-independent upper
bounds of the critical values to solve this problem, their test may be too conservative in
practice. The Stute test is also not asymptotically pivotal because of the estimation effects

(Durbin, 1973) and it is case dependent. Stute, Gonzalez Manteiga and Presedo Quindimil



(1998), Whang (2000, 2001, 2004), and Dominguez and Lobato (2006) try to avoid the prob-
lem by using the bootstrap to approximate the limiting distributions. Stute, Thies and Zhu
(1998), Koul and Stute (1999) and Stute and Zhu (2002) employe the martingale transforma-
tion of Khmaladze (1981) to obtain asymptotically distribution-free test statistics. However,
due to the difficulty of having a proper definition of a multitime parameter martingales, these
tests, except for Song (2007), cannot be carried out with multivariate regressors. Note that
in Song (2007), the nonparametric estimation of the conditional moment function is required
but a high dimensional nonparametric estimation is very complicated to compute. Kuan and
Lin (2008) propose a test which centers the estimation effect out by an average of empirical
processes and thus obtained an asymptotically pivotal test. Their test can be applied to
multivariate regressor cases and the limiting distribution is a sup-norm of a multi-parameter

Kiefer type process.

This paper proposes a consistent conditional moment test by checking an infinite set of
unconditional moment conditions with indicator weight functions. The test statistic is based
on the subsampling marked empirical process with sample size b instead of the whole size
n such that b < n. The subsampling, investigated by Politis and Romano (1994) and Poli-
tis, Romano and Wolf (1999) is a method of estimating the distribution of an estimator or
test statistic by drawing subsamples from the original data. Existing studies in the litera-
ture include Andrews and Guggenberger (2005), Chernozhukov and Ferndndes-Val (2005),
Guggenberger and Wolf (2004), Hong and Scaillet (2006), Linton, Massoumi and Whang
(2005) and Whang (2004). The subsampling method has not been used to construct the test
statistics, which is done in this article. Other advantages of this paper are: (i) Instead of
computing the sample average of the conditional moment function with the whole sample,
the test statistic is obtained by the subsampling marked empirical process. The estimation
effect disappears when the relative sample size of subsampling to that of the whole sample is
zero asymptotically. Therefore, the proposed test does not suffer from the Durbin problem
and is asymptotically pivotal. (ii) The present paper differs from the Stute test in that they
use a martingale transformation technique which is applied to the model with a univariate
regressor, and the test subsamples the marked empirical processes and can be applied to
models with multivariate regressors. (iii) Unlike the tests using nonparametric smoothing
methods, the proposed test therein avoids the user-chosen smoothing methodology. (iv) The
test statistic can be computed using any /n-consistent estimator and different estimation
methods can be applied. (v) The proposed test does not use the bootstrap, the martingale
transformation, or the nonparametric method, resulting in significant simplifications in com-
puting the test statistics. One disadvantage of our test is that it is powerful against local

1/2

alternatives with rates b=/, but the proposed test is incapable of detecting local alterna-



—1/2_ Our test shares the same disadvantage of most nonparametric tests. The

tives at rate n
Monte Carlo simulations show that the proposed test has good finite sample performances

and the test is robust with respect to different values of b.

This paper is arranged as follows. Section 2 presents the conditional moment restriction
and the proposed test. Section 3 shows the consistency of the test and the asymptotic behavior
under different local alternatives. Section 4 shows the Monte carlo simulation results and

follows the conclusions in section 5. All proofs are given in the Appendix.

2 A New Test

2.1 Conditional Moment Restrictions

Consider general conditional moment restrictions

E[m(y, z,8,)|x] = 0, (1)

where IE[-|x] denotes the expectation conditional on the information set of & and m(-) is a
function on data, and {y,x} is a sequence of random variables with © = (x1,---,2%)" and
parameters 8 € B with B € R*. The conditional moment restrictions can be obtained
from existing models such as the parametric nonlinear regression models where m(y,x, 3,)
is the difference between y and g(x’, 3), with ¢g(-) a nonlinear function. To test the condition
moment restrictions, the null and alternative hypotheses are as follows. The null hypothesis

is the conditional moment function being equal to zero:
Hy : P{E(m(y,z,83,)|x) =0} =1, for some 3, € B,

against the alternative hypothesis is, for all 3 € B, ]E(m(y,w,,@)‘a:) # 0 with a positive
probability:

H;: ]P{E(m(y,m,ﬁ)|:c) = 0} <1, for all 8 € B,

with B € R" a compact set.

As has been shown by Stinchcombe and White (1998), the conditional moment condition

(1) equals infinitely many unconditional moment functions
E[m(y, z, B,)w(x, )] = 0,V€ € R, (2)

where w(-) is an infinite set of weights indexed by continuous parameters & and w(-) may be
any analytic function that is not polynomial. Therefore, testing (2) constructs a consistent

conditional moment test. For example, Bierens (1982, 1984, 1990), de Jong (1996) and Bierens



and Ploberger (1997) and Bierens and Ginther (2001) use the exponential weighted function
w(x, &) = exp(x’€) for their integrated conditional moment test. Stute (1997), Stute, Thies
and Zhu (1998), Koul and Stute (1999) and Stute and Zhu (2002) take the indicator function

w(@, ) = La<ey = La<ar) - Lapzen)

where 14 denotes the indicator function of even A. The present paper implements the indi-
cator function and the conditional moment restrictions (1) can be rewritten by the infinitely

many unconditional moment functions as follows:

E[m(y, @, 8,) L{z<gy] = 0,Y€ = (&1, ,&) € R (3)

The above moment functions allow for multivariate regressors.

2.2 Test Statistics

The specification test considered in this paper examines infinitely many unconditional mo-
ment functions (3) that are equivalent to the conditional moment restriction (1) and therefore
it is a consistent conditional moment test. To test the moment function IE[m(y, x, 8,) 1{z<¢)]
being equal to zero, it is natural to consider the normalized sample average of the moment

function:
(£ /80 . Z yhxhﬁo ]1{2131<£}7

with {y;,z;}]_; a sequence of random variable, and 1z, <¢y = 1ga, <¢;}*** Lizi<e,}- The
function m(yi, x;, B) 1(4,<¢) is considered the marked empirical process with marks given by
the moment function m. The function M, is the average of the market empirical processes
with sample size n. Our objective is to test that M, (&;3,) is close to zero or not. If
M, (xi; B,) is close to zero, then we do not reject the null hypothesis; otherwise, we reject

the null hypothesis and conclude that the conditional moment restriction does not hold.

Since the true parameter 3, is unknown, we replace 3, by its consistent estimator, ﬁn,

and the sample average of the marked empirical processes becomes

M,(&;8,) = fzm yzamuﬂ )]l{:z:1<§}

Now, rewrite the process M,,:

n

1 N
+ % Z (m(yla Li, ﬁn) - m(y“ Li, '80)) ]I»{:Z:ZSE}

i=1

M, (&;8,) = Mn(&;8,)



If m(y;, x;, B) is once differentiable with first derivative Vgm(y;, z;, 3,), then
. 1 & .
Mn(ﬁ» /Bn) = Mn(& Bo) + % Z vﬁm(yla L, ﬁo)(ﬂn - Bo) ]L{aleE} + Op(l)
i=1

n
= Ma(&8,) + VB, ~ B Vamly @i, 8, ¢y + 0p(1).
i=1

It is seen that M,(&;3,) and M,(&;3,) are not asymptotically equivalent due to the
presence of the second term on the right hand side of the second equality. This term is
the estimation effect discussed in Durbin (1973). The second term depends on a model
characteristic that makes the test based on Mn(g;,@n) not asymptotically pivotal; this is
the well know Durbin’s problem. To eliminate the estimation effect, Stute, Thies and Zhu
(1998), Koul and Stute (1999), and Stute and Zhu (2002) use the martingale transformation of
Khmaladze (1981). However, due to the difficulty of having a proper definition of a multitime
parameter martingales, these tests are used for univariate x; see also Bai (2003). Song (2007)
extends the research to multiparameter processes but because a nonparametric estimation of

the conditional moment restriction is required, his test is complicated to compute.

This paper considers a subsampling version of the M,, process. Instead of using the whole
sample of data with sample size n to compute the process, we use a subsample of data with
sample size b to compute the sample average and construct the following process, for b < n:

My(&;B,,) = — m(yi,wz'ﬁn) 1ip,<e}s

>
-
(wpl
o
||M@
5

where fin can be any /n-estimator associated with the model of interest by the whole sample.

Mj, permits the following expansion:

Mb(EaBn) Mb(& 160 Zv,@m ywxlvﬁo)(ﬁ ﬁo)l{wiﬁﬁ} +OP(1)

1
My(€:8,) \f Va(B, - B,) [b;vgm(yi,xi,[io)n{w + op(1)

It is interesting to see that if b — oo, n — oo and b/n — 0, and there are some regularity
conditions, then the second term on the right-hand-side of the second equality of the above
equality converges to zero. Thus, My(&; Bn) and My(&;3,) are asymptotically equivalent.
Subsampling the marked empirical process annihilates the estimation effect. Kuan and Lin
(2008) considers a partial sum of the data and eliminate the estimation effect by centering
a sequentially marked empirical process. Let D(Rk) be the space of the cadlag function
on RF endowed with the Skorohod topology. Here, M, is in D(RF). In what follows, let



= denote the convergence in distribution, and -2 denote the convergence in probability.
The following assumptions are sufficient for the weak convergence of the subsampling marked

empirical processes.

[A1l] {yi,x;}}', is ergodic and strictly stationary where x; has the continuous distribution

function F' and the density function is f.
[A2] (i) E[m(yi,z:, 8)*|zi] < oo,
(it) Em(yi, x;, B)* = K < o0,
(iii) E[m(y:, i, B)*||xs| |17 < oo, for some 1 > 0.

[A3] The conditional density fg,r, , is bounded and continuous, where F;_1 is the o algebra

generated by x1,--- ,x;_1.

[A4] m(-) is once continuously differentiable in a neighborhood 3, and satisfies

E sup |vﬁm(yl7ml713)| < 00,
BeB,

where B, denotes a neighborhood of 3,.
[A5] B, is a \/n-consistent estimator; that is \/ﬁ(,@n —B,) = 0p(1).

Assumption [A1l] permits data with weak dependence. Assumptions in [A2] restrict the
dependence of the moment function. Given [A2] (i), the conditional variance function o?(a;)
of m(y;, i, 3) is defined with

o?(u) == var [m(yi,a:i,ﬁ)|:v,; = ul.

For & = (&, -+ ,&) and w = (uq,- -+ ,ug)’, define
3
V() :=E [02(931-)][{%&}] :/ o?(u)Fp(du),

with f_goo = ffloo e ff’;o . Following Koul and Stute (1999), assumptions [A2](ii) and (iii)
together with [A3] are required to obtain the uniform tightness in the space D[—o0,00].
Assumption [A4] is a standard smoothness assumption. [A4] can be relaxed to non-smooth
moment function when considering the stochastic equicontiunity of m. Assumption [A5] is
weak and could be applied to most existing estimation method. In the following, we obtain

the weak convergence of M.

Theorem 2.1. Under Hy and assumptions [A1]-[A5], if b — oo, n — oo and b/n — 0, then

one has:

My(&;8) = B(V(€)),

where B(-) denotes a Brownain sheet process.



The limiting distribution of M, is a centered Gaussian process which is a multi-parameter

Brownian motion process on [0, 1]¥ with covariance function

where ffég&z = fflolo/\gm fflo’;/\g%. In particular, when x; is a univariate, the process B
is the standard Brownian motion. The limit of Mj(&;3,) and that of Mb(ﬁ;Bn) are the
same and the Durbin problem disappears because of the convergence rate of b to infinity
is slower that that of n. In addition, it is seen that V(&) plays an important in the test.
Since V(£) still depends on the distribution of @; and o2, the process My(&;3,) is not
asymptotically distribution free. When o%(z;) = 03 (the conditional homoskedasticity case),
which is a constant, we obtain V(€) = 03 F(¢). We follow Koul and Stute (1999) to consider
an estimator of V' (§):

1 o ,
Vn(E) = E zmz(yi,$i,,3)l{mi<£}, EER.
1=
Tests for Hy can be based on an appropriately scaling of M. Consider a consistent estimator
Ug for o2 in homoskedasticity case. We have the “scale invariant”version of subsampling

marked empirical processes:

b

(€ /Bn = —O‘b ~1 Zm yz’mlvﬁn ]I‘{mz<§}

Theorem 2.2. Under Hy and assumptions [A1]-[A5], if b — oo, n — oo, b/n — 0 and

62 — o, then one has

My(&;B,) = B(F(€)),

with B(+) a standard Brownian sheet.

The computational counterpart of the scaled invariant version of Mb(E ; ﬁ) is considered

as follows:

~ N 1
My(xj;8,) == %O’b - E m yuwz:/g )]L{:E,<mj} J= L
i=1

where each realization x; is used as a & in the indicator function. Consider two goodness-of-fit

statistics, the Kolmogorov-Smirnov and Cramer-von Mises test statistics:

)

KS, = sup |My(zj;3,)
inGRk




1 o— -~ .
M, = — E My(x;: 2,
C anI b(a:jvﬁn)

By Theorem 2.2 and the continuous mapping theorem, for large n, one has, with w € [0, l]k

KS,, = sup ‘B(F(E))‘ = sup ‘B(w)!,
¢cRF 0<w<1

and
00 o) 1
oM, = | Wi, Fe) = [ B(FE)FE) = | Blw)dw.

The critical values of the test statistics K.S,, and CM,, can be found in existing literature;
see the book of Shorack and Wellner (1986). It is interesting to note that the proposed test
is asymptotically pivotal and the limiting distribution of the proposed test does not depend

on a data generating process. Therefore, we have the following corollary.

Corollary 2.3. Under all the assumptions in Theorem 2.2.

KS, = sup ’B(w)
0<w<1

)

1
CMn;s/ B(w)?dw,
0

with B(-) the standard Brownian sheet.

3 Power of the Tests

To investigate the power performance of the proposed test, two types of alternatives are

considered. One is the general type of alternatives:

H1 : ]E[m(y7x760)’$] = [,I,(IB) 7é 07 Vf = (617"' 7§k) € Rk7

and the other is the local alternatives:

HE s B2, 8))] = © 7

with §(x) # 0. We then have the following theorem.

Theorem 3.1. Assume assumptions [A1]-[A5] hold. Assume also b — oo, n — oo and
b/n — 0. Therefore:

(i) Under the fized alternative Hy:



(ii) Under the local alternatives HE:

My (& B,) = B(F(€)) + o ' E[6(2i) Lz, <¢)].

By Theorem 3.1 and the continuous mapping theorem, we additionally have the following

corollary.

Corollary 3.2. Assume assumptions [A1]-[A5] hold. Assume also b — oo, n — oo and
b/n — 0. Therefore:

(i) Under the fized alternative H;:
KS, — oo,
CM, — oo.

(ii) Under the local alternatives H :

KS, = sup |B(F(£)) + 05 " E[5(2:) 1 {z,<¢]]
(ERF

1
CMn:>/O (B(F(g))+051]E[5(mi)]1{mi§5}])2dw.

The first part of Corollary 3.2 gives the consistency of the proposed test and the second
part implies that the proposed test has nontrivial powers against local alternatives at rate
b~1/2. However, there may exist local alternatives at rate n~/2 as follows.

(z)
L
Hy : E[m(yvmaﬁo)‘m] = W
We have Theorem 3.3.

Theorem 3.3. Assume assumptions [A1]-[A5] hold. Assume also b — oo, n — oo and

b/n — 0. Under the local alternatives H¥ :

My(&; B,) = B(F(€)).

Under the local alternatives HZ, the limiting distribution of Mb(f,ﬁn) is the same as
that under the null hypothesis; see Theorem 2.1. The proposed test is incapable of detecting

local alternatives at rate n—1/2

. Therefore, our test shares the same disadvantage of most
nonparametric tests; see the discussion in Whang (2000) therein. The proposed test has no

local power against this type of alternatives. Thus our test cannot be used in this scenario.



4 Monte Carlo Simulations

This section reports some simulation results to examine the finite sample performance of the

test statistic K.S,. We consider the following null data generating processes (DGPs).
(A) yi = i1 + e,
(B) yi =zi1 +5+e,
(C) yi = wi1 +exp(z;) + e,
(D) i = zi2 + i3 + €3,
(E) yi =22 + i3 + 5+ e
(F) y; = xio + wi3 + exp(z;) + €.

Here z;1, 2, ¢j3 and z; are independent and identically distributed (i.i.d.) N(0,1) distribu-
tion and e; is i.i.d. N(0,03) with 03 = 1,2,3,4. The test statistic K S, for one regressor
is:

KS, = max —0112 1151 ]1{z21<xj}

for DGPs (A), (B) and (C) and a statistic for two regressors:

b

1 R .
VAL " i — 2B — 20388) Uiayy <) Waig<ay) |

K S5 = max
J .
i=1

for DGPs (D), (E) and (F) where By, B2, B3 are least square estimates, 62 = b1 Zle(yi -
x;131)2 and 63 = b1 Zi-’:l(yi — xbﬁg - x§333)2. In each simulation experiment, the number
of replications is 2000. The significance level is 0.05. We choose different values of b in this

simulation. The choice of b is considered for the formula b = nP with p = 0.5,0.55,---,0.95.

Table 1, given 03 = 1, reports the rejection frequencies of the tests for different values
of n and p. For DGPs (A) and (D), the rejection values are finite sample sizes of the test.
In the column of DGP (A), all values are close to the significance level 0.05 except at the
values of p = 0.5. However, in the column of DGP (D), the proposed test is under-sized for
large p. We can see that when the number of regressors of the regression increases, or if b
increases, then the sizes of the test are lower. For DGPs (B), (C), (E) and (F), the rejection
rates are the finite sample powers of the proposed test. In columns of DGPs (B) and (E)
that have fixed alternatives, the finite sample powers are 1 showing that the test has good

power performances in different values of n and b(orp). In addition, the values on columns of

10



DGPs (C) and (F) present that the test performs well when the alternatives are a random
variable. For DGP (C), there are good power performances of the test for large values of p.
When n increases, the powers of the test are closer to 1. For DGP (F), powers are lower for
n = 100, and as n and b(orp) increase, the powers increase. To sum up, the test has correct
sizes for one regressor and is slightly under-sized for two regressors in the regression. When
there are fixed alternatives, the power performances are very good. The powers of the test
increase along with both n and b. Table 2 reports the rejection frequencies of the test for
six DGPs with different 0 and p. The sample size is 500. The finite sample performances
in Table 2 are similar to those in Table 1. Moreover, we find that when the variety of error

term increases, the powers of the test decrease.

5 Conclusions

This paper proposes a consistent conditional moment test based on infinitely many uncondi-
tional moment conditions. The test statistic is a subsampling marked empirical processes and
the Durbin problem is eliminated as the convergence rate of the subsampling size is slower
than that of the whole sample size. We thus obtain an asymptotically pivotal test. The
proposed test is consistent against a general type of alternatives and is powerful against local
alternatives at rates b—1/2. However, our test is not powerful against n~1/2 local alternatives.
In addition, the test performs well in finite sample simulations and the power performances

are good with most values of b.
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Table 1: Rejection frequencies of the conditional moment tests

KSl KSQ
np (A B (© O (E (F

100 0.50 0.076 1.000 0.742 0.057 1.000 0.596
0.55 0.067 1.000 0.817 0.043 1.000 0.661
0.60 0.057 1.000 0.877 0.037 1.000 0.775
0.65 0.048 1.000 0.947 0.038 1.000 0.847
0.70 0.044 1.000 0.977 0.036 1.000 0.919
0.75 0.047 1.000 0.992 0.031 1.000 0.968
0.80 0.049 1.000 0.999 0.024 1.000 0.985
0.85 0.042 1.000 1.000 0.021 1.000 0.995
0.90 0.046 1.000 0.999 0.025 1.000 0.999
0.95 0.041 1.000 1.000 0.018 1.000 0.999

200 0.50 0.063 1.000 0.863 0.046 1.000 0.783
0.55 0.045 1.000 0.937 0.038 1.000 0.867
0.60 0.051 1.000 0.978 0.040 1.000 0.950
0.65 0.053 1.000 0.992 0.031 1.000 0.981
0.70 0.039 1.000 0.997 0.035 1.000 0.990
0.75 0.054 1.000 1.000 0.023 1.000 0.998
0.80 0.048 1.000 1.000 0.028 1.000 1.000
0.85 0.043 1.000 1.000 0.023 1.000 1.000
0.90 0.042 1.000 1.000 0.025 1.000 1.000
0.95 0.049 1.000 1.000 0.022 1.000 1.000

500 0.50 0.068 1.000 0.964 0.057 1.000 0.950

0.55 0.042 1.000 0.989 0.030 1.000 0.982

0.60 0.047 1.000 0.998 0.035 1.000 0.994

0.65 0.044 1.000 0.999 0.036 1.000 0.998

0.70 0.045 1.000 1.000 0.040 1.000 0.999

0.75 0.040 1.000 1.000 0.030 1.000 1.000

0.80 0.055 1.000 1.000 0.028 1.000 1.000

0.85 0.040 1.000 1.000 0.029 1.000 1.000

0.90 0.036 1.000 1.000 0.019 1.000 1.000

0.95 0.035 1.000 1.000 0.028 1.000 1.000
Note: The significant level is 0.05. b = nP. The values in the
3rd and 6th columns are the finite sample sizes and the values
in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.

12



Table 2: Rejection frequencies of the conditional moment tests

KS KS,y

o0 p (A @B (© @O ([E) (F

2 0.50 0.058 1.000 0.906 0.037 1.000 0.862
0.55 0.053 1.000 0.972 0.041 1.000 0.955
0.60 0.043 1.000 0.995 0.036 1.000 0.984
0.65 0.044 1.000 0.999 0.037 1.000 0.998
0.70 0.049 1.000 1.000 0.039 1.000 0.999
0.75 0.044 1.000 1.000 0.029 1.000 1.000
0.80 0.052 1.000 1.000 0.030 1.000 1.000
0.85 0.040 1.000 1.000 0.033 1.000 1.000
0.90 0.040 1.000 1.000 0.022 1.000 1.000
0.95 0.036 1.000 1.000 0.023 1.000 1.000

3 050 0.060 1.000 0.843 0.050 1.000 0.797
0.55 0.050 1.000 0.942 0.039 1.000 0.915
0.60 0.054 1.000 0.987 0.037 1.000 0.972
0.65 0.051 1.000 0.999 0.039 1.000 0.994
0.70 0.048 1.000 1.000 0.034 1.000 0.999
0.75 0.037 1.000 1.000 0.033 1.000 1.000
0.80 0.046 1.000 1.000 0.038 1.000 1.000
0.85 0.052 1.000 1.000 0.030 1.000 1.000
0.90 0.040 1.000 1.000 0.023 1.000 1.000
0.95 0.041 1.000 1.000 0.027 1.000 1.000

4 0.50 0.048 1.000 0.776 0.042 1.000 0.703

0.55 0.053 1.000 0.897 0.042 1.000 0.845

0.60 0.044 1.000 0.969 0.037 1.000 0.949

0.65 0.042 1.000 0.992 0.031 1.000 0.988

0.70 0.048 1.000 0.999 0.033 1.000 0.999

0.75 0.046 1.000 1.000 0.035 1.000 1.000

0.80 0.053 1.000 1.000 0.038 1.000 1.000

0.85 0.047 1.000 1.000 0.027 1.000 1.000

0.90 0.043 1.000 1.000 0.024 1.000 1.000

0.95 0.042 1.000 1.000 0.029 1.000 1.000
Note: The significant level is 0.05. b = nP. The values in the
3rd and 6th columns are the finite sample sizes and the values
in the 4th, 5th, 7th and 8th columns are the finite sample

powers of the proposed test.
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Appendix

Proof of Theorem 2.1. By assumption [A4], the subsampling marked empirical process

My, permits the Taylor expansion:

y’wwl?ﬁ ]]‘{wzgﬁ}

||M@

b
72 m(yi, i, B, 1{m2<5}+\[2vgm (v, i, 8,) (B, — Bo) Lia,<gy + 0p(1).

Because b/n — 0 and assumption [A5],

n - 160) = \/E\/E(Bn - 160) L) 0.

In addition, by assumptions [A1] and [A4], Holder’s inequality and ergodic theorem, we have

the following law of large numbers of ergodic and stationary sequence:

b
1
g Z yuw’bvﬁ )]l{:v <&} —> E [vﬁm(ywwlvﬁ )l{wz<§}]

we then obtain

b b
\}B Z vﬂm(yla miaﬂo) (/én_/go)]l{mlgﬁ} = %Zvﬁm(yhmzalgo) ]l{wlﬁg} \/E(Bn_ﬂo) L 0
i=1

i=1

Therefore,

b b
1 A 1
—= > (Y, i, B) Lm<ey = —= ) m (i, i, B,) L, <e) + 0p(1).
> > ”

Mb(ﬁ;Bn) and M(&; B,) are asymptotically equivalent. Estimating parameter 3 does not

affect the limiting distribution of the statistic and the Durbin problem does not appear.

The process M belongs to the Shorohod space D(Rk) and the weak convergence of
My(€&;3,) in the space D(RF) to a continuous limit is implies by the tightness of M, and
the finite dimensional convergence of My(&;3,). In the following, we first follow Bickel
and Wichura (1971), Koul and Stute (1999) and Dominguez and Lobato (2004) to show
the tightness of M, and then the weak convergence of My(¢;3,). Define I = (s!,t!] =
x;‘?:l( jl, J] and I, = (s2,t%] = x?zl(sj,tf] be two subsets in R*. Then I; and I are
neighbor subsets if and only if for some j* € {1,2,--- ,k}, (s st ] # (83 *,tQ ], x;?#j (s],tj]

x?# (s],tf] and tl sg*; that is they are next to each other and share the j*th face. Then

14



the process M, indexed by a parameter in RF has an associated process indexed by the

intervals as follows: for h =1, 2,

b
Z yz,xuﬂ ]I-{:lzzelh}

i:

My(In; B) =

1
o DR Ml b ea(th =)o enlt] = o),

I
s sx

which is the increment of M}, around Ij,. Let m(y;, ;; 3) = m;. Following Bickel and Wichura
(1971, Theorem 3 and example II), if

b 21 2
1
E (My(11; 8)°, My(I>; B)*) = 15 B [Z ml-n{mieh}] [Z mil{miem]
i=1 i=1
is bounded, then for any A > 0 and v > 1,
P(M, > \) < A\l UL)7,

with some measure . The above result asserts that the process M, is tight.

Let F; denote the natural filtration. Under Hy and assumption [A1], {m; 1z, <+, Fi-1}
is a strictly stationary and ergodic martingale difference sequence. When a subindex appears
once in the summation, the corresponding term is zero by the law of iterated expectation
and the martingale difference property. Moreover, since I; and Is are disjoint sets, when
a subindex appears more than twice, the corresponding term is zero. Therefore, similar to
Koul and Stute (1999) and Dominguez and Lobato (2004),

E (My(Ii; 8), My(I>; B)%)
2 b i— 2

b i—
1
§ :m?]l{ac,-ell} E mj]l{wjéfz} + b72]E E m?]l{w,-elg} E mj]l{w]-ell}
i=1 j= i=1 j=1

The first and the second terms in the above equation are similar and the only difference is

the indexing set I; we then focus on the first term. By assumption [A2](i),

2
i—1
b2 Z E m; ]I-{:I:ZEH} ZmJ ]I'{‘E]GI2}
7j=1
_ , 2
1 b 2 l—].
= Z E|o (:ci,fi_1)]1{wie11} ij]l{ijb}
i=1 i J=1
L r i1 2
=n Y E /] o2 (w, Fic1) fagi s (W) | Y mylg er,y
=1 |/h j=1
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By Fubini’s Theorem, the above equation equals

2

b

1

()22/[ E 0'2( fml\]-} 1 Zm]]l{mjelg} du.
=1 1

Using Cauchy-Schwarz’s inequality, we have

2
b
1
2 [ B o ) ey Zmﬂ{mgeb} du
=1
, 45 1/2
1 b ) ) 1/2 i—1
51,22/] {E[U (u, Fio1) fay 7y (w)] } E Y mjlgen du.
i=17h j=1

By Burkholder’s inequality and the moment inequality yield, with some constant C,

4 2
- 1—1
> omilimeny | SOE (Y mitl,cpy | <0G — 1) Emilgen).
— =
It follows that
2
1—1
b2 Z]E m ]l{:czell} Zm]]l{il:jelz}
=1 7=1
1 9 2\ 1/2 . 2 4 1/2
< b72 Z I {IE [U (u’ﬂfl)fmi|fi—1(u)] } {C(Z - 1) E(ml]l{mleb})} du
i=1 1

b
i (OB ) 3261 [ (B[ o) o 0]}t

i=1 h
E(mi 1z ecr,)) < E(m]) which is bounded by assumption [A2] (ii). In addition, from
Koul and Stute (1999), fIl{]E[JQ(u)fm”fFl(u)}Q}l/Qdu is bounded by assumptions [A2](iii)
and [A3]; see more detail discuss therein. Therefore, under Hp and assumptions [A1]-[A3],
the process M, is tight. Note that our assumption [A2] (ii) and (iii) are similar to the
assumption (A)(a) in Koul and Stute (1999). In Dominguez and Lobato (2004), they use
stricter conditions (see, [A7] and [A8]) and Hoélder’s inequality to obtain the boundness of

E(mzll]l{wléh})'

Under assumptions [Al] and [A2] (i), and by a central limit theorem for the ergodic

stationary martingale difference sequence, we have for any 7 € RF,

My(&; B,) = N(0,V(£)).

16



For &,,&, € RF,
Cov (My(€138,), My(€3 B,))
= 221): I [m(yi, @i; B,)" Lz, <¢,} Lai<e,)]
2, / ¥ 2wy F(du)

= V(&1 N &),

where the first equality holds by the property of martingale difference sequence. Since V(&)
is nondecreasing and nonnegative, M}, admits a asymptotically distributed as B(V (§)), where

B(-) is a standard Brownian sheet. O

Proof of Theorem 2.2. In this proof, we show that using a consistent estimator 63 to
replace o3 does not affect the asymptotics of the scale invariant subsampling marked empirical

process. Rewrite the process My(&; Bn) :

b
&l)—lZm Yi, i, 3 ]l{ﬂcz<$}
i=1

b

b
1 _ .
= (6" — oy Z (i, @i, B, l{miﬁﬁ}+ﬁgﬂlzm(%vmiu@n)l{wiﬁg}'

i=1

Since 6, ' — o' = 0p(1), and by Theorem 2.1,

1/22 y“:DZ, ]l{ml<§} o) (1),

then

. 1 b .
Mb(S?IBTL) = 70-_1 m(ylawlwﬁn) 1 x; < +o (1)
Vb 0 ; {mi<€} T Y

5 1 b
My (§,8) := %%—1 Zm(yz, mi,ﬁ) ]l{acigg}-
i=1

The processes My(&; 3,) and M (€, ,,) have the same limiting distribution. In addition, sim-
ilar to the proof of Theorem 2.1, replacing 3, by ﬁn in Mé’ does not affected the asymptotics
of My. Tt follows that

My(&:B,) = ML(&; B,) =~ M{(€;8,), (4)
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and it suffices to focus on the limiting behavior of Mé’ (&;3,). The tightness of M, can be ob-

2

tained in Theorem 2.1 as o is continuous. Since {m(yi, x;, B) Lip,<e}s Fi—1} is a martingale

difference sequence, we then use the central limit theorem for ergodic and stationary martin-
gale difference sequence to obtain the limiting distribution, which is a Gaussian process with

zero mean and for &;,&, € RF,

COV(M;<£1,ﬂO>, 16,6, )
*O’OQZ]E (Yir i Bo)* Vw <,y Limi<ey})

» 51/\52
— / F(du)

= F(& N &)
Hence, My(&; 3,) = B(F(£)), with B a Brownian sheet. O

Proof of Theorem 3.1. M,(¢;3,) and Mg’(f,ﬁo) are asymptotically equivalent from (4).
It suffices to discuss the limit of Mg’ (&; B,) under two different types of alternatives.

For part (i), rewrite Mg (&;3,):

b
I
700 Zm(%,iﬁi,ﬂo)l{ <€)
Vb i=1 ’
-1 : 1 b
_70—0 Z yz,$17/80 ( z)] ]l{migg}—F%Uo Z/“l’(xi)]l{wiﬁi}'

i=1

Under H; and assumptions [A1]-[A5], by the previous proofs, the first part of the above
equation converges to B(F(§)). In addition, if I[u(x;) 1z,<¢| < 0o, the probability limit
of b=12651 320 | p(@i) 1 g, <y will be

1 b
%00_1 > E(p(@i) (g, <g] = Vooy "Elw(w:) 1iz,<e)].

i=1
As b — oo, MP(&;3,) — oo. Thus

Mb(g; Bn) — Q.
For part (i), rewrite Mg (&; 3,):
1 b
—1

—=0 m\Yi, Li, I, Ty,
Vb 0 Z (Z/ B ) {z:<€}

i=1

o(x; 1
UOIZ[ (9> @i, B,) — (ﬁ) Lizi<ey + 3% Z‘”ﬁz iz <e}-
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Under H¥ and assumptions [A1]-[A5], by the previous proofs, the first part of the above equa-
tion converges to B(F'(£)). If IE[d(x;) 1 (5,<¢)| < 00, the probability limit of b~ lopt Zle 0(i) g, <e)
will be oy ' TE[6(x;) 1{s,<¢}]. Therefore, under H{, My(&; B,,) converges to a Brownian sheet

process plus a non-zero constant term o, ' [ (x;) Lig,<gy]. O

Proof of Theorem 3.3. Similar to the proof of Theorem 3.1, rewrite Mg’(ﬁ, B,):

b
1 _
%UU 1 Z m(y’bv i, 160) ]I‘{fl?zgﬁ}

i=1
~ O(x)
Uo - Z |: yuxuﬁ \/ﬁ ] ]l{wigg} + \[\f% 26 Ly ]l{wl<§}
The probability limit of the second term on the right-hand-side of the above equation will be

1
Vby/n

e Vb ot
oo 8 (i) Ug<gy = NN 25 i) Lg<gy | =0,
=1

with b/n — 0 and b1 Z?:l 0(zi) Lz, <ey 2, E[§(x;) 1{z,<¢;]- Therefore, My(&;3,) con-

verges to a Brownian sheet process under both Hy and H. 2L . O
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