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1 Introduction

Different economic or econometric theories usually suggest non-nested models in theoretical and
empirical researches. Tests for non-nested hypotheses, henceforth the non-nested tests, are impor-
tant because researchers are able to choose the true model from non-nested models by the tests.
The pioneering works of Cox (1961, 1962), Atkinson (1970) and Pesaran and Deaton (1978)
become available to comparing non-nested models. Several papers, such as Davidson and MacK-
innon (1981), Fisher and McAleer (1981), Gourieroux, Monfort and Trognon (1983), Mizon and
Richard (1986) and Vuong (1989), discuss the theoretical methods for non-nested tests. Many
papers apply the non-nested tests in empirical applications; complete surveys can be found in
Gourieroux and Monfort (1994) and McAleer (1995). It is often the case that empirical fact dis-
plays non-Gaussian behavior, such as models with heavy tail or influential outliers. Most of the
existing testing procedures are designed for model with Gaussian (normal) distribution and are not
robust with respect to misspecification of error distribution.

Aguirre-Torres and Gallant (1983) and Hall (1985) have suggested non-nested tests that in-
corporate M-estimators and base on classical testing procedure. Although M-estimator is a robust
estimator in general, their tests using classical procedure are lack of robustness for model where
the error distribution is assumed non-Gaussian. To the best of our knowledge, only Victoria-Feser
(1997) constructs a robust non-nested test. She considers a Lagrange multiplier version of the Cox
test and extends the optimal bounded influence parametric tests of Heritier and Ronchetti (1994)
for testing non-nested hypotheses. Her test limits the influence of small contamination in the data
and is robust to model deviations. In order to derive her test statistic, one must specify an explicit
density function under the null hypothesis to obtain the log-likelihood function and maximum
likelihood (ML) estimators of the model. The test is thus restrictive and strong when applying in
practice. In addition, similar to the Cox test, the test statistic involves a very difficult integration
problem such as the Cox test and are not easy to compute for applied theorists.

In this paper, we propose a robust testing procedure for the non-nested hypotheses. Sev-
eral features are as follows. First, the proposed test extends the rank score test of Gutenbrunner
et al. (1993); this class of rank test plays an important role especially when the empirical phe-
nomenons are non-Gaussian. Second, the rank test statistic is based on the regression rankscore
process that is computed from parametric linear programming method of quantile regression.
Specifications of explicit density functions are not required. Also, we do not need to estimate
ML estimators and only roat-consistent estimators of non-nested models can be used in the pro-
posed test. Different from the test of Victorian-Feser (1997), it is easy to compute our statistics. In
addition, the propsed test is easy to implement by existing software. Unlike the non-nested test in
general use, the simulation or bootstrapping methods are not required. Third, we show that under
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very weak assumptions, the proposed test statistic has asymptojiéaligtribution and the test

is asymptotic distribution-free. Fourth, the proposed test can be extended to test one model against
several competing models. The choice of multiple model selection becomes available. Fifth, lo-
cal powers of our robust rank score test are derived. Finally, Monte Carlo simulations results are
provided and show that the proposed test has good finite sample performances. Comparing with
the J test, the rank score tests is robust when the error term is non-Gaussian. Moreover, unlike
the existing non-nested literature, our test is robust to the relative number of regressors in the two
hypotheses.

This paper is organized as follows. In section 2, the rank score tests for non-nested hypotheses
are proposed. We consider both single and multiple alternatives. Local alternatives of our test are
discussed in section 3. Some Monte Carlo simulation results are presented in section 4. Section 5
is our conclusion of this paper.

2 Rank Score Tests

2.1 Motivations and Setup

Suppose that we want to choose between two linear models as follows:
Ho:y = XB + e,

Hity=2y +e,

where the dependent varialjés ann x 1 matrix, explanatory variables andZ aren x p and
n x q matrices, an@y ande; are error terms, respectively.andZ are two matrices which contain
different variables and the modelsldf andH; are non-nested. To test non-nested hypothklges
andHy, we consider the following artificial nesting model:

y=0A-M)XB+ Ay +¢€ 1)

wherei = 0 means that the null hypothesis is correct ané= 1 means that the alternative
hypothesis is correct. Under this artificial nesting model, we are able to reconsider the non-nested
hypotheses as

Ho:)\.=0,
H1:A=l.

We can test the non-nested hypotheses by testiad) against. = 1 for nesting model (1).
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Davidson and MacKinnon (1981) estimatedn (1) by its ML estimatoly and then estimated
A from model

y=XB*+AZy +e @)

with error densitye independently and identically distributed (i.i.d.) as normal distributions.
Davidson and MacKinnon introduced the J test that uses the classitatistic for i to test

the non-nested hypothesigs= 0. The J test is based on the classical testing procedure and is
not robust to the misspecification of error density. For example, if the error distributions of the
non-nested models are non-Gaussian, the J test may lead to incorrect inference.

To overcome the non-robustness problem discussed above, Victoria-Feser (1997) proposes a
robust test using the optimal bounded influence parametric tests of Heritier and Ronchetti (1994).
The testis to limit the influence of small contamination in the data. Victoria-Feser (1997) considers
a Lagrange multiplier version of the Cox test and bounds the level influence function of the test.
As one can see that her test bounds the effect of the outlier and is a first paper for robust test for
non-nested hypotheses. It is however, in the context of ML method, complete density functions of
the models should be specified. In addition, one needs to compute the ML estimator in her test.
This makes her test statistic very complicated to compute (see p.722-723 for the computation of
her test statistic). Her test is thus restrictive and not operational in practice.

2.2 A Robust Test

In this article, a robust testing procedure for non-nested hypotheses is proposed. The proposed test
is based on the rank score test of Gutenbrumed. (1993), that tests the parametric hypothesis

for quantile regression. For testing non-nested modelsgrand H;, we now apply the rank

score test to test = 0 in the artificial nesting model (2). When = 0, the restricted model
becomey = XB + e, and a regression rankscore procads, introduced by Gutenbrunner and
Juregkova (1992) is obtained by solving from

at) = argmaxy'a]X'a= (1-t)X'1,,a€[0,1]"}, 3)

with 1, ann x 1 vector of ones. It is noted that problem (3) is the dual problem of the objective
function of quantile regression in linear programmiagt) can be obtained easily from the exist-

ing software since the quantile regression has been available in the standard toolbox of researcher’s
desk.

Let & (t) be thei'th element of the regression rankscore processgl®tbe a score function



with bounded variation. Integrating(t) with respect tc; (t) from zero to one constructs
1
b= - [ vvdaw. @
0

Denoteb with ith elementh; to be a “score” vector and contaibs i = 1,---,n. ¢(t) is also

called a score generating function that generates $gorehe underlying idea of the rank score

test is to check whether scorbsare sufficiently close to zero. Intuitivelf can be interpreted

as functions of ranks of residualss from restricted regression nydelXg* + e. Of course,
different score-generating functiops) lead to differenb. Three commonly used score functions

are Wilcoxon scores, normal scores and sign-median scores. We compare the power performances
of our test by different score generating functions in Section 4.

Extending the test of Gutenbrunnetral. (1993), we propose a rank score test for Davidson
and Mackinnon'’s artificial nesting model (1) and define

S(B.7) = (27 - 2)b,
wherej can be any consistent estimator of the restricted modelZasdhe linear projection of
Zy onX:

Z = XX'X)"IX'Zy.
It follows that

~ 1 A
S(B. 7) = —=(Mx27).

whereM x = | — X(X’X)~1X’. The rank score test for non-nested hypotheses is defined as:
R = S(B, )V IS(B, 7)/A%(),

whereV = n"{(MxZ9) (MxZp), and
2

1 1
A2(p) = /O (w(t)— /O w(t)dt) dt, 5)

for some score functiop(-). The proposed test statistic is only composed of daendZ, an
estimatory, andb, and is easy to computed. In our test, we do not need to specify the complete
density function and the estimating of ML estimator is not required. The proposed test is thus
easy to implement. In the following, we show that the limiting distribution of the proposed test is
chi-square distribution with one degree of freedom.

LetX = [X Z] be ann x (p + 1) matrix and{x;, i = 1, - - - , n} thei-th vector ofX. Denote
e, =1, ---,ntobe thdath element of error vectaand the conditional distribution functions of
error terme conditional on information se” are denoted aBg |+ (-),i = 1, ---, n. In addition,

denotey 4 as the pseudo-true estimator which is the limiting behavigr ahder the model ifo.
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Theorem 2.1.If (i) Fg#(-),i = 1,---,n are i.i.d. and absolutely continuous with continuous
densities §,#(-) uniformly bounded away from O ansb. (ii) (a) x1 = 1, withl, annx 1
vector of ones(b) nIX’X — D, a positive definite matrixic) n=2 >, ||xi[|* = O(1), (d)
maX_y..nllxill = OMY4/logn). (iii)  is a consistent estimator gfz. (iv) V — V :=
Eo[(MxZy ) (MxZyg)]/n, a positive definite matrix. Under the null hypothesis,

R = X2

Proof. Under the assumptions (i) and (ii), by the same arguments in Theorems 4.1 and 5.1 of
Gutenbrunneet al. (1993), we have

L 1 e 1 N
S(8.7) = ﬁ(M xZ)'b = ﬁ(M xZ9)'b + 0p(1),

where

1
b= - fo PO — Ly 5, 0)-

In addition, rewrite

1 Y 1 / 1 A /
JaMxZP)b = "2(MxZyp) b+ o[MxZ(7 —v)]b
1 / . 1 /
= mMxZrp) b+ (7 — ) £(Mx2)b
1

= —(MxZyg)'b+0,(D),

NG
where the last equality holds becayse- ¥, = 05(1) andn~¥2(MxZ)'b = Oy(1). By central
limit theorem and under the null hypothesis,

1 :
ﬁ(M xZp)'b = N(0, VA%(p)).

Therefore, under assumption (iii), one has

R = xZ.

2.3 Multiple Alternatives

The testing procedure introduced in the aforementioned can be extended to the choice of multiple
alternatives. Suppose that there ldifferent non-nested alternatives as follows:

Hi:y=Z'+e,

HY y =2  + &



wherez?, ... ZKarenxql,--- ,nx gk matricesy?, - - - , y¥ are associated parameters, respec-
tively, andey, - - - , & represent error terms. To teldh against multiple alternatived!, - - -, HX,

we combine these non-nested hypotheses into an artificial nesting model as Davidson and McK-
innon (1981) and McAleer (1983):

y=XB*+WA+e

whereW = (Z1p%, ..., Z"), %, 97 .-, " are consistent estimators ¢t y2, .- , y¥,
respectively, and = (A4, - - - , Ax) containsk elementse = (ey, - - - , €,) iS an error vector in this
model. We thus can test the multiple non-nested hypotheses by testing whether all elements of
significantly differ from zero or notHy : A = 0.

For the multiple non-nested alternative case, the test statistic is defined as
Ric = SV, 'S/ A @),

where
Sc= = (MxW)b
- \/ﬁ X ’
with b; theith element ob, Vi = n=1(M xW)' (M xW), andb; andA2(¢) are the same as defined
in (4) and (5). We have the following theorem.

Corollary 2.2. If (i) Fg#.i = 1,---,n are i.i.d. and absolutely continuous with continuous
densities § uniformly bounded away from 0 angb. (ii) (a) x; = 1,, with 1, an n x 1 vec-
tor of ones,(b) n~1X*'X* — D*, a positive definite matrixic) n=* >, ||xF[|* = O(1), (d)
max_y...n [|1xf|| = O(nY4/logn), and(iii) Vi — Vi := Eo[(MxZy ) (MxZy)]/n, Under
the null hypothesis,

Ri = xf,

a chi-square distribution with k degree of freedom.

3 Local Powers of the Test

The local powers of our test are considered in this section. Pesaran (1982) and Ericsson (1983)
have compared the local powers of non-nested tests. Consider a local alternative as

Ao

ﬁ.

Hln:)\.n -



Similar to (2), the resulting artificial nesting model is

withe= (e, -- - , &)). As sample siza increases, the model converges to the null model.

Denote E, as the expectation undet;,. UnderHyy,
In| Hyi—x{ B, <0} 1n {e'<_7[r)12i/f’} 6 |F \/ﬁ i )
and taking Taylor expansion at zero,

A A
Fa 7 (-%Zf') =7 - (7%Z§?) fe 17 (0) + Op(1).

It follows that

1
Eun[bi|¥] = E1n |:_f p(t)d (T -1y —Xi/ﬂf<0}) {?:|
0

- /01<p(t)d [r - En (1{y. —X{ﬂr<0}‘?)]

— (2225 ' t)d fs 1+ (0)
_<ﬁiy>/o e dfg 5 (

where the second equality holds by assuming the expectation and integration are interchangeable.
If the conditional distribution are i.i.dfe#(0) = fe#(0),

1
En[b|F] = <%Z?>/o p(t)dfgz(0).

From the proof of Theorem 2.1, it is known tr8(, 7) = n=/2(MxZy 4)'b + 0p(1). It follows
that

o 1 /
Eqn [S(ﬁ, ‘f/)] = Eqn [ﬁ(M nyﬂ) Eln[b|-¢]j|
1
= (%O) E [(M nyﬁ)/Z}?/o p(t)d fe|$(0):|
= (2)otw D[ M2y, 2r,].

with [ p(1)dfez(0) = 5 p()dfes(0) = w(g, f), where the third equality holds by is a
consistent estimator gf ;.

Therefore, undeHy, S(fS f/) is asymptotically normal distributed with mean

A ,
<F°>w(<p, f) Ean [(M xZ¥ p) ZY/S]



and varianc&/A?(¢). UnderHy,, R is noncentralxé distribution with non-centrality parameter

20\ [, ) 2y, v /
<F0> [AZ—(@} Ein[ (Mx2yp) 2y, V7 Enn| (Mx2y) 27, .

4 Monte Carlo Simulations

We use Monte carlo simulations to investigate the finite sample performances and robustness of
the proposed tests. The data generating process (DGP) is specified as follows. Given a weight
w € [0, 1],

y=0A—-w)XB+wZy +e, (6)

whereX, Z aren x p, n x q random matrices i.i.d. from\ (0, 1) except thak = 1,, andg and

y arep x 1, g x 1 vector of ones. The replication of each simulation is 3000 and we compute the
rejection probabilities to check the finite sample performances. \Wher0, the nesting model (6)
becomes the null model dflp; the resulting rejection probabilities are the finite sample sizes of
our test. Whenw = 1, the nesting model becomes the alternative modél;cdind we can obtain

the finite sample power. The nominal level is 5% in this section. Four scenarios are considered:
the error terme are i.i.d. from standard normal distribution, normal distribution with mean 0 and
variance 4, the distribution with 2 degree of freedom, and the standard cauchy distribution.

To examine the finite sample size, we first consider that the error term is i.i.d. drawn from
N(0, 1) andw = 0. Different score generating functions, sign, Wilcoxon and normal, are con-
sidered in the simulation. Table 1 reports the rejection probabilities of the test with sample sizes
n = 50 andn = 300. In Table 1, the finite sample size is over-sized which is common in
non-nested J test; see Godfrey and Pesaran (1983) and Gourieroux and Monfort (1994). The fi-
nite sample size is more accurate when ¢ is small and is greater than the nominal levej when
is large relativep. For example, whe = 2, finite sample sizes fromp = 2to p = 6 are
8.3%, 6.6%, 6.2%, 6.8%, 5.6% which are close to the nominal size. Moreover, wien= 4,
finite sample sizes from; = 2toq = 6 are 62%, 7.9%, 9.4%, 11.4%, 12.7% which become
greater wher is large relative top. For different score generating functions, the finite sample
performances of our test are similar but the finite sample size is smaller with sign score generating
function. In addition, the finite sample size is greater when the sampl@a sizb0 than the finite
sample size when = 300. This result comes from the asymptotic effect.

To examine the finite sample power, we show finite sample power functions of our test in
Figures 1-2 with three different score generating functions. The error term is i.i.d. drawn from
standard normal distribution. The sample sizes is 300. Figure 1 is power functions for non-nested
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Table 1: Finite Sample Sizes, %

n=50 n=300
sign
P g=2 g=3 g=4 =5 Q=6 g=2 9q=3 g=4 0=5 Q=6
2 7.0 107 125 16.1 18.8 8.3 10.7 13.1 14.0 17.9
3 72 90 109 125 16.0 6.6 7.7 104 124 146
4 6.3 93 103 11.0 138 6.2 79 94 114 127
5 73 81 92 97 128 68 6.8 95 116 108
6 64 80 81 92 104 56 79 74 89 99
Wilcoxon
p g=2 g=3 g=4 =5 Q=6 g=2 9=3 g=4 0=5 Q=6
2 86 133 176 21.2 2538 86 124 171 19.1 26.2
3 78 112 133 16.3 20.3 78 96 141 159 19.8
4 7.7 116 13.0 148 181 78 85 109 14.0 165
5 83 96 11.3 125 158 72 9.1 11.8 135 148
6 65 92 96 126 137 73 93 94 105 13.0
normal
P g=2 g=3 g=4 Qg=5 Q=6 =2 gq=3 g=4 Qg=5 Q=6
2 85 137 175 213 271 8.7 122 175 20.3 275
3 71 109 134 157 20.9 8.2 103 13.8 173 204
4 7.1 112 125 142 179 77 91 120 140 17.3
5 75 88 107 119 154 69 9.1 115 141 15.0
6 57 88 91 127 120 73 88 98 108 139




models withp = q = 3. The horizontal axis i® and the vertical axis is the rejection probability.
Whenw deviates from zero, the rejection probabilities are finite sample powers. From Figure 1,
we can see that our test has good power performances in all three score generating functions.
Whenw is about+0.25, the finite sample power approximates 1. The tests with Wilcoxon and
normal score generating functions have almost the same power function. The test with sign score
generating function has the most accurate finite sample sizes than the test with Wilcoxon and
normal score generating functions. The finite sample power of the test with Wilcoxon and normal
score generating functions is greater than the one of the test with sign score function. Figure 2
plots the power functions of our test far = 5, q = 2 with Wilcoxon, normal and sign score
generating functions. Our test has finite sample sizes which are close to the nominal size in all
three score generating functions. When= +0.2, the finite sample power approximates 1 and
thus the finite sample performances of the proposed test are very good. Similar to the case of
p = g = 3, finite sample powers of the test with Wilcoxon and normal score generating functions
are greater than the ones with sign functions. This result is intuitive since the error term is drawn
from the normal distribution.

To examine the robustness of our test, we consider several non-standard scenarios and compare
the power performances of our test and the J test. First, Figure 3 plots finite sample power functions
of our test and the J test with the error term i.i.d. fréig0, 1). Figures 4-5 plot finite sample
power functions of our test and the J test when the error term is i.i.d. drawnNr@ ). Both
the tests are over-sized but our test has more accurate finite sample size than the one of the J test.
Therefore, the over-sized problem is less serious in our test. In addition, powers of the J test are
greater than powers of our test. Like Godfrey and Pesaran (1983), we adjust our test and the J test
to see whether high power comes form high size. We find that our test has slightly high powers
whenw # 0. This shows that high power performances of the J test come from high size. Finally,
we can see that our test and the J test both perform better when the error term is(@oth than
when the error term is froml (0, 4).

Figures 6, 7, 8 plot finite sample power functions of our test and the J test when the error term
is i.i.d. drawn from the; distribution for non-nested models with=2,q = 7andp=q = 3
andp = 6, q = 3, respectively. In Figures 6 and 7, sizes of our test &2&8nd 8% which are
close to the nominal size. Sizes of the J test ar@%/7and 208B% which are much greater than
the nominal size. The power of our test approximates 1 whea +0.3 and the power of the
J test approximates 1 whenare around ® to +0.8. This shows that our test has better power
performances in cases when= q = 3 andp = 6, q = 3. The power of our test approximates
1 more rapid than the power of the J test. In addition, in Figure 8ptke2,q = 7 case, the J
test performs poorly when the number of regressors in the alternative hypothesis is large relative
to the one in the null hypothesis. Our test is less sensitive to the relative number of regressors in
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the two hypotheses. In addition, the J test is very sensitive to the relative number of regressors of
the two non-nested hypotheses, while the rank score test is not. Therefore, our test is more robust
than the J test.

Figures 9, 10, 11 plot finite sample power functions of our test and the J test when the error
termisi.i.d. drawn from the standard Cauchy distribution for non-nested modelpwith = 3,
p=6,q=3,andp=2,q="7. InFigures 9 and 10, sizes of our test a2 and 56% and sizes
of the J test are 28% and 290%. Our test has correct finite sample size while the finite sample
size of the J test are badly distorted when the errors are not assumed to be normal. The powers
of our test increase largely whe# deviates from 0 and our test has good power performances
under Cauchy distribution. The powers of the J test increase very slowly avderiates from 0.
Whenw = %1, the powers of our test is double of the powers of the J test. In Figure 11, our test
also has better power than the J test but the performance of the J test is poor. To sum up, when
the DGP is non-Gaussian distribution, the small sample simulations show that our test is robust in
two ways. First, our test is robust to different data generating process, especially the non-standard
distribution. Second, our test is robust with respect to the number of the regressors of non-nested
models.

5 Conclusion

Robust testing procedures of non-nested tests are desired in theoretical and empirical researches.
Unlike the optimal bounded influence parametric test considered by Victoria-Feser (1997), we
have suggested another robust test for non-nested tests by extending the regression rank score test
of Gutenbrunneet al. (1993). We introduce a test statistit for two non-nested hypotheses and

the statisticRy for multiple non-nested alternatives. The limiting distributions of our test statis-

tics in this paper arg? distributions and our test is asymptotically distribution free. Moreover,
limiting distributions of the proposed test under the local alternative are non-cgtdistribu-

tions. Monte Carlo simulations show that our test has good finite sample performances against
non-nested alternatives. Our test is robust for testing non-nested hypotheses under non-Gaussian
error terms and is robust to the relative number of regressors in the two hypotheses.
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Figure 1: Finite sample powers & with p = 3 andg = 3.
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Figure 2: Finite sample powers & with p =5 andqg = 2.
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Figure 3: Finite sample powers undeg(0, 1) distribution andp = 3 andq = 3.

Figure 4: Finite sample powers unde«0, 4) distribution andp = 3 andq = 3
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Figure 5: Finite sample powers unde(0, 4) distribution andp = 6 andq = 3.

Figure 6: Finite sample powers undgdistribution andp = 3 andq = 3.
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Figure 7: Finite sample powers undeudistribution andp = 6 andg = 3.

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8

Figure 8: Finite sample powers undgdistribution andp = 2 andq = 7.

17




Figure 9: Finite sample powers under Cauchy distributionpred3 andg = 3.

Figure 10: Finite sample powers under Cauchy distribution@rd6 andq = 3.
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Figure 11: Finite sample powers under Cauchy distribution@rd2 andq = 7.
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