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1 Introduction

Different economic or econometric theories usually suggest non-nested models in theoretical and

empirical researches. Tests for non-nested hypotheses, henceforth the non-nested tests, are impor-

tant because researchers are able to choose the true model from non-nested models by the tests.

The pioneering works of Cox (1961, 1962), Atkinson (1970) and Pesaran and Deaton (1978)

become available to comparing non-nested models. Several papers, such as Davidson and MacK-

innon (1981), Fisher and McAleer (1981), Gourieroux, Monfort and Trognon (1983), Mizon and

Richard (1986) and Vuong (1989), discuss the theoretical methods for non-nested tests. Many

papers apply the non-nested tests in empirical applications; complete surveys can be found in

Gourieroux and Monfort (1994) and McAleer (1995). It is often the case that empirical fact dis-

plays non-Gaussian behavior, such as models with heavy tail or influential outliers. Most of the

existing testing procedures are designed for model with Gaussian (normal) distribution and are not

robust with respect to misspecification of error distribution.

Aguirre-Torres and Gallant (1983) and Hall (1985) have suggested non-nested tests that in-

corporate M-estimators and base on classical testing procedure. Although M-estimator is a robust

estimator in general, their tests using classical procedure are lack of robustness for model where

the error distribution is assumed non-Gaussian. To the best of our knowledge, only Victoria-Feser

(1997) constructs a robust non-nested test. She considers a Lagrange multiplier version of the Cox

test and extends the optimal bounded influence parametric tests of Heritier and Ronchetti (1994)

for testing non-nested hypotheses. Her test limits the influence of small contamination in the data

and is robust to model deviations. In order to derive her test statistic, one must specify an explicit

density function under the null hypothesis to obtain the log-likelihood function and maximum

likelihood (ML) estimators of the model. The test is thus restrictive and strong when applying in

practice. In addition, similar to the Cox test, the test statistic involves a very difficult integration

problem such as the Cox test and are not easy to compute for applied theorists.

In this paper, we propose a robust testing procedure for the non-nested hypotheses. Sev-

eral features are as follows. First, the proposed test extends the rank score test of Gutenbrunner

et al. (1993); this class of rank test plays an important role especially when the empirical phe-

nomenons are non-Gaussian. Second, the rank test statistic is based on the regression rankscore

process that is computed from parametric linear programming method of quantile regression.

Specifications of explicit density functions are not required. Also, we do not need to estimate

ML estimators and only root-n consistent estimators of non-nested models can be used in the pro-

posed test. Different from the test of Victorian-Feser (1997), it is easy to compute our statistics. In

addition, the propsed test is easy to implement by existing software. Unlike the non-nested test in

general use, the simulation or bootstrapping methods are not required. Third, we show that under
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very weak assumptions, the proposed test statistic has asymptoticallyχ2 distribution and the test

is asymptotic distribution-free. Fourth, the proposed test can be extended to test one model against

several competing models. The choice of multiple model selection becomes available. Fifth, lo-

cal powers of our robust rank score test are derived. Finally, Monte Carlo simulations results are

provided and show that the proposed test has good finite sample performances. Comparing with

the J test, the rank score tests is robust when the error term is non-Gaussian. Moreover, unlike

the existing non-nested literature, our test is robust to the relative number of regressors in the two

hypotheses.

This paper is organized as follows. In section 2, the rank score tests for non-nested hypotheses

are proposed. We consider both single and multiple alternatives. Local alternatives of our test are

discussed in section 3. Some Monte Carlo simulation results are presented in section 4. Section 5

is our conclusion of this paper.

2 Rank Score Tests

2.1 Motivations and Setup

Suppose that we want to choose between two linear models as follows:

H0 : y = Xβββ + e0,

H1 : y = Zγγγ + e1,

where the dependent variabley is ann × 1 matrix, explanatory variablesX andZ aren × p and

n×q matrices, ande0 ande1 are error terms, respectively.X andZ are two matrices which contain

different variables and the models ofH0 andH1 are non-nested. To test non-nested hypothesesH0

andH1, we consider the following artificial nesting model:

y = (1 − λ)Xβββ + λZγγγ + e, (1)

whereλ = 0 means that the null hypothesis is correct andλ = 1 means that the alternative

hypothesis is correct. Under this artificial nesting model, we are able to reconsider the non-nested

hypotheses as

H0 : λ = 0,

H1 : λ = 1.

We can test the non-nested hypotheses by testingλ = 0 againstλ = 1 for nesting model (1).
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Davidson and MacKinnon (1981) estimatedγγγ in (1) by its ML estimatorγ̃γγ and then estimated

λ from model

y = Xβββ∗
+ λZγ̃γγ + e, (2)

with error densitye independently and identically distributed (i.i.d.) as normal distributions.

Davidson and MacKinnon introduced the J test that uses the classicalt statistic for λ̂ to test

the non-nested hypothesesλ = 0. The J test is based on the classical testing procedure and is

not robust to the misspecification of error density. For example, if the error distributions of the

non-nested models are non-Gaussian, the J test may lead to incorrect inference.

To overcome the non-robustness problem discussed above, Victoria-Feser (1997) proposes a

robust test using the optimal bounded influence parametric tests of Heritier and Ronchetti (1994).

The test is to limit the influence of small contamination in the data. Victoria-Feser (1997) considers

a Lagrange multiplier version of the Cox test and bounds the level influence function of the test.

As one can see that her test bounds the effect of the outlier and is a first paper for robust test for

non-nested hypotheses. It is however, in the context of ML method, complete density functions of

the models should be specified. In addition, one needs to compute the ML estimator in her test.

This makes her test statistic very complicated to compute (see p.722-723 for the computation of

her test statistic). Her test is thus restrictive and not operational in practice.

2.2 A Robust Test

In this article, a robust testing procedure for non-nested hypotheses is proposed. The proposed test

is based on the rank score test of Gutenbrunneret al. (1993), that tests the parametric hypothesis

for quantile regression. For testing non-nested models inH0 and H1, we now apply the rank

score test to testλ = 0 in the artificial nesting model (2). Whenλ = 0, the restricted model

becomesy = Xβββ + e, and a regression rankscore processâ(t), introduced by Gutenbrunner and

Jurěcková (1992) is obtained by solving from

â(t) = arg max
{
y′a

∣∣X′a = (1 − t)X′1n, a ∈ [0, 1]n
}
, (3)

with 1n ann × 1 vector of ones. It is noted that problem (3) is the dual problem of the objective

function of quantile regression in linear programming.â(t) can be obtained easily from the exist-

ing software since the quantile regression has been available in the standard toolbox of researcher’s

desk.

Let âi (t) be thei ’th element of the regression rankscore process. Letϕ(t) be a score function
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with bounded variation. Integratingϕ(t) with respect tôai (t) from zero to one constructs

b̂i = −

∫ 1

0
ϕ(t)dâi (t). (4)

Denoteb̂ with i th elementb̂i to be a “score” vector and containsb̂i , i = 1, · · · , n. ϕ(t) is also

called a score generating function that generates scoreb̂i . The underlying idea of the rank score

test is to check whether scoresb̂ are sufficiently close to zero. Intuitively,̂b can be interpreted

as functions of ranks of residualss from restricted regression modely = Xβββ∗
+ e. Of course,

different score-generating functionsϕ(·) lead to different̂b. Three commonly used score functions

are Wilcoxon scores, normal scores and sign-median scores. We compare the power performances

of our test by different score generating functions in Section 4.

Extending the test of Gutenbrunneret al. (1993), we propose a rank score test for Davidson

and Mackinnon’s artificial nesting model (1) and define

S
(
β̂ββ, γ̂γγ

)
=

1
√

n

(
Zγ̂γγ − Z̃

)′
b̂,

whereγ̂γγ can be any consistent estimator of the restricted model, andZ̃ is the linear projection of

Zγ̂γγ onX:

Z̃ = X(X′X)−1X′Zγ̂γγ .

It follows that

S
(
β̂ββ, γ̂γγ

)
=

1
√

n

(
M XZγ̂γγ

)′
b̂,

whereM X = I − X(X′X)−1X′. The rank score test for non-nested hypotheses is defined as:

R := S
(
β̂ββ, γ̂γγ

)′
V̂−1S

(
β̂ββ, γ̂γγ

)
/A2(ϕ),

whereV̂ = n−1(M XZγ̂γγ )′(M XZγ̂γγ ), and

A2(ϕ) =

∫ 1

0

(
ϕ(t) −

∫ 1

0
ϕ(t)dt

)2

dt, (5)

for some score functionϕ(·). The proposed test statistic is only composed of dataX andZ, an

estimatorγ̂γγ , andb̂, and is easy to computed. In our test, we do not need to specify the complete

density function and the estimating of ML estimator is not required. The proposed test is thus

easy to implement. In the following, we show that the limiting distribution of the proposed test is

chi-square distribution with one degree of freedom.

Let X = [X Z̃] be ann × (p + 1) matrix and{xi , i = 1, · · · , n} the i -th vector ofX. Denote

ei , i = 1, · · · , n to be thei th element of error vectoreand the conditional distribution functions of

error termei conditional on information setF are denoted asFei |F (·), i = 1, · · · , n. In addition,

denoteγγγ βββ as the pseudo-true estimator which is the limiting behavior ofγ̂γγ under the model inH0.
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Theorem 2.1. If (i) Fei |F (·), i = 1, · · · , n are i.i.d. and absolutely continuous with continuous

densities fei |F (·) uniformly bounded away from 0 and∞. (ii) (a) x1 = 1n, with 1n an n × 1

vector of ones,(b) n−1X′X → D, a positive definite matrix,(c) n−1 ∑n
i =1 ||xi ||

4
= O(1), (d)

maxi =1,··· ,n ||xi || = O(n1/4/ logn). (iii) γ̂γγ is a consistent estimator ofγγγ βββ . (iv) V̂ → V :=

IE0[(M XZγγγ βββ)′(M XZγγγ βββ)]/n, a positive definite matrix. Under the null hypothesis,

R ⇒ χ2
1 .

Proof. Under the assumptions (i) and (ii), by the same arguments in Theorems 4.1 and 5.1 of

Gutenbrunneret al. (1993), we have

S
(
β̂ββ, γ̂γγ

)
=

1
√

n

(
M XZγ̂γγ

)′
b̂ =

1
√

n

(
M XZγ̂γγ

)′
b + op(1),

where

b = −

∫ 1

0
ϕ(t)d(τ − 1{yi −x′

i βββτ <0}).

In addition, rewrite

1
√

n

(
M XZγ̂γγ

)′
b =

1
√

n

(
M XZγγγ βββ

)′
b +

1
√

n

[
M XZ

(
γ̂γγ − γγγ βββ

)]′
b

=
1

√
n

(
M XZγγγ βββ

)′
b +

(
γ̂γγ − γγγ βββ

) 1
√

n

(
M XZ

)′
b

=
1

√
n

(
M XZγγγ βββ

)′
b + op(1),

where the last equality holds becauseγ̂γγ − γγγ βββ = op(1) andn−1/2
(
M XZ

)′
b = Op(1). By central

limit theorem and under the null hypothesis,

1
√

n

(
M XZγ̂γγ

)′
b ⇒ N

(
0, VA2(ϕ)

)
.

Therefore, under assumption (iii), one has

R ⇒ χ2
1 .

2.3 Multiple Alternatives

The testing procedure introduced in the aforementioned can be extended to the choice of multiple

alternatives. Suppose that there arek different non-nested alternatives as follows:

H1
1 : y = Z1γγγ 1

+ e1,

· · ·

H k
1 : y = Zkγγγ k

+ ek,
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whereZ1, · · · , Zk aren×q1, · · · , n×qk matrices,γγγ 1, · · · , γγγ k are associated parameters, respec-

tively, ande1, · · · , ek represent error terms. To testH0 against multiple alternativesH1
1 , · · · , H k

1 ,

we combine these non-nested hypotheses into an artificial nesting model as Davidson and McK-

innon (1981) and McAleer (1983):

y = Xβββ∗
+ Wλλλ + e,

whereW =
(
Z1γ̂γγ

1
, · · · , Zkγ̂γγ

k), γ̂γγ
1
, γ̂γγ

2
, · · · , γ̂γγ

k are consistent estimators ofγγγ 1, γγγ 2, · · · , γγγ k,

respectively, andλλλ = (λ1, · · · , λk) containsk elements,e = (e1, · · · , en) is an error vector in this

model. We thus can test the multiple non-nested hypotheses by testing whether all elements ofλλλ

significantly differ from zero or not:H0 : λλλ = 0.

For the multiple non-nested alternative case, the test statistic is defined as

Rk := S′

kV̂
−1
k Sk/A2(ϕ),

where

Sk =
1

√
n
(M XW)′b̂,

with b̂i thei th element of̂b, V̂k = n−1(M XW)′(M XW), andb̂i andA2(ϕ) are the same as defined

in (4) and (5). We have the following theorem.

Corollary 2.2. If (i) Fei |F , i = 1, · · · , n are i.i.d. and absolutely continuous with continuous

densities fei uniformly bounded away from 0 and∞. (ii) (a) x∗

1 = 1n, with 1n an n × 1 vec-

tor of ones,(b) n−1X∗′X∗
→ D∗, a positive definite matrix,(c) n−1 ∑n

i =1 ||x∗

i ||
4

= O(1), (d)

maxi =1,··· ,n ||x∗

i || = O(n1/4/ logn), and (iii) V̂k → V∗

k := IE0[(M XZγγγ βββ)′(M XZγγγ βββ)]/n, Under

the null hypothesis,

Rk ⇒ χ2
k ,

a chi-square distribution with k degree of freedom.

3 Local Powers of the Test

The local powers of our test are considered in this section. Pesaran (1982) and Ericsson (1983)

have compared the local powers of non-nested tests. Consider a local alternative as

H1n : λn =
λ0
√

n
.
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Similar to (2), the resulting artificial nesting model is

y = Xβββ∗
+ λnZγ̂γγ + e,

with e = (e1, · · · , en). As sample sizen increases, the model converges to the null model.

Denote IE1n as the expectation underH1n. UnderH1n,

IE1n
[
1{yi −x′

i βββτ <0}|F
]

= IE1n
[
1

{ei <−
λ0√

n
z′
i γ̂γγ }

|F
]

= Fei |F

(
−

λ0
√

n
zi γ̂γγ

)
,

and taking Taylor expansion at zero,

Fei |F

(
−

λ0
√

n
zi γ̂γγ

)
= τ −

(
λ0
√

n
z′

i γ̂γγ

)
fei |F (0) + op(1).

It follows that

IE1n[bi |F ] = IE1n

[
−

∫ 1

0
ϕ(t)d

(
τ − 1{yi −x′

i βββτ <0}

) ∣∣F ]
=

∫ 1

0
ϕ(t)d

[
τ − IE1n

(
1{yi −x′

i βββτ <0}

∣∣F )]
=

(
λ0
√

n
z′

i γ̂γγ

) ∫ 1

0
ϕ(t)d fei |F (0)

where the second equality holds by assuming the expectation and integration are interchangeable.

If the conditional distribution are i.i.d.,fe1|F (0) = fe|F (0),

IE1n[b|F ] =

(
λ0
√

n
Zγ̂γγ

) ∫ 1

0
ϕ(t)d fe|F (0).

From the proof of Theorem 2.1, it is known thatS
(
β̂ββ, γ̂γγ

)
= n−1/2

(
M XZγγγ βββ

)′
b + op(1). It follows

that

IE1n

[
S
(
β̂ββ, γ̂γγ

)]
= IE1n

[
1

√
n

(
M XZγγγ βββ

)′
IE1n[b|F ]

]
=

(
λ0

n

)
IE

[(
M XZγγγ βββ

)′
Zγ̂γγ

∫ 1

0
ϕ(t)d fe|F (0)

]
=

(
λ0

n

)
ω(ϕ, f ) IE1n

[(
M XZγγγ βββ

)′
Zγγγ βββ

]
,

with
∫ 1

0 ϕ(t)d fe|F (0) =
∫ 1

0 ϕ(t)d fe|F (0) = ω(ϕ, f ), where the third equality holds bŷγγγ is a

consistent estimator ofγγγ βββ .

Therefore, underH1n, S
(
β̂ββ, γ̂γγ

)
is asymptotically normal distributed with mean(

λ0

n

)
ω(ϕ, f ) IE1n

[(
M XZγγγ βββ

)′
Zγγγ βββ

]
7



and varianceVA2(ϕ). UnderH1n, R is noncentralχ2
q distribution with non-centrality parameter(

λ0

n

)2 [
ω2(ϕ, f )

A2(ϕ)

]
IE1n

[(
M XZγγγ βββ

)′
Zγγγ βββ

]′

V−1 IE1n

[(
M XZγγγ βββ

)′
Zγγγ βββ

]
.

4 Monte Carlo Simulations

We use Monte carlo simulations to investigate the finite sample performances and robustness of

the proposed tests. The data generating process (DGP) is specified as follows. Given a weight

ω ∈ [0, 1],

y = (1 − ω)Xβββ + ωZγγγ + e, (6)

whereX, Z aren × p, n × q random matrices i.i.d. fromN(0, 1) except thatx′

1 = 1n, andβββ and

γγγ arep × 1, q × 1 vector of ones. The replication of each simulation is 3000 and we compute the

rejection probabilities to check the finite sample performances. Whenω = 0, the nesting model (6)

becomes the null model ofH0; the resulting rejection probabilities are the finite sample sizes of

our test. Whenω = 1, the nesting model becomes the alternative model ofH1 and we can obtain

the finite sample power. The nominal level is 5% in this section. Four scenarios are considered:

the error termseare i.i.d. from standard normal distribution, normal distribution with mean 0 and

variance 4, thet distribution with 2 degree of freedom, and the standard cauchy distribution.

To examine the finite sample size, we first consider that the error term is i.i.d. drawn from

N(0, 1) andω = 0. Different score generating functions, sign, Wilcoxon and normal, are con-

sidered in the simulation. Table 1 reports the rejection probabilities of the test with sample sizes

n = 50 andn = 300. In Table 1, the finite sample size is over-sized which is common in

non-nested J test; see Godfrey and Pesaran (1983) and Gourieroux and Monfort (1994). The fi-

nite sample size is more accurate when q is small and is greater than the nominal level whenq

is large relativep. For example, whenq = 2, finite sample sizes fromp = 2 to p = 6 are

8.3%, 6.6%, 6.2%, 6.8%, 5.6% which are close to the nominal size. Moreover, whenp = 4,

finite sample sizes fromq = 2 to q = 6 are 6.2%, 7.9%, 9.4%, 11.4%, 12.7% which become

greater whenq is large relative top. For different score generating functions, the finite sample

performances of our test are similar but the finite sample size is smaller with sign score generating

function. In addition, the finite sample size is greater when the sample sizen = 50 than the finite

sample size whenn = 300. This result comes from the asymptotic effect.

To examine the finite sample power, we show finite sample power functions of our test in

Figures 1–2 with three different score generating functions. The error term is i.i.d. drawn from

standard normal distribution. The sample sizes is 300. Figure 1 is power functions for non-nested

8



Table 1: Finite Sample Sizes, %
n=50 n=300

sign

p q=2 q=3 q=4 q=5 q=6 q=2 q=3 q=4 q=5 q=6

2 7.0 10.7 12.5 16.1 18.8 8.3 10.7 13.1 14.0 17.9

3 7.2 9.0 10.9 12.5 16.0 6.6 7.7 10.4 12.4 14.6

4 6.3 9.3 10.3 11.0 13.8 6.2 7.9 9.4 11.4 12.7

5 7.3 8.1 9.2 9.7 12.8 6.8 6.8 9.5 11.6 10.8

6 6.4 8.0 8.1 9.2 10.4 5.6 7.9 7.4 8.9 9.9

Wilcoxon

p q=2 q=3 q=4 q=5 q=6 q=2 q=3 q=4 q=5 q=6

2 8.6 13.3 17.6 21.2 25.8 8.6 12.4 17.1 19.1 26.2

3 7.8 11.2 13.3 16.3 20.3 7.8 9.6 14.1 15.9 19.8

4 7.7 11.6 13.0 14.8 18.1 7.8 8.5 10.9 14.0 16.5

5 8.3 9.6 11.3 12.5 15.8 7.2 9.1 11.8 13.5 14.8

6 6.5 9.2 9.6 12.6 13.7 7.3 9.3 9.4 10.5 13.0

normal

p q=2 q=3 q=4 q=5 q=6 q=2 q=3 q=4 q=5 q=6

2 8.5 13.7 17.5 21.3 27.1 8.7 12.2 17.5 20.3 27.5

3 7.1 10.9 13.4 15.7 20.9 8.2 10.3 13.8 17.3 20.4

4 7.1 11.2 12.5 14.2 17.9 7.7 9.1 12.0 14.0 17.3

5 7.5 8.8 10.7 11.9 15.4 6.9 9.1 11.5 14.1 15.0

6 5.7 8.8 9.1 12.7 12.0 7.3 8.8 9.8 10.8 13.9
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models withp = q = 3. The horizontal axis isω and the vertical axis is the rejection probability.

Whenω deviates from zero, the rejection probabilities are finite sample powers. From Figure 1,

we can see that our test has good power performances in all three score generating functions.

Whenω is about±0.25, the finite sample power approximates 1. The tests with Wilcoxon and

normal score generating functions have almost the same power function. The test with sign score

generating function has the most accurate finite sample sizes than the test with Wilcoxon and

normal score generating functions. The finite sample power of the test with Wilcoxon and normal

score generating functions is greater than the one of the test with sign score function. Figure 2

plots the power functions of our test forp = 5, q = 2 with Wilcoxon, normal and sign score

generating functions. Our test has finite sample sizes which are close to the nominal size in all

three score generating functions. Whenω = ±0.2, the finite sample power approximates 1 and

thus the finite sample performances of the proposed test are very good. Similar to the case of

p = q = 3, finite sample powers of the test with Wilcoxon and normal score generating functions

are greater than the ones with sign functions. This result is intuitive since the error term is drawn

from the normal distribution.

To examine the robustness of our test, we consider several non-standard scenarios and compare

the power performances of our test and the J test. First, Figure 3 plots finite sample power functions

of our test and the J test with the error term i.i.d. fromN(0, 1). Figures 4–5 plot finite sample

power functions of our test and the J test when the error term is i.i.d. drawn fromN(0, 4). Both

the tests are over-sized but our test has more accurate finite sample size than the one of the J test.

Therefore, the over-sized problem is less serious in our test. In addition, powers of the J test are

greater than powers of our test. Like Godfrey and Pesaran (1983), we adjust our test and the J test

to see whether high power comes form high size. We find that our test has slightly high powers

whenω 6= 0. This shows that high power performances of the J test come from high size. Finally,

we can see that our test and the J test both perform better when the error term is fromN(0, 1) than

when the error term is fromN(0, 4).

Figures 6, 7, 8 plot finite sample power functions of our test and the J test when the error term

is i.i.d. drawn from thet2 distribution for non-nested models withp = 2, q = 7 andp = q = 3

and p = 6, q = 3, respectively. In Figures 6 and 7, sizes of our test are 8.2% and 8.6% which are

close to the nominal size. Sizes of the J test are 17.9% and 20.8% which are much greater than

the nominal size. The power of our test approximates 1 whenω = ±0.3 and the power of the

J test approximates 1 whenω are around 0.6 to ±0.8. This shows that our test has better power

performances in cases whenp = q = 3 andp = 6, q = 3. The power of our test approximates

1 more rapid than the power of the J test. In addition, in Figure 8, thep = 2, q = 7 case, the J

test performs poorly when the number of regressors in the alternative hypothesis is large relative

to the one in the null hypothesis. Our test is less sensitive to the relative number of regressors in
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the two hypotheses. In addition, the J test is very sensitive to the relative number of regressors of

the two non-nested hypotheses, while the rank score test is not. Therefore, our test is more robust

than the J test.

Figures 9, 10, 11 plot finite sample power functions of our test and the J test when the error

term is i.i.d. drawn from the standard Cauchy distribution for non-nested models withp = q = 3,

p = 6, q = 3,andp = 2, q = 7. In Figures 9 and 10, sizes of our test are 6.4% and 5.6% and sizes

of the J test are 28.6% and 29.0%. Our test has correct finite sample size while the finite sample

size of the J test are badly distorted when the errors are not assumed to be normal. The powers

of our test increase largely whenω deviates from 0 and our test has good power performances

under Cauchy distribution. The powers of the J test increase very slowly whenω deviates from 0.

Whenω = ±1, the powers of our test is double of the powers of the J test. In Figure 11, our test

also has better power than the J test but the performance of the J test is poor. To sum up, when

the DGP is non-Gaussian distribution, the small sample simulations show that our test is robust in

two ways. First, our test is robust to different data generating process, especially the non-standard

distribution. Second, our test is robust with respect to the number of the regressors of non-nested

models.

5 Conclusion

Robust testing procedures of non-nested tests are desired in theoretical and empirical researches.

Unlike the optimal bounded influence parametric test considered by Victoria-Feser (1997), we

have suggested another robust test for non-nested tests by extending the regression rank score test

of Gutenbrunneret al. (1993). We introduce a test statisticR for two non-nested hypotheses and

the statisticRk for multiple non-nested alternatives. The limiting distributions of our test statis-

tics in this paper areχ2 distributions and our test is asymptotically distribution free. Moreover,

limiting distributions of the proposed test under the local alternative are non-centralχ2 distribu-

tions. Monte Carlo simulations show that our test has good finite sample performances against

non-nested alternatives. Our test is robust for testing non-nested hypotheses under non-Gaussian

error terms and is robust to the relative number of regressors in the two hypotheses.
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Figure 1: Finite sample powers ofR with p = 3 andq = 3.
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Figure 2: Finite sample powers ofR with p = 5 andq = 2.
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Figure 3: Finite sample powers underN(0, 1) distribution andp = 3 andq = 3.
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Figure 4: Finite sample powers underN(0, 4) distribution andp = 3 andq = 3
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Figure 5: Finite sample powers underN(0, 4) distribution andp = 6 andq = 3.
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Figure 6: Finite sample powers undert2 distribution andp = 3 andq = 3.
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Figure 7: Finite sample powers undert2 distribution andp = 6 andq = 3.

J

R

Figure 8: Finite sample powers undert2 distribution andp = 2 andq = 7.
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Figure 9: Finite sample powers under Cauchy distribution andp = 3 andq = 3.
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Figure 10: Finite sample powers under Cauchy distribution andp = 6 andq = 3.
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Figure 11: Finite sample powers under Cauchy distribution andp = 2 andq = 7.
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