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Abstract

In incomplete markets, prices of a contingent claim can be obtained

between the upper and lower hedging prices. In this thesis, we will

use utility indifference pricing to find an initial payment for which the

maximal expected utility of trading the claim is indifferent to the max-

imal expected utility of no trading. From the central duality result, we

show that the gap between the seller’s and the buyer’s utility indiffer-

ence prices is always smaller than the gap between the upper and lower

hedging prices under the exponential utility function.
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中中中文文文摘摘摘要要要

在不完全市場下，衍生性金融商品可利用上套利和下套利價格來訂出價

格區間。我們運用效用無差異定價於此篇論文中，此定價方式為尋找一個初

始交易價，會使在起始時交易商品和無交易商品於商品到期日之最大期望效

用相等。利用主要的對偶結果，我們證明在指數效用函數下，效用無差異定

價區間會比上套利和下套利定價區間小。
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1 Introduction

Pricing contingent claims, also called derivative securities or options, are very im-

portant topics in finance. Every contingent claim can admit a unique arbitrage-free

price in complete markets. On the other hand, most contingent claims only acknowl-

edge intervals of arbitrage-free prices in incomplete markets. The main result of

the thesis is to price smaller intervals of arbitrage-free prices for bounded European

contingent claims in incomplete markets.

In the fundamental financial market, we describe risky assets by process

dS(t) = S(t)[µ(t)dt+ σ(t) · dB(t)],

where B(t) is a Brownian motion. If there exists an equivalent local martingale

measure with respect to the normalized market, then the market has no arbitrage.

We say that the contingent T -claim G is attainable if there exists an admissible

portfolio π(t) and initial capital x ∈ R such that

G(ω) = x+

∫ T

0

π(t) · dS(t) a.s..

In complete markets, every contingent T -claim can be attainable by some admissi-

ble portfolios at maturity time T . Moreover, the contingent claim price at initial

time is taking the expectation of a risky free asset discount of it’s maturity value

with respect to the (local) martingale measure. We can accept the unique (local)

martingale measure by the Girsanov’s theorem.

In incomplete markets, there are infinite equivalent local martingale measures,

so that it isn’t definite to take expectation. There have been some studies of con-

tingent claim prices in an incomplete market. We compare superreplication, sub-

replication and utility indifference pricing in this thesis. Superreplication is defined

as a minimal price of the initial capital such that the maturity capital is more than

the contingent claim for an investment strategy. The price is also called the seller’s

price or the upper hedging price of the contingent claim. Similarly, subreplication

1
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is to consider a maximal payment for this security such that the buyer’s maturity

capital adding the contingent claim for an investment strategy is always to make

money. The payment is also called the buyer’s price or the lower hedging price of the

contingent claim. From the seller’s and buyer’s hedging prices, we can determine

the price interval of the contingent claim.

In general, the gap between the upper and lower hedging prices is too broad.

Other famous studies are about the utility function. We study the idea of utility

indifference pricing. The pricing formula was introduced by Hodges and Neuberger

(1989). It is based on an initial payment for which the maximal expected utility

of trading the claim is indifferent to no trading. As utility indifference pricing,

Øksendal and Sulem (2009) introduced risk indifference pricing. It follows from a

convex risk measure

ρ : F→ R,

where F is the set of some random variables; see Föllmer and Schied (2002). There-

fore, we can get an initial payment for which the risk of trading the claim is indiffer-

ent to no trading. Moreover, Øksendal and Sulem (2009) proofed the price interval

of risk indifference pricing belongs to the price interval of the upper and lower hedg-

ing prices in jump diffusion markets. The purpose of this thesis is to prove that the

price interval of utility indifference pricing also falls between the upper and lower

hedging prices for every bounded T -claim in the fundamental market. To verify

the main result, we use the relative entropy which measures the difference between

two probability measures in probability theory and information theory. Under an

exponential utility function, the relative entropy can lead to a special duality, called

the central duality result. The central duality result can help us to solve the utility

indifference price.

The framework of the thesis is organized as follows: in section 2, we consider

the fundamental finical market model and describe definitions of superreplication,

subreplication and utility indifference pricing. In section 3, we give some principles

of local martingale and prove that the upper and lower hedging prices can be repre-

2
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sented by the maximal and minimal local martingales of bounded claims. In section

4, we introduce the relative entropy and verify the price interval of utility indiffer-

ence pricing falls between the price interval of the upper and lower hedging prices,

based on the central duality result. In section 5, we prove that the central duality

result of the maximal expect utility by applying the relative entropy. Finally, we

give the conclusions and further researches in section 6.

3
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2 The Fundamental Financial Market Model

Consider a filtered probability space (Ω,F , {Ft}0≤t≤T , P ), where we define Ft =

F (m)
t to be the σ-algebra generated by the m-dimensional Brownian motion Bt(ω).

Let a financial market S(t) with n + 1 assets. The price processes of assets are

Ft-adapted and have the forms:

(1) a risk free asset with unit price, S0(t) = 1 for every time 0 ≤ t ≤ T .

(2) risky asset prices Si(t) for i = 1, ..., n where we take a risk free asset as the

unit of account are given by

dSi(t) = Si(t)[µi(t)dt+ σi(t) · dB(t)] for t ∈ [0, T ],

Si(0) = si.

We consider µi(t) and σi(t) are Ft-adapted processes for i = 1, ..., n with∫ T

0

{
n∑
i=1

|µi(s)|+
m∑
j=1

n∑
i=1

|σij(s)|2
}
ds <∞ a.s..

A portfolio in the market {S(t)}t∈[0,T ] is an (n+1)-dimensional (t, ω)-measurable

and Ft-adapted stochastic process. The value process with initial value x at time t

of a portfolio π(t) = (π0(t), π1(t), ..., πn(t)) is defined by

X(π)
x (t, ω) = π(t) · S(t) =

n∑
i=0

πi(t)Si(t)

where X(π)
x (0) = x.

Definition 2.1 (1) The portfolio π(t) is called self-financing if∫ T

0

|
n∑
i=1

πi(s)µi(s)|+
m∑
j=1

[
n∑
i=1

πi(s)σij(s)

]2
 ds <∞ a.s. (2.1)

and

X(π)
x (t) = x+

∫ t

0

π(s) · dS(s) for t ∈ [0, T ].

4
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(2) A portfolio π(t) which is self-financing is called admissible if the value process

X(π)
x (t) is (t, ω) a.s. lower bounded.

Note that we say a portfolio with (2.1) is S-integrable. Moreover, if the initial

value x and π1(t), ..., πn(t) are given such that (2.1) holds, then there always exists a

π0(t) such that π(t) is a self-financing portfolio. A bounded European contingent T -

claim G is a bounded FT -measurable random variable and taken a risk free asset as

the unit of account. It represents the net payoff of a derivative security at maturity

T . In order to study incomplete market, we introduce pricing formula below.

Superreplication and subreplication. Let P be the set of all admissible port-

folios. Superreplication of a T -claimG is to consider a minimal price as the initial

capital x such that the maturity capital is always more than G for an investment

strategy. The minimal price which the seller is willing to sell is

Pup(G) = inf{x| there exits π ∈ P such that X(π)
x (T ) ≥ G a.s. }

and also called the seller’s price or the upper hedging price of G. Similarly, subrepli-

cation is to consider a maximal payment for this security G such that the buyer’s

maturity capital adding the contingent claim for an investment strategy is always

to make a profit. The maximal price which the buyer is willing to pay is

Plow(G) = sup{x| there exits π ∈ P such that X
(π)
−x (T ) +G ≥ 0 a.s. }

and also called the buyer’s price or the lower hedging price of G. In the complete

market, it follows from the Girsanov’s theorem there exists a martingale measure

Q such that

Plow(G) = EQ[G] = Pup(G) :

see [10, Theorem 12.3.2].

Utility indifference pricing. Given a utility function U : R→ R. Let x be the

initial capital before the claim G is being traded.

5
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(1) If we give the price p1 for the guarantee to the seller, then the seller can use

x + p1 as the initial value to invest and needs to pay the guarantee G at

maturity time. The maximal expected utility for the seller is

Vs(G, x+ p1) = sup
π∈P

E[U(X
(π)
x+p1(T )−G)].

(2) There is no claim G to trade. The maximal utility expected utility at maturity

time T is

V (G, x) = sup
π∈P

E[U(X(π)
x (T ))].

(3) If we give the payment p2 for the guarantee to the buyer, then the buyer use

an initial fortune x − p2 to invest and can gain the guarantee G at maturity

time. The maximal expected utility for the buyer is

Vb(G, x− p2) = sup
π∈P

E[U(X
(π)
x−p2(T ) +G)].

The seller’s and buyer’s utility indifference prices are to find initial prices p1 = pus

and p2 = pub with Vs(G, x + pus ) = V (G, x) and Vb(G, x − pub ) = V (G, x). Denote

Pseller(G) := pus and Pbuyer(G) := pub for the T -claim G. In this study, we given an

exponential utility

U(x) = −e−γx,

where γ > 0 is the risk aversion parameter.

6
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3 Superreplication and Subreplication

Itô integrals

∫ t

0

π(s) · dB(s) exist and are martingales under the condition

E

[∫ T

0

|π(t)|2dB(t)

]
<∞.

In fact, Itô integrals

∫ t

0

π(s) · dB(s) exist under the weak condition

∫ T

0

|π(t)|2 dt <∞ a.s..

However, we can’t pledge

∫ t

0

π(s) · dB(s) are martingales under the weak condi-

tion. In general, we discuss local martingale rather than martingale in stochastic

differential equations.

Definition 3.1 An Ft-adapted stochastic process M(t) ∈ Rn is called a local mar-

tingale with respect to {Ft} if there exists an increasing sequence of Ft-stopping

times τk such that

τk →∞ a.s. as k →∞

and M(t ∧ τk) is an Ft-martingale for all k.

We can get following properties:

Property 3.2 Let a filtered probability space (Ω,F , {Ft}0≤t≤T , P ) and M(t) be a

local martingale with respect to {Ft}.

(1) If M(t) is lower bounded, then M(t) is a supermartingale.

(2) Let φ(t, ω) be a Ft-adapted process such that

∫ t

0

φ(s) · dM(s) exist. Then,

Z(t) :=

∫ t

0

φ(s) · dM(s)

is a local martingale for 0 ≤ t ≤ T .

7
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Proof. (1). Given t ≥ s. Suppose τk is an increasing sequence of Ft-stopping times

such that M(t ∧ τk) is an Ft-martingale for all k. From Fatou’s lemma,

E[ lim inf
k→∞

M(t ∧ τk)] ≤ lim inf
k→∞

E[M(t ∧ τk)]. (3.1)

A process M(t ∧ τk) is an Ft-martingale and

E[M(t ∧ τk)] = E[E[M(t ∧ τk)|F0 ] ] = E[M(0 ∧ τk)] = E[M(0)].

Since M(t ∧ τk) exists as k →∞ and (3.1), we get

E[M(t)] = E[ lim
k→∞

M(t ∧ τk)] ≤ E[M(0)]

and M(t) is integrable. It follows from Fatou’s lemma for conditional expectations,

E[ lim inf
k→∞

M(t ∧ τk)|Fs] ≤ lim inf
k→∞

E[M(t ∧ τk)|Fs] = lim inf
k→∞

M(s ∧ τk)

and hence E[M(t)|Fs] ≤M(s) almost surely.

(2). Since M(t) is a local martingale with respect to {Ft}, there exists an

increasing sequence of stopping times τ ′k such that definition 3.1 holds. Suppose

{Uk} is an increasing sequence of bounded open sets in Rn. Let

τk = inf{t ≥ 0|φ(t) /∈ Uk} ∧ τ ′k for k ∈ N.

Since φ(t ∧ τk) is bounded and M(t ∧ τk) is a martingale for t ∈ [0, T ], we obtain

Z(t ∧ τk) :=

∫ t∧τk

0

φ(s) · dM(s)

is a martingale for t ∈ [0, T ]. The proof is complete. �

A probability measure Q is called a local martingale measure with respect to P ,

if it is equivalent to P and the process Ŝ = (S1(t), ..., Sn(t)) is a Q-local martingale.

By M we denote the set of all equivalent local martingale measures for process Ŝ.

In this section, we show the upper hedging price and lower hedging price can be

represented by

Pup(G) = sup
Q∈M

EQ[G],

Plow(G) = inf
Q∈M

EQ[G].

8
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The following theorem 3.3 and property 3.4 are adapted from the paper of Kramkrov

(1996).

Theorem 3.3 (Optional Decomposition, [8, Theorem 2.1]) Let F (t) ∈ R be a

positive Ft-adapted process. Then F is a super-martingale for each measure Q ∈M

if and only if there exists an S-integrable predictable process H(t) ∈ Rn and an

Ft-adapted increasing positive process C such that

F (t) = F (0) +

∫ t

0

H(s) · dŜ(s)− C(t), t ∈ [0, T ].

Proposition 3.4 ([8, Proposition 4.2]) Let f be a positive variable on (Ω,F , P )

with sup
Q∈M

EQf <∞. There is a right continuous and left limit exists process

F (t) = ess sup
Q∈M

EQ[f |Ft], t ≥ 0.

The process F is a Q super-martingale whatever Q ∈M.

We consult theorem 3.5 of Kunita (2004) and proof the main result in this

section as follows:

Theorem 3.5 Let G be a bounded European contingent T -claim. We get

Pup(G) = sup
Q∈M

EQ[G],

Plow(G) = inf
Q∈M

EQ[G],

where M denotes the set of equivalent local martingale measures Q.

Proof. Without loss of generality, we assume G ≥ 0. Set p = sup
Q∈M

EQ[G] and

Aup = {x| there exits π ∈ P such that X(π)
x (T ) ≥ G a.s. }.

We first prove p ≤ Pup(G). Let x′ ∈ Aup, then there exists a π′ ∈ P such that

X
(π′)
x′ (T ) = x′ +

∫ T

0

π′(t) · dS(t) ≥ G a.s..

9
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Given a Q ∈M. Since G is lower bounded and Q� P , we get

X
(π′)
x′ (T ) = x′ +

∫ T

0

π′(t) · dS(t) ≥ G a.s. w.r.t. Q (3.2)

and it is a lower bounded local Q-martingale. By property 3.2, X
(π′)
x′ (t) is a super-

martingale with respect to Q and

EQ[

∫ T

0

π′(s) · dS(s)] = EQ[EQ[

∫ T

0

π′(s) · dS(s)| Ft ]] ≤ 0.

Taking the expectation of (3.2) with respect to Q we obtain

x′ ≥ EQ[G].

Hence

p ≤ Pup(G). (3.3)

Next, we verify the reverse inequality. From property 3.4., ess sup
Q∈M

EQ[G|Ft]

is a super-martingale for Q ∈ M and lower bounded. It follows from theorem 3.3

that

ess sup
Q∈M

EQ[G|Ft] = EQ[G] +

∫ t

0

H(s) · dŜ(s)− C(t), t ∈ [0, T ],

where H is an S-integrable process and C is a positive increasing process. There

exists a π ∈ P such that πi = Hi for i = 1, ..., n. We get

EQ[G] +

∫ T

0

π(t) · dS(t) ≥ ess sup
Q∈M

EQ[G|FT ] = G a.s.,

and EQ[G] ∈ Aup. Therefore,

Pup(G) ≤ EQ[G] ≤ p.

From (3.3), we obtain Pup(G) = p. It is similar to verify Plow(G) = inf
Q∈M

EQ[G].

�

10
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4 Utility Indifference Pricing

In this section, we introduce the relative entropy and the central duality theorem

to show the main result. Denote Pa the set of local martingale measures for Ŝ

absolutely continuous to P . The relative entropy H(Q|P ) is defined by

H(Q|P ) =


E

[
dQ

dP
ln
dQ

dP

]
if Q� P ,

+∞ otherwise.

In probability theory and information theory, the quantity H(Q|P ) measures the

difference between two probability measures Q and P . Define Pf = Pf (P ) to be

the set of Q ∈ Pa with finite relative entropy, H(Q|P ) < ∞. We consider the

assumption

Pf ∩M 6= ∅. (4.1)

There is a unique measure Q0 ∈ Pf ∩ M minimizing H(Q|P ) over all Q ∈ Pf
and call Q0 the minimal P -entropy martingale measure: see [7, Property 3.1 and

Property 3.2].

The main result of this study is obtained from the following theorem called the

central duality result. Let G be a bounded T -claim.

Theorem 4.1 Given λ ∈ R and consider the function

u(x;λ) := −1

γ
inf
π∈P

lnE[exp (−γ(X(π)
x (T ) + λG))]. (4.2)

Then, we can get

u(x;λ) = x+ inf
Q∈Pf

{λEQ[G] +
1

γ
H(Q|P )}. (4.3)

Moreover, the infimum in (4.3) is attained for a unique Qλ ∈ Pf ∩M whose Radon-

Nikodym derivative is given by

dQλ

dP
= exp

(
cλ − γ

(∫ T

0

πλ · dS + λG

))
,

11
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where πλ is a self-financing portfolio and cλ is a constant. In particular, if

∫ t

0

πλ ·dS

is (t, ω) a.s. lower bounded, then πλ ∈ P attains the infimum in (4.2).

Because ln x/γ is a continuous function on (0,∞), we can formulate the central

duality result to utility indifference pricing. The proof of theorem 4.1 is obtained in

section 5. Moreover, we improve the following result of İlhan, Jonsson and Sircar

(2005) by theorem 4.1.

Denote Θ to be the set of Ft-adapted, S-integrable Rn+1-valued processes θ

such that θ is self-financing and X
(θ)
0 (T ) are Q-martingales for all Q ∈ Pf .

Theorem 4.2 ([6, Theorem 4.1], [1, Theorem 2.2] and [7, Theorem 2.1]) Given

λ ∈ R and consider the function

u′(x;λ) := −1

γ
inf
θ∈Θ

lnE[exp (−γ(X(π)
x (T ) + λG))]. (4.4)

Then, we can get

u′(x;λ) = x+ inf
Q∈Pf

{λEQ[G] +
1

γ
H(Q|P )}. (4.5)

Moreover, the infimum in (4.5) is attained for a unique Qλ ∈ Pf ∩M whose Radon-

Nikodym derivative is given by

dQλ

dP
= exp

(
cλ − γ

(∫ T

0

θλ · dS + λG

))
,

where θλ ∈ Θ attains the infimum in (4.4), and cλ is a constant.

The seller’s and buyer’s utility indifference price of the bounded claim G is the

solution pus and pub of the stochastic differential equations

Vs(G, x+ pus ) = V (G, x) = Vb(G, x− pub ). (4.6)

Put an exponential utility U(x) = −e−γx into (4.6), where γ > 0 is the risk aversion

parameter. We get equations

− inf
π∈P

E[exp(−γ(X
(π)
x+pus

(T )−G))] = − inf
π∈P

E[exp(−γX(π)
x (T ))],

− inf
π∈P

E[exp(−γ(X
(π)
x−pub

(T ) +G))] = − inf
π∈P

E[exp(−γX(π)
x (T ))].

(4.7)
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Since lnx is a continuous function on (0,∞), it follows from (4.2) and (4.7) that we

rewrite (4.6) by

u(x+ pus ;−1) = u(x; 0) = u(x− pub ; 1). (4.8)

Hence, utility indifference pricing for bounded T -claim G are solutions pus and pub of

(4.8) and we consider Pseller(G) = pus and Pbuyer(G) = pub .

Lemma 4.3 Let G be a bounded T -claim. Then

Pbuyer(G) ≤ Pseller(G).

Proof. From the Theorem 4.1 and (4.8), we get

Pseller(G) = sup
Q∈Pf

{EQ[G]− 1

γ
(H(Q|P )−H(Q0|P ))}

Pbuyer(G) = inf
Q∈Pf

{EQ[G] +
1

γ
(H(Q|P )−H(Q0|P ))}

where Q0 is a unique measure in Pf ∩M and minimize H(Q|P ) over all

Q ∈ Pf . Let a function ζ : Pf → R with

ζ(Q) =
1

γ
(H(Q|P )−H(Q0|P )) ≥ 0.

We obtain

Pseller(G)− Pbuyer(G) = sup
Q∈Pf

{EQ[G]− ζ(Q)} − inf
Q∈Pf

{EQ[G] + ζ(Q)}

= sup
Q∈Pf

{EQ[G]− ζ(Q)}+ sup
Q∈Pf

{−EQ[G]− ζ(Q)}

≥ sup
Q∈Pf

{−2ζ(Q)} = 0.

�

Using lemma 4.3 we can get the following inequality.

Theorem 4.4 Let G be a bounded T -claim. Then

Plow(G) ≤ Pbuyer(G) ≤ Pseller(G) ≤ Pup(G).

13
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Proof. It suffices to verify Pseller(G) ≤ Pup(G). From theorem 4.1 and lemma 4.3,

we get

Pseller(G) = sup
Q∈Pf∩M

{EQ[G]− ζ(Q)}

≤ sup
Q∈M

EQ[G] = Pup(G).

It is similar to show Plow(G) ≤ Pbuyer(G).

�

14



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

5 Proof of the Central Duality Result

We consult the idea of Delbaen, Grandits, Rheinländer, Samperi, Schweizer, and

Stricker (2002) to the setting of theorem 4.1. Consider a bounded contingent T -

claim G and define a probability measure PG equivalent to P by

dPG
dP

:= CG e
γG, (5.1)

where C−1
G := E[eγG] ∈ (0,∞). Since G is bounded, we can get for Q� P

H(Q|P ) = EQ

[
ln

dQ

dPG
+ ln CG + γG

]
= H(Q|PG) + ln CG + EQ[γG] (5.2)

and H(Q|P ) <∞ implies H(Q|PG) <∞. In particular, denote the set

Pf (PG) := {Q ∈ Pa|H(Q|PG) <∞}

= {Q ∈ Pa|H(Q|P ) <∞}

= Pf (P )

and write Pf simply. Recall the assumption (4.1), there is a unique measure Q0
G ∈

Pf ∩M minimizing H(Q|PG) over all Q ∈ Pf and call Q0
G the minimal PG-entropy

martingale measure.

To verify the central duality result, we need one additional arrangement. Under

assumption (4.1), the density function of the minimal entropy Q0 with respect to

P has the form

dQ0

dP
= K exp (X

(θ)
0 (T )) = K exp

∫ T

0

θ · dS (5.3)

for some constant K > 0 and some self-financing θ such that

X
(θ)
0 (T ) =

∫ T

0

θ · dS

is a Q0-martingale: see [3, Corollary 2.1] and [4, Proposition 3.2 and the proof of

Theorem 4.13]. Taking the natural logarithm and the expectation under Q0, we

could rewrite (5.3) by

ln K = EQ0 [ ln
dQ0

dP
] = H(Q0|P ). (5.4)
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In the same way for Q0
G, we get the density function

dQ0
G

dPG
= KG exp (X

(θG)
0 (T )) = KG exp (

∫ T

0

θG · dS) (5.5)

for some constant KG > 0 and some self-financing θG such that

X
(θG)
0 (T ) =

∫ T

0

θG · dS

is a Q0
G-martingale. Let

θ∗ = −1

γ
θG (5.6)

be a self-financing portfolio such that

exp (−γX(θ∗)
0 (T )) = exp (X

(θG)
0 (T )) =

1

KG

dQ0
G

dPG
(5.7)

is exactly in L1(PG).

Proof of theorem 4.1. Since we give λ ∈ R, λG is always bounded. Without

loss of generality, we suppose λ = −1 and consider an initial value x ∈ R. Writing

u1(x) and u2(x) for equations (4.2) and (4.3) imply

u1(x) = −1

γ
inf
π∈P

lnE[exp (−γ(x+

∫ T

0

π · dS −G))]

= x− 1

γ
inf
π∈P

lnEPG
[

1

CG
exp (−

∫ T

0

γπ · dS)]

= x+
lnCG
γ
− 1

γ
inf
π∈P

lnEPG
[exp (−

∫ T

0

π · dS)]

and

u2(x) = x+ inf
Q∈Pf

{−EQ[G] +
1

γ
H(Q|P )}

= x+ inf
Q∈Pf

{−EQ[G] +
1

γ
(H(Q|PG) + lnCG + E[γG])}

= x+
lnCG
γ

+
1

γ
inf
Q∈Pf

H(Q|PG)

by (5.1) and (5.2).

As argued above and further including the definition of Q0
G, we can verify that

− inf
π∈P

lnEPG
[exp (−

∫ T

0

π · ds)] = inf
Q∈Pf

H(Q|PG) = H(Q0
G|PG).

16
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From (5.5), we can get

H(Q0
G|PG) = EQ0

G
[ ln

dQ0
G

dPG
] = lnKG.

For any π ∈ P , it follows from Q0
G ∈ Pf ∩ M and property 3.2 that

∫ T

0

π · dS

is a Q0
G-supermartingale. Since

∫ T

0

θG · dS is a Q0
G-martingale, (5.5) and Jensen’s

inequality, we obtain

lnEPG
[exp (−

∫ T

0

π · dS)] = lnEQ0
G

[
1

KG

exp (−
∫ T

0

π · dS −
∫ T

0

θG · dS )]

≥ − lnKG + EQ0
G

[−
∫ T

0

π · dS −
∫ T

0

θG · dS ]

≥ − lnKG.

Therefore,

− inf
π∈P

lnEPG
[exp (−

∫ T

0

π · dS)] ≤ lnKG.

Next, we verify the reverse inequality. From (5.5), there exists a self-financing

portfolio θG such that

EPG
[exp (

∫ T

0

θG · dS)] =
1

KG

.

Choose a self-financing portfolio πG such that for t ∈ [0, T ], ω ∈ Ft consider

πG(t, ω) =


θG(t, ω) if

∫ t

0

θG(s, ω) · dS(s) > 0,

0 if

∫ t

0

θG(s, ω) · dS(s) ≤ 0

and hence

lnEPG
[exp (−

∫ T

0

πG · dS)] ≤ lnEPG
[exp (−

∫ T

0

θG · dS)] = − lnKG.

Since πG is lower bounded, we can get πG ∈ P and

− inf
π∈P

lnEPG
[exp (−

∫ T

0

πG · dS)] ≥ lnKG.

Choose πλ = θ∗ = −θG/ γ, Qλ = Q0
G and cλ = ln (KGCG). Thus the proof is

complete. �
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6 Conclusion

Summarizing the thesis, it follows from theorem 3.5 and theorem 4.1 that we trans-

form superreplication, subreplication and the maximal expect utility into represen-

tations of equivalent local martingale measures with respect to given risky asset

prices. Therefore, we can compare pricing formulas and determine the main result.

Note that this study took a step in the exponential utility function and bounded

claims in the fundamental financial market. If the contingent claim is unbounded,

the proof of theorem 4.1 is not complete. But the central dual result of the max-

imal expect exponential utility still holds under some assumptions; see Delbaen,

Grandits, Rheinländer, Samperi, Schweizer, and Stricker (2002). On the other

hand, it is possible of course to consider other utility functions or risky asset pro-

cesses.

In additional, risk indifference pricing is established by convex risk measure

ρ : F→ R,

satisfying some axioms, where F is the set of FT measurable random variables.

Based on theorem 2.2 of Øksendal and Sulem (2009), the convex risk measure

has the representation about a family L of probability measures Q� P on FT , for

which L is given. Therefore, further research is required to compare risk indifference

pricing with utility indifference pricing for some suitable L.
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