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Abstract

In incomplete markets, prices of a contingent claim can be obtained
between the upper and lower hedging prices. In this thesis, we will
use utility indifference pricing to find an initial payment for which the
maximal expected utility of trading the claim is indifferent to the max-
imal expected utility of no trading. From the central duality result, we
show that the gap between the seller’s and the buyer’s utility indiffer-
ence prices is always smaller than the gap between the upper and lower

hedging prices under the exponential utility function.
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1 Introduction

Pricing contingent claims, also called derivative securities or options, are very im-
portant topics in finance. Every contingent claim can admit a unique arbitrage-free
price in complete markets. On the other hand, most contingent claims only acknowl-
edge intervals of arbitrage-free prices in incomplete markets. The main result of
the thesis is to price smaller intervals of arbitrage-free prices for bounded European

contingent claims in incomplete markets.

In the fundamental financial market, we describe risky assets by process
aS(t) = S()[u(t)dt + o(t) - dB()],

where B(t) is a Brownian motion. If there exists an equivalent local martingale
measure with respect to the normalized market, then the market has no arbitrage.
We say that the contingent T-claim G is attainable if there exists an admissible

portfolio 7(t) and initial capital x € R such that
T
Gw) ==z +/ m(t) -dS(t) a.s..
0

In complete markets, every contingent 7T-claim can be attainable by some admissi-
ble portfolios at maturity time 7. Moreover, the contingent claim price at initial
time is taking the expectation of a risky free asset discount of it’s maturity value
with respect to the (local) martingale measure. We can accept the unique (local)

martingale measure by the Girsanov’s theorem.

In incomplete markets, there are infinite equivalent local martingale measures,
so that it isn’t definite to take expectation. There have been some studies of con-
tingent claim prices in an incomplete market. We compare superreplication, sub-
replication and utility indifference pricing in this thesis. Superreplication is defined
as a minimal price of the initial capital such that the maturity capital is more than
the contingent claim for an investment strategy. The price is also called the seller’s

price or the upper hedging price of the contingent claim. Similarly, subreplication



is to consider a maximal payment for this security such that the buyer’s maturity
capital adding the contingent claim for an investment strategy is always to make
money. The payment is also called the buyer’s price or the lower hedging price of the
contingent claim. From the seller’s and buyer’s hedging prices, we can determine

the price interval of the contingent claim.

In general, the gap between the upper and lower hedging prices is too broad.
Other famous studies are about the utility function. We study the idea of utility
indifference pricing. The pricing formula was introduced by Hodges and Neuberger
(1989). It is based on an initial payment for which the maximal expected utility
of trading the claim is indifferent to no trading. As utility indifference pricing,
(Oksendal and Sulem (2009) introduced risk indifference pricing. It follows from a
convex risk measure

p:F—=R,

where F is the set of some random variables; see Féllmer and Schied (2002). There-
fore, we can get an initial payment for which the risk of trading the claim is indiffer-
ent to no trading. Moreover, @ksendal and Sulem (2009) proofed the price interval
of risk indifference pricing belongs to the price interval of the upper and lower hedg-
ing prices in jump diffusion markets. The purpose of this thesis is to prove that the
price interval of utility indifference pricing also falls between the upper and lower
hedging prices for every bounded 7T-claim in the fundamental market. To verify
the main result, we use the relative entropy which measures the difference between
two probability measures in probability theory and information theory. Under an
exponential utility function, the relative entropy can lead to a special duality, called
the central duality result. The central duality result can help us to solve the utility

indifference price.

The framework of the thesis is organized as follows: in section 2, we consider
the fundamental finical market model and describe definitions of superreplication,
subreplication and utility indifference pricing. In section 3, we give some principles

of local martingale and prove that the upper and lower hedging prices can be repre-



sented by the maximal and minimal local martingales of bounded claims. In section
4, we introduce the relative entropy and verify the price interval of utility indiffer-
ence pricing falls between the price interval of the upper and lower hedging prices,
based on the central duality result. In section 5, we prove that the central duality
result of the maximal expect utility by applying the relative entropy. Finally, we

give the conclusions and further researches in section 6.



2 The Fundamental Financial Market Model

Consider a filtered probability space (92, F,{F;}o<i<T, P), where we define F; =
ft(m) to be the o-algebra generated by the m-dimensional Brownian motion By (w).
Let a financial market S(t) with n + 1 assets. The price processes of assets are

Fi-adapted and have the forms:

(1) a risk free asset with unit price, So(t) = 1 for every time 0 <t < T.

(2) risky asset prices S;(t) for i = 1,...,n where we take a risk free asset as the

unit of account are given by

dS;(t) = S;(t)[ ui(¢)dt + o;(t) - dB(t)] fort € [0,T],

We consider p;(t) and o;(t) are F;-adapted processes for i = 1,...,n with

T n m n

/ {Z|m(s)\+22|aij(s)\2} ds < 0o a.s..
0 Li=1 j=1 i=1

A portfolio in the market {S(£) }+cjo,r] is an (n+1)-dimensional (¢, w)-measurable

and JF;-adapted stochastic process. The value process with initial value x at time ¢

of a portfolio 7(t) = (mo(t), m1(t), ..., mu(t)) is defined by

XM (tw)y=n(t) - S(t) =Y m(t)Si(t)

i=0
where X(™(0) = .
Definition 2.1 (1) The portfolio 7(t) is called self-financing if

/0 | Zm(s) wi(s)| + Z Zm(s) O_ij(s)] ds < o a.s. (2.1)

and

XM (t) :x+/t7r(s)-d5(s) for t € [0,T].

xT



(2) A portfolio m(t) which is self-financing is called admissible if the value process
XMt is (t,w) a.s. lower bounded.

Note that we say a portfolio with (2.1) is S-integrable. Moreover, if the initial
value x and 7 (t), ..., m,(t) are given such that (2.1) holds, then there always exists a
mo(t) such that 7 () is a self-financing portfolio. A bounded European contingent 7'-
claim G is a bounded Fr-measurable random variable and taken a risk free asset as
the unit of account. It represents the net payoff of a derivative security at maturity

T. In order to study incomplete market, we introduce pricing formula below.

Superreplication and subreplication. Let P be the set of all admissible port-
folios. Superreplication of a T-claim GG is to consider a minimal price as the initial
capital x such that the maturity capital is always more than G for an investment

strategy. The minimal price which the seller is willing to sell is
P,,(G) = inf{z| there exits 7 € P such that XV (T) > G a.s. }

and also called the seller’s price or the upper hedging price of G. Similarly, subrepli-
cation is to consider a maximal payment for this security G such that the buyer’s
maturity capital adding the contingent claim for an investment strategy is always

to make a profit. The maximal price which the buyer is willing to pay is
Piow(G) = sup{z| there exits 7 € P such that X(T) + G > 0 a.s. }

and also called the buyer’s price or the lower hedging price of GG. In the complete

market, it follows from the Girsanov’s theorem there exists a martingale measure
Q) such that
Pou(G) = Eq[G] = Py(G) :

see [10, Theorem 12.3.2].

Utility indifference pricing. Given a utility function U : R — R. Let x be the

initial capital before the claim G is being traded.



(1) If we give the price p; for the guarantee to the seller, then the seller can use
x + p; as the initial value to invest and needs to pay the guarantee G at

maturity time. The maximal expected utility for the seller is

Vi(G,a +p1) = sup BU(X, (T) — G)).

T+p1
TeP

(2) There is no claim G to trade. The maximal utility expected utility at maturity
time 7' is

V(G,z) = sup E[U(Xé”)(T))].

neP

(3) If we give the payment ps for the guarantee to the buyer, then the buyer use
an initial fortune = — ps to invest and can gain the guarantee G at maturity
time. The maximal expected utility for the buyer is

Vo(G,x = ps) = sup BIUXD (T) + G)).

T—p2
TeP

The seller’s and buyer’s utility indifference prices are to find initial prices p; = py
and py = py with Vi(G,z + p¥) = V(G,x) and Vu(G,z — p;) = V(G,x). Denote
Pitier(G) = py and Ppyyer (G) := py for the T-claim G. In this study, we given an
exponential utility

U(r) = —e 7%,

where v > 0 is the risk aversion parameter.



3 Superreplication and Subreplication

t
[t6 integrals / 7(s) - dB(s) exist and are martingales under the condition
0

E UOT \w(t)\QdB(t)} < .

t
In fact, It6 integrals / 7(s) - dB(s) exist under the weak condition
0

/OT |T(t)]*dt < 0o a.s..

t

However, we can’t pledge / 7(s) - dB(s) are martingales under the weak condi-
0

tion. In general, we discuss local martingale rather than martingale in stochastic

differential equations.

Definition 3.1 An F;-adapted stochastic process M(t) € R" is called a local mar-
tingale with respect to {Fi} if there exists an increasing sequence of JFi-stopping
times 1, such that

T, — 00 a.s. as k — oo

and M(t A\ 1) is an Fi-martingale for all k.
We can get following properties:

Property 3.2 Let a filtered probability space (2, F,{F:i}o<i<r, P) and M(t) be a

local martingale with respect to {F;}.

(1) If M(t) is lower bounded, then M(t) is a supermartingale.

¢
(2) Let ¢(t,w) be a Fi-adapted process such that / o(s) - dM(s) exist. Then,
0

2(t) = / o(s) - M (s)

s a local martingale for 0 <t <T.



Proof. (1). Given t > s. Suppose 7} is an increasing sequence of F;-stopping times

such that M (t A 1) is an Fi-martingale for all k. From Fatou’s lemma,

E[liminf M(t A 7;)] < liminf E[M(t A 73,)]. (3.1)

k—o0 k—o00

A process M(t A i) is an Fi-martingale and
E[M(t A7i)] = E[E[M(t A7) Fo]] = E[M(0 A7)] = E[M(0)].
Since M (t A 1x,) exists as k — oo and (3.1), we get

E[M(t)] = E[ lim M(t A7,)] < E[M(0)]

k—o0

and M (t) is integrable. It follows from Fatou’s lemma for conditional expectations,

E[liminf M (¢t A )| Fs] < lilzn inf E[M(t A\ ;)| Fs] = liminf M (s A 7%)
—00

k—o0 k—o00

and hence E[M (t)|Fs] < M(s) almost surely.

(2). Since M(t) is a local martingale with respect to {F;}, there exists an
increasing sequence of stopping times 7, such that definition 3.1 holds. Suppose

{Ux} is an increasing sequence of bounded open sets in R". Let
e = inf{t > 0| p(t) & U} A7, for keN.
Since ¢(t A 71) is bounded and M (¢ A 7x) is a martingale for ¢ € [0, T], we obtain

Z{tNTy) = /0 " é(s) - dM(s)

is a martingale for ¢ € [0,T]. The proof is complete. [J

A probability measure () is called a local martingale measure with respect to P,
if it is equivalent to P and the process S = (S1(t), ..., Sn(t)) is a @Q-local martingale.
By M we denote the set of all equivalent local martingale measures for process S.
In this section, we show the upper hedging price and lower hedging price can be

represented by

P.,(G) = sup Eq[G

QeM

PioulG) = inf FolG].



The following theorem 3.3 and property 3.4 are adapted from the paper of Kramkrov
(1996).

Theorem 3.3 (Optional Decomposition, [8, Theorem 2.1]) Let F(t) € R be a
positive Fi-adapted process. Then F is a super-martingale for each measure QQ € M
if and only if there exists an S-integrable predictable process H(t) € R™ and an

Fi-adapted increasing positive process C' such that

F(t) = F(0) + / t H(s)-dS(s) — C(t), t € [0, T).

Proposition 3.4 (/8, Proposition 4.2]) Let f be a positive variable on (2, F, P)

with sup Eqgf < 0o. There is a right continuous and left limit exists process
QeEM

F(t) = ess sup Eg[f|Fi], t>0.
QEM

The process F is a ) super-martingale whatever () € M.

We consult theorem 3.5 of Kunita (2004) and proof the main result in this

section as follows:

Theorem 3.5 Let G be a bounded European contingent T-claim. We get

P,,(G) = sup Eg|G],
QeM

Prow(G) = ng/ﬁt EqG,

where M denotes the set of equivalent local martingale measures Q).

Proof. Without loss of generality, we assume G > 0. Set p = sup Eg[G] and
QeM

A,y = {z| there exits 7 € P such that X(™(T) > G a.s. }.
We first prove p < P,,(G). Let 2’ € A,,, then there exists a 7' € P such that

T
ng)(T)zx’+/ 7(t)-dS(t) > G a.s..
0



Given a () € M. Since G is lower bounded and @) < P, we get

X1y =2 + /T ©(t)-dS({t) > G as. wrt Q (3.2)
0

II/'/

and it is a lower bounded local (-martingale. By property 3.2, X Srl)(t) is a super-
martingale with respect to () and
T T
Eol | #(5)- dS(s)] = EolFol [ #(s)-dS(s)| 7] <0
0 0
Taking the expectation of (3.2) with respect to ) we obtain

J,’/ Z EQ[G]

Hence

p < Pu(G). (3.3)

Next, we verify the reverse inequality. From property 3.4., ess sup Eg|G|Fi]
QeEM
is a super-martingale for @) € M and lower bounded. It follows from theorem 3.3
that

ess sup EglG|Fi] = Eg|G] +/ H(s)-dS(s)—C(t), te[0,T],
QeM 0

where H is an S-integrable process and C' is a positive increasing process. There

exists a m € P such that m; = H; for 1 =1,...,n. We get
T
Eq|G] +/ m(t) - dS(t) > ess sup Eg[G|Fr] =G  a.s.,
0 QeEM
and Eg[G| € A,,. Therefore,

PUP<G) < EQ[G] <p.

From (3.3), we obtain P,,(G) = p. It is similar to verify P, (G) = Qm/{/l Eo|G].
€
U

10



4 Utility Indifference Pricing

In this section, we introduce the relative entropy and the central duality theorem
to show the main result. Denote P, the set of local martingale measures for S

absolutely continuous to P. The relative entropy H(Q|P) is defined by

E{Z—glng—g} itQ <P,
H(Q|P) =
+00 otherwise.

In probability theory and information theory, the quantity H(Q|P) measures the
difference between two probability measures () and P. Define Py = P;(P) to be
the set of @ € P, with finite relative entropy, H(Q|P) < oco. We consider the
assumption

Py M # 0. (4.1)
There is a unique measure @° € P; N M minimizing H(Q|P) over all Q € Py
and call Q" the minimal P-entropy martingale measure: see |7, Property 3.1 and

Property 3.2].

The main result of this study is obtained from the following theorem called the

central duality result. Let G be a bounded T-claim.

Theorem 4.1 Given A € R and consider the function

u(z; ) == —% 7127@ In Elexp (—y(X™(T) + AG))). (4.2)

Then, we can get

u(a; A) = @+ jnf (AEQ[C] + %H(Q|P)}. (4.3)

Moreover, the infimum in (4.3) is attained for a unique Q* € PN M whose Radon-

Nikodym derivative is given by

i o (oo ([ #asa))
dP A ;

11



A

t
where " is a self-financing portfolio and cy is a constant. In particular, z'f/ 7-dS
0

is (t,w) a.s. lower bounded, then ™ € P attains the infimum in (4.2).

Because In x /v is a continuous function on (0, c0), we can formulate the central
duality result to utility indifference pricing. The proof of theorem 4.1 is obtained in
section 5. Moreover, we improve the following result of Ilhan, Jonsson and Sircar

(2005) by theorem 4.1.

Denote © to be the set of F,-adapted, S-integrable R™"™!-valued processes 6
such that 6 is self-financing and Xée)(T) are ()-martingales for all ) € Py.

Theorem 4.2 ([6, Theorem 4.1], [1, Theorem 2.2] and [7, Theorem 2.1]) Given

A € R and consider the function

u'(m; ) = —% Gilelg In Elexp (—y(X™(T) + 2G))). (4.4)

Then, we can get
1
"(z;\) = inf {\Eg|G|+ —H(Q|P)}. 4.5
W@ N) =@+ Inf (EQ[C) +~H(QIP)} (4.5)

Moreover, the infimum in (4.5) is attained for a unique Qe PN M whose Radon-

Nikodym derivative is given by

i (oo ([ 7 as0))
—— =exp | ey — 0% -dS+ NG ) |,
P A~ ;

where 0 € © attains the infimum in (4.4), and cy is a constant.

The seller’s and buyer’s utility indifference price of the bounded claim G is the

solution py and p, of the stochastic differential equations

Put an exponential utility U(z) = —e™ 7" into (4.6), where v > 0 is the risk aversion

parameter. We get equations

— inf Elexp(—y(X, T (T) = G))] = — inf Elexp(—yX{™ (1)), .
~ inf Blexp(—(X (T) + G))] = — inf Blesp(—XO(T).

12



Since In z is a continuous function on (0, 00), it follows from (4.2) and (4.7) that we
rewrite (4.6) by

u(@ +py; —1) = u(x;0) = u(z — p; 1). (4.8)
Hence, utility indifference pricing for bounded T-claim G are solutions p; and p, of

(4.8) and we consider Py, (G) = py and Pyyye,(G) = py-

Lemma 4.3 Let G be a bounded T-claim. Then

Pbuyer<G) S Pseller(G>'

Proof.  From the Theorem 4.1 and (4.8), we get
1
Pyener(G) = sup { Eq[G] — —(H(Q|P) - H(Q0|P))}
QEP; Y

Poe(G) = Jaf {BlG1-+ —(H(@IP) ~ H(Q"IP))}

where Q° is a unique measure in Py N M and minimize H(Q|P) over all

Q € Ps. Let a function ¢ : Py — R with

¢(Q) = —(H(QIP) - H(Q"|P)) > 0.

1
Y
We obtain

Pseller(G) - Pbuyer(G) - Sgﬁl’? {EQ [G] C C(Q)} - nggf{EQ [G] + C(Q)}

= sup {Eo[G] — ¢(Q)} + sup {~Eq[G] - ¢(Q)}

QEP]‘ QGPf

> sup {~2((Q)} = 0.
QeP;

Using lemma 4.3 we can get the following inequality.

Theorem 4.4 Let G be a bounded T-claim. Then

Plow(G> S Pbuyer<G) S Pseller(G) S Pup(G)

13



Proof. It suffices to verify Psye,(G) < Pyp(G). From theorem 4.1 and lemma 4.3,
we get
Pseller<G) = sup {EQ [G] - C(Q)}
QEIP’fﬂM

< sup Eg|G] = P,,(G).
QeM

It is similar to show Py (G) < Pruyer(G).
Ol

14



5 Proof of the Central Duality Result

We consult the idea of Delbaen, Grandits, Rheinldnder, Samperi, Schweizer, and
Stricker (2002) to the setting of theorem 4.1. Consider a bounded contingent 7-

claim G and define a probability measure Pg; equivalent to P by

ﬁ = CG €’YG, (51)

where O5' := E[e7%] € (0,00). Since G is bounded, we can get for Q < P
d
H(le) = EQ In % + In CG + ’YG = H(Q|Pg) + In CG + EQ[’)/G] (52)
G
and H(Q|P) < oo implies H(Q|Pg) < oo. In particular, denote the set

Py(Pg) = {Q € Po|H(Q|Pg) < oo}
={Q € P,|H(Q|P) < oo}
=P(P)

and write P simply. Recall the assumption (4.1), there is a unique measure QY €
P; N M minimizing H(Q|Pg) over all Q € P; and call Q% the minimal Pg-entropy

martingale measure.

To verify the central duality result, we need one additional arrangement. Under
assumption (4.1), the density function of the minimal entropy Q° with respect to

P has the form

dQ” _ @)y — '
—5 = K exp(Xg(T))=Kexp | 0-dS (5.3)
0

for some constant K > 0 and some self-financing # such that
T
x(T) = / 0-dS
0

is a @Q"-martingale: see [3, Corollary 2.1] and [4, Proposition 3.2 and the proof of
Theorem 4.13]. Taking the natural logarithm and the expectation under Q°, we
could rewrite (5.3) by

d 0
In K = Ego[In d%] = H(Q|P). (5.4)

15



In the same way for Q%, we get the density function

Qg

T
= K¢ exp (XV(T)) = K¢ exp ( / O - dS)
dPG 0

for some constant K > 0 and some self-financing 6 such that
T
x\%N(T) = / O - dS
0

is a QY-martingale. Let

be a self-financing portfolio such that

(%) (06) 1 dQg
exp (=7 Xy (1)) = exp (Xg9(T)) = Ko dPo

is exactly in L'(Pg).

(5.5)

(5.6)

(5.7)

Proof of theorem 4.1. Since we give A € R, AG is always bounded. Without

loss of generality, we suppose A = —1 and consider an initial value x € R. Writing

uy(z) and us(x) for equations (4.2) and (4.3) imply

uy () = —%Tirrgjln Elexp (—y(z +/O m-dS —Q))]

1, 1 r
:x—;rlrIéfDlnEpG[C—Gexp(—/o ym - dS)]
nCs 1, T
— ~infInE 2 -
i In By exp (= | 7o dS)

:x—f—
and

. 1
wr(e) =+ inf (~ElG]+ H(@IP))

1
=z + inf {—EQ[G] + —(H(Q|PG') +InCq + E[’)/G])}
QePy Y
IHCG 1 .
— inf H(Q|P,
- df H(QlFe)

:x—i—

by (5.1) and (5.2).

As argued above and further including the definition of Q%, we can verify that

T
— inf In Ep,[exp (—/ m-ds)| = Qingf H(Q|Ps) = H(QY| Pe).
0 E

TEP

16



From (5.5), we can get

dQ?
H(Q%|Ps) = Ego [In d—PCG;] = In K.

T
For any m € P, it follows from Q¥ € P; N M and property 3.2 that / m-dS
0

T
is a Q-supermartingale. Since / fc - dS is a Q%-martingale, (5.5) and Jensen’s
0

1 T T
exp(—/ 7T~dS—/ O - dS)]
K¢ 0 0

T T
2—1nKG+EQoG[—/ w-dS—/ O - dS]
0 0

inequality, we obtain

T
lnEpG[exp(—/ m-dS)] =1nEg |
0

> —h’lKg.

Therefore,

T
— inf In Ep,[exp (—/ m-dS)] <In K.
0

TeP

Next, we verify the reverse inequality. From (5.5), there exists a self-financing

portfolio O such that

1

Erglowp ([ 6a-d5)] = 72—

Choose a self-financing portfolio wg such that for ¢ € [0, T], w € F; consider
t
Oa(t.w) if / b(s,0) - dS(s) > 0,
_ 0
t

o(t,w) =
: 0 if / Oc(s,w)-dS(s) <0

and hence

T T
In Ep, [exp (—/ e - dS)] <InEp,[exp (—/ Oc -dS)] = —In Kg.
0 0

Since ¢ is lower bounded, we can get 7 € P and

T
— inf In Ep,[exp (—/ e - dS)] > In Kg.
0

TeP

Choose ™ = 0" = —0g/v, Q* = Q% and ¢y, = In(KgCg). Thus the proof is
complete. []

17



6 Conclusion

Summarizing the thesis, it follows from theorem 3.5 and theorem 4.1 that we trans-
form superreplication, subreplication and the maximal expect utility into represen-
tations of equivalent local martingale measures with respect to given risky asset

prices. Therefore, we can compare pricing formulas and determine the main result.

Note that this study took a step in the exponential utility function and bounded
claims in the fundamental financial market. If the contingent claim is unbounded,
the proof of theorem 4.1 is not complete. But the central dual result of the max-
imal expect exponential utility still holds under some assumptions; see Delbaen,
Grandits, Rheinlénder, Samperi, Schweizer, and Stricker (2002). On the other
hand, it is possible of course to consider other utility functions or risky asset pro-

cesses.
In additional, risk indifference pricing is established by convex risk measure
p:F—=R,

satisfying some axioms, where F is the set of Fr measurable random variables.
Based on theorem 2.2 of Oksendal and Sulem (2009), the convex risk measure
has the representation about a family £ of probability measures () < P on Fr, for
which £ is given. Therefore, further research is required to compare risk indifference

pricing with utility indifference pricing for some suitable L.
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