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Selecting the Best Group of Playersfor a Composite Competition

Abstract

In alarge database, top-k query is an important mechanism to retrieve the most
valuable information for the users. It ranks data objects with aranking
function and reports the k objects with the highest scores. However, when an
object has multiple scores, how to rank objects without information loss
becomes challenging. In this paper, we model the object with multiple scores
as an uncertain data object and the uncertainty of the object as a distribution of
the scores, and consider anovel problem named Best-kGROUP query.  Imagine
the following scenario.  Assume there is a composite competition consisting of
several games each of which requires a distinct number of players. Suppose
the largest number is k, and we want to select the best group of k players from
all the players for the competition. A group X is considered better than another
group y if x has higher aggregated probability to be the top ones in more games
thany. Inorder to speed up the selection process, the groups worse than
another group definitely should first be discarded. We identify these groups
using a dynamic programming based approach and afiltering algorithm. The
remaining groups with the property that none of them have higher aggregated
probability to be the top ones for all games against the other groups are called
skylinegroups. From these skyline groups, we can easily compare them to
select the best group for the composite competition.  The experiments show
that our approach outperforms the other approachesin selecting the best group

to defeat the other groups in the composite competitions.
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1 INTRODUCTION

There are many approaches to help the users teveimportant data objects. Ranking
objects and reporting the ones with the highestescis called tofequery.  Traditional tofx
queries identify togk objects by a scoring function which gives eacleoba unique score.

For example, there are three players and theifgdimecords of a bowling game in Table 1-1.
The bowling is scored for each pin knocked overhe Pplayers will get bonuses in two cases.
One is that he/she knocked down all 10 pins wiéhfitst ball, called atrike and recorded as
an X, while the other is that no pins are left iaftee second ball, calledspare and recorded

as a slash. The bonus is that points scored éonétxt two and next ball after a strike and
spare are doubled, respectively. By the rules @jpwe obtain the scores for each frame,
shown in Table 1-2, and the scoring function tkrénese three players in a bowling game is

the aggregated scores. In this example, we caplygictaim the player A gets the first place.

Table 1-1: Pin-fall records of A, B, and C.

Player | 1 2 3 4 5 6 7 8 9 | 10 | 10+1 | 10+2




Table 1-2: Bowling scores of A, B, and C.

Player [ 1 12| 3(4| 5| 6| 78] 9]10| Score

A 30(29(120120|30(30|30|30|30(30| 279

B 25120(20(30|30|30(30(30|30|30| 275

C 30/130(30{28|20(17|20(30|30|30| 265

In the traditional togk query, the answer to a tdqguery is the extension of that to a
top-(k-1) query. Inthe example of the data in Tablg k2 top-1 player is A and the top-2
players are Aand B. When we defineoaposite competition consisting of various games
each of which requires distinct number of playersd suppose the largest number of players
in the games ik, we can simply submit a tdpguery to the database of players and take the
answer as the best groupkgblayers for the competition since thésglayers must contains
the answers of top-1, top-2, ..., and tégk] queries.

However, when a player has more competing expeggrhe/she will have not only one
score, shown in Table 1-3. To rank such data ¢bjsith multiple scores, we can simply
use another scoring function to obtain the avesagees or the expected scores, in other
words. When we replace the multiple scores wiingle score, some information is
omitted. For example, a player has the followiogres: 100, 1000 and 1000, while another
player has 50, 50 and 2000. The expected scone same, 700, but the range and the
distribution of the scores are not the same fasdhteo players. Therefore, this way to
model the multi-score data is not appropriate. thia paper, we use amcertainty model to
model the data objects with multiple scores. Theeutainty of each object is the

probabilistic scores which keep the original satiggribution, as shown in Table 1-4



Table 1-3: Records of player A, B, and C.

Player Past records
A 279 252| 252|252 | 266
B 275|300 275|200 200
C 265| 265|265 | 265| 265

Table 1-4: Modeled as uncertain data.

Probabilistic score
Player

Score | Probability
279 0.2

A 266 0.2
252 0.6
300 0.2

B 275 0.4
200 0.4

C 265 1.0

After we model the objects as uncertain datajdpek objects are defined as the k

objects with the highest probability to be the topres.

For example, when a top-1 query is

submitted to the dataset in Table 1-4, the proligld be the top-1 object for each object



needs to be obtained first and then the object thighhighest probability can be decided.
We compute the probability of A to be the top-lyelain three cases. One is when A gets
279 (with probability 0.2) and B and C get scoresgreater than A (with probability
0.4+0.4=0.8 of B and probability 1.0 of C). A hasipability 0.2*0.8*1.0=0.16 to be the top-1
player. Another is 0.2*0.4*1.0=0.08 and the otised.6*0.4*0=0 since C cannot be less
than Awhen A gets 252. Therefore, the total pbiliigt of A to be the top-1 player is
0.16+0.08+0=0.24. We can obtain the probabilityefach player in the same way to have
the top-1 player. When a tdpguery is submitted, we vielwobjects as a group and
compute the aggregated probability of these objecdbe the topk objects and select the
group with the highest aggregated probability &sahswer. Here we also use the data in
Table 1-4 as an example to explain more clearly.helVa top-2 query is submitted to the
dataset in Table 1-4, we group these three plaggrs3 groups as following: {A, B}, {A, C},
and {B, C}. The aggregated probability of eachugr@hould be computed as the way in the
above example. The aggregated probability of ABmnad be the top-2 players is computed
in nine cases. When A gets 279 (with probabili®)0B gets 300 (with probability 0.2) and
C gets the score not greater than A and B (witlhglodity 1.0), the probability of Aand B as
the top-2 players is 0.2*0.2*1.0=0.04. We can catemther eight cases as the same way.
Note that, when A gets 252 or B gets 200, C hashance to get a score smaller than A and B.
That is, A and B are not the top-2 players in thges so that the probability is O and it does
not contribute to the aggregated probability. Hgerkhe aggregated probability of Aand B to
be the top-2 players is 0.24. Again, we computeathgregated probability for other groups
to obtain the two players with the highest aggreggirobability to be the top-2 ones.
However, we have an observation of the top-k @sesh uncertain data. The answer of

topk query does not always include the answers of tpyeries, whereis less thak. We



take the data in Table 1-4 as an example. Theeamnsitop-1 query is B but that of top-2
guery is B and C, shown in Table 1-5 and Table 1-Bhat is, when we have a composite
competition consisting of two games which include game with 1 player while the other
with 2 players, the traditional method is not apiate since the top-2 query reports B and C,
but none of them is the answer of top-1 query. other words, the tog-query on uncertain

data cannot satisfy the need for a composite catigret

Table 1-5: The aggregated probability to be thelqgayer.

Player | Aggregated praobability

(B} 0.52
{C} 0.24
(A} 0.24

Table 1-6: The aggregated probability to be theZqyayers.

Players [ Aggregated probability

{A, C} 0.40
{B, C} 0.36
{A, B} 0.24

Therefore, we propose a novel problem naBesttkGROUP query to retrieve the best
groups for the composite competition. Supposdatgest number of players in the games

of the composite competitionks In a game with players, if a group x afplayers has a



higher aggregated probability to be the tqg@ayers than another group y, we say there is a
preference of x overy. A group P is said better than anotireup Q in a composite
competition if there are more preferences of thegoups in P than in Q. The best groups

are those that are not worse than any other groups.



2 RELATED WORK

In the following, we introduce the background otaertain data, the tokprocessing and
nearest-neighbor queries. On the other hand, seeraéntion the work of skyline and the

reason why we choose skyline to solve our problem.

2.1 Top-k Queries

Topk queries are useful when users are interestecimtst important objects, especially in
large databases. In[1], I. F. llyas et al. cligstfie topk processing techniques. There are
five categories as following: query model, data godry certainty, data access,
implementation level, and ranking function.

There are three types of query models. One iskl8plection Query which is to report
thek tuples with the highest score according to someirsg function.  Another is Tog-

Join Query which is the variance of T&®@election Query. Its scoring functions are
attached to join results. The other is Tofsggregate Query which focuses on groups of
tuples rather than single tuples.

In the data and query certainty issue, the authwtisermore classify the techniques into
three types. The first two types are related ttage data and queries. The difference
between them is that the first type reports theeaaswers of queries while the second types
reports the approximate answers instead. Theylpstis related to uncertain data which will
be more discussed in the following sections.

In data access field, sorted access and randoessece discussed. Difference data

access assumptions affect the methods to retinevartderlying data sources.



The way implementing tog-queries can be classified into two types. Oranis
application level and the other is on query endgivel. The difference between these two
types is the modification of the core of databasgirees.

The ranking functions in most techniques are assuto be monotone while a few ones
are generic form. However, in recent researclmaesare without scoring function. Itis

called a skyline query and we would discuss iteation O.

2.2 Uncertain Data

Recently, the research on uncertain data has t#tradot of interest. It is because the
problems related to uncertainty cannot be addreas#chditional approaches. In[2], C. C.
Aggarwal et al. survey the sources of uncertaintyis from errors, incompleteness, and
multiple records so that the data objects havegiibibtic attributes. The main research area
of uncertain data includes three types. One ia datdeling, another is data management,
and the other is data mining. Here we focus ord#dta management, and we use the

discrete probability distribution to model our urteén data.

221 Uncertain Top-k Queries

The traditional togk processing is to retrieve tlkauples with the highest scores. In
uncertain topk definition, we need to consider the tradeoff be&mecores and probabilities.
Here we will introduce two definitions proposed®). Before we explain the definitions,
we need the some preliminaries. Due to the uniogytan object may have different
behaviors, and each behavior has its existent pritga Thus, when every object acts as its
own behavior, we multiply the probability psaand claim this case is one of the possible

worlds and the existent probability of itps For instance, Table 2-1 shows the example



uncertain database. We can obtain all possibléd&érom it, shown in Table 2-2.

Table 2-1: The example database D.

Probabilistic score
Player
TupleID | Score | Probability
t1 279 0.2
A to 266 0.2
ts 252 0.6
ty 300 0.2
B ts 275 0.4
ts 200 0.4
C t7 265 1.0




Table 2-2: All possible worlds of D.

Possible World

Members

Probability

PW1

B(ts), A(t1), C(t)

0.2*0.2*1.0 = 0.04

PW;

A(ta), B(ts), C(t)

0.2*0.4*1.0 = 0.08

PW;

A(tl) ) C (t7) ) B (tG)

0.2*0.4*1.0 = 0.08

PW,

B(ts), A(t2), C(t)

0.2*0.2*1.0=0.04

PWs

B(ts), A(t2), C(t)

0.2*0.4*1.0 = 0.08

PWe

A(ty), C(t), B(ts)

0.2*0.4*1.0 = 0.08

PW;

B(t), C(t), A(ts)

0.6*0.2*1.0 = 0.12

PWs

B(ts), C(t7), A(t3)

0.6*0.4*1.0 = 0.24

PWs

C(t7)’ A(t3)’ B(te)

0.6*0.4*1.0=0.24

In U-Topk, we sum up all probabilities over all possible Msifor a topk tuples.
that, the U-Tog only considers the concept of tuples.
obtain all possible U-top2 answer in Table 2-3. efEfiore, <, t7> and <t, tz> with the
highest probability 0.24 to be top-2 over all pbssiworlds would be the answer of U-Top2.
M. Soliman et al. transform the U-Tloguery into a state search problem. They stam fro
the tuple with the highest score.

state with the highest probability until the lengfithe retrieved current statekis The

Each time tleansa new tuple, they extend the current

tuples kept in the state is the answer of UKlop

10

From Takk we can furthermore



Table 2-3: All possible U-top2 of D.

Top-2 vector | Probability
<ts, t7> 0.24
<t7, t> 0.24
<ty t7> 0.12
<ty, t=> 0.08
<ty, t7> 0.08
<ts, o> 0.08
<tp, t7> 0.08
<ty, 41> 0.04
<ty, ;> 0.04

M. Soliman et al. also define kRanks which is totally different from U-T&p
U-kRanks retrieves the tdptuples separately. That is, we scan the evetkimgrposition
for the tuple with highest existent probability.n this example, although the U-2Ranks
answer, <, t;>, is the same as the U-Top2 one, the semanticingganvery different.
Since the tuple of each ranking is picked separated might choose the same tuple in
different ranking or tuples from the same objecthat is, the UkRanks definition does not
care of the relation between each tuple in the answd the answer might not be valid in any

possible world.

11



Table 2-4: All possible rank 1 and rank 2 answers.

Rank 1 | Probability | Rank 2 | Probability
ts 0.32 [ 0.52
t7 0.24 B 0.24
ta 0.20 b 0.12
ty 0.16 3 0.08
t2 0.08 1 0.04

In addition, M. Hui et al. propose another defon about uncertain tok-queries in [4],
and itis called Pk For each tuple, they first define a toprobability which is the
possibility of the tuple as a member of the kopres over all possible worlds.  When we
compute the tof-probabilities, the straightforward approach sfieom the exclusive rules.
M. Hui et al. use the compressed dominant setdi agple to simplify the steps. Ina
compressed dominant set of a tuple t, all tuplesratependent of t. As we know, all the
probabilities can be simply multiplied when all kepare independent. Hence, the
computing process can be efficiently simplified.heTanswer of PT-k is all the tuples with
top-k probability higher than an input thresh@ld In the example of Table 2-1, whpn0.5,
the answer of PT-2 is only one tuple}{t From the definition, the answer of Kiis simply
a set of tuples with togprobability higher thap. The relation of each tuple is not

considered when PR+eports the answer.

12



Table 2-5: The tox-probability of all tuples.

Tuple D | Top-k probability
t1 0.20
to 0.20
ts 0.24
ty 0.20
ts 0.40
ts 0.00
t7 0.76

The uncertain top-queries above focus on the most probable tuplbs the topk«.
However, the answers might not have the highesescdn [5], T. Ge et al. observed the
answers of uncertain tdpgueries might be atypical. It means the answghbhave
relative low score. For example, the average sobtiee answer tuples might not be higher
than the expected score. Or combinations witheggged scores of tuples higher than the
answer are many and their total probability is mhigfner than the answer is. In these
situations, the uncertain tdpanswers are perhaps not appropriate in score pbnce
Therefore, T. Ge et al. propos@ypical-Togk to retrievec combinations to represent the
whole score distribution the dataset. It firstaiaedynamic programming based approach to
generate the whole distribution. Then, it mapspiteeess of retrieving combinations from

all combinations of score distribution to thranedian problem and resolves by two recursion

13



functions.

222  Uncertain Top-k Querieson Data Streams
Data streaming has been focused for a long timausecit models the way data collected
from the real-world applications. In a streamimglggem, the challenge is the rapid growth
of the amount of data. Both the execution time stodng space makes the approaches
designed for the static databases useless. Weassify the streaming models into two
types. One is unbounded streaming and the otherusded streaming. The former
collects data from the beginning while the lattenwd remove the expired data. This is
more challenging when we need to not only appemdamning data but also remove old
ones. We call this a sliding-window model since valid data only appear in the window
and the window would slides on the stream.

In [6], C. Jin et al. propose a framework to psxdifference types of tdpgueries on
uncertain data streams. They claim the previofisitens, such as U-Tdp U-kRanks,
PTk, and so on, can be plugged into this framework théir framework, they first define a
compact set which keeps the minimal tuples toeedrithe uncertain topanswers even if
new tuples are appended. However, the problerafisetl on sliding-window model, so we
use multiple compact sets at different time-statopsplement the removing operation.
The authors furthermore propose other compresgproaches to reduce the space the large

amount of compact sets would need.

2.2.3 Uncertain Nearest Neighbor Queries
In addition to the uncertain tdpegueries, there are uncertain NN queries to redribe

most important objects. The NN (nearest neighfuoeries report the closest object to the

14



query object. However, in the uncertain databagery object has its probability to be the
NN and we define this probability as PNN. G. Bdskaet al. propose T&FPNN to report
thek objects with the highest probability to be the MN7]. They consider both I/O and
computing time to design an efficient algorithm fetrieving thek objects. Instead of
computing the exact PNN of all objects, they usgzg bound to simplified the computation
and reduce the cost. Here we can transform thedéies into toge queries. We let the
scoring function be the distance of the object tredquery, and the score is the lower the
better. Now we can find out the PNN of an objedhie same as the probability of a player

to be the top-1 team in 1-game. We will take FBE]NN for comparison in our experiments.

2.3 Skyline

The skyline query is also a useful approach toeetrimportant data. Before we introduce
the definition of skyline, we have to explain wita term “dominate” is. Suppose the value
is the smaller the better. A point A is said tomdieate another point B if and only if for

every dimension, the value of A is less than oraétputhat of B, and at least in one dimension
the value of Ais less than that of B.  For examples <5, 6, 7, 8> and B is <8, 6, 7, 8>.
Then, we can easily tell that A dominates B. Meepif there is a point cannot be
dominated by any other points in the database,allé¢he point as a skyline point.

However, as the number of dimensions increaspsir becomes more difficult to be
dominated. That is, the number of skyline poirdsdmes huge. Therefore, M. L. Yiu et al.
combine the advantages of skyline and kapteries to define a new query named kop-
dominating query in [8]. It computes the numbepoints dominated by each point as the
ranking score, and then returns the points withhighest scores. Users do not need to

worry about how to define a scoring function and semply give a valu& as parameter to
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restrict the size of the answers.

Another work on high dimension skyline operatismproposed by C.-Y. Chan et al. in
[9]. They definek-dominate to describe a point A has the dominamopeguty of another
point B in a subspace of original space. Accordothek-dominance, they also define
k-dominant skyline consisting of points which canbek-dominated. Note that, the
problem does not only reduce the dimension intoessaibspace since the dominance
relationship between any two points is not spedifiea fixed subspace. We have the
property that if a point Alkt+1)-dominates another point B, A mkstlominates B. It implies
that everyk-dominant skyline point must be one of the membé@g&+1)-dominant skyline.
Hence, we know the size of the answerk-dbminant skyline must be less than that of

original skyline.
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3 METHODOLOGY

In this section, we will first define our problemdathen show the basic algorithms to address
it. In the basic algorithms, the aggregated prdivalor all groups should be computed so
that we use a dynamic programming based approaathieve the goal. However, in
consideration of the time and space complexitytwe to heuristics to reduce the cost and
compare the performance in the Experiment Secti®esides, we also exploit the property
of skyline to prune those with no chance to beath&wver. The number of the remaining
ones is much smaller after the pruning procesb@one can compare them directly to

retrieve the best as the answer.

3.1 Problem Definition
Before giving the definition of our problem, wedlirdefine the terms used in the following.
Definition 3-1li-game. A game withi players in one team.
Definition 3-2i-group. A set ofi players.
Definition 3-3aggregated probability of an i-group. The probability is the sum of the
probabilities of the players in thisggroup to be the topplayers. In other words, we sum up

the U-Top probabilities of the tuples related to tiHgroup.
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Definition 3-4kGROUP. AkGROUP is a set df groups, which includes one each for
all sizes of groups. For example, a 3SGROUP shimaldde three groups which are a
1-group, a 2-group, and a 3-group. Besides, fargroup in thekGROUP, it should be the
sub-group of thé&-group in the samkGROUP, and its aggregated probability is the highes
among all sub-groups with sizef thek-group mentioned above.

Definition 3-5HiRank vector of a kKGROUP. It is a vector withk dimensions.

Assume that we sort aligroups by aggregated probability and define thatane whose rank
is higher has higher aggregated probability. ThRedtik vector keeps the rank in dimension
for eachi-group in thiskGROUP. For example, in Table 3-3, the 2GROUP, {{8, C}},

has <1, 2> as the HiRank vector since {B} has tighést aggregated probability so that {B}
is ranked first in 1-game and {B, C} has the sechighest aggregated probability so that it is
ranked second in 2-game.

Definition 3-6better KGROUP.  For ani-game, if ari-group x has a higher aggregated
probability than anothargroup y, we define there is a preference of x gverHence, a
KGROUP P is a betttdGROUP than anoth&GROUP Q if there are more preferences of the
I-groups in P than in Q.

Definition 3-7best kGROUP. AKGROUP is the be#GROUP if no othekGROUP is
better than it.

Next, we introduce the concept of skyline to helpieve allkGROUPSs with chance to
be the best one.

Definition 3-8 &kylinekGROUP. For akGROUP, if there are no othekGROUPs
dominating thikGROUP with respect to the HiRank vector, we cadisita skylin&kGROUP.

A kGROUP P is said tdominate anothekGROUP Q if and only if in the HiRank vectopV

and Vg, Vp. is less than or equal tagY for every dimension and \b,j is less than ¥ in
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some dimensiop We also use the term non-skylk@ROUP in opposition.
Now, we can give the definition of our problem éa®n the following uncertainty
model. For a database D, there miacertain players each of which has probabilstares,

shown in Table 2-1. We can also represent D asdheept of tuples as shown in Table 3-1.

Table 3-1: The tuple concept of D.

TupleID | Related player | Score | Probability
t1 A 279 0.2
to A 266 0.2
t3 A 252 0.6
ty B 300 0.2
ts B 275 0.4
ts B 200 0.4
t7 C 265 1.0

Definition 3-9Best-kGROUP query. The BestkGROUP query returns the best
KGROUPs.

Here is an example to illustrate the BEGROUP query. According to the database D
in Table 2-1, we can obtain a table keeping alugsosorted by their aggregated probabilities,
shown in Table 3-2. Suppose we submit a Best-2GR@uéry to D. Then, we need to

find the HiRank vectors of all 2GROUP. The infotroa of finding results of the
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Best-2GROUP query is shown in Table 3-3.  Thus,{{fA, C}} and {{B}, {B, C}} are

both the answers of the Best-2GROUP query.

Table 3-2: The table with all groups and their aggted probabilities.

1-game 2-game 3-game

{B} |0.52|{A, C} | 0.40|{A, B, C} | 1.000

{A} |0.24|{B,C} |0.36

{C} |0.24| {A, B} | 0.24

Table 3-3: Information of selecting the best 2GR@WPthe dataset in D.

2GROUP HiRank vector

{{A}, {A, C}} <2, 1>
{{B}, {B, C}} <1, 2>
{{A}, {A, B}} <1, 3> {{B}, {B, C}} is better than it

3.2 TheBasic Algorithms
In comparison with our basic algorithms, we firgroduce a naive approach to discover the
results of the BestGROUP query.

In the naive approach, we generate allktigeoups, and then, for eakkgroup, create a
KGROUP having thig-group and it sub-groups according to Definitios.3- After we obtain
all HiRank vectors of akGROUPSs, we can compare which is better with ealerot Then,

after thos&kGROUPs worse than the others are removed, the mergasnes are the best.
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However, this approach suffers from the high costamputation. Therefore, we propose
the basic algorithms to improve it.

First, we generate all groups with their aggregiambability based on dynamic
programming. Here is our algorith@roupGen in Figure 3-1. The input ddroupGen is a
database in tuple concept ordered by score. mardic programming based approach,
tuples should be independent; otherwise, we camuse the previous computation to reduce
the computing time. However, tuples in D are oftelated to other tuples, i.e. they belong
to the same player. That is, we cannot computedhrect probabilities from only one scan.
Instead, we perform an incremental method. Eauoh tve retrieve a new tuple in D, we
perform a new scan reversely starting from the twghe (line 5-8) and stopping at the first
tuple in D. However, in each scan, tuples relébetthis new tuple should be removed and
others can be unified into ones with respect tplager. We use MEHash to keep the
information of all unified probabilities (line 4).Hence, only unified probabilities except the
one related to the new tuple needs computing 9#i€). Furthermore, in one scan,
GroupGen would generate only part of aggregated probalfiditythose groups related to the
tuples scanned so far, so we keep these probasiiiticHash temporarily (line 1 and 13).
After we retrieve all tuples in D, the aggregatedbabilities of the groups in cHash become
complete. Then, all groups are distinguished ftbeir size and sorted by aggregated

probability as the result to return (line 15-16).
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Input: D: a database in tuple concept ordered bv score

Output: all groups distinguished from size and sorted by aggregated probability

cHash: temporarilv keeps all groups and their current probability
MEHash: keeps all plavers and their current probability
foreachrin D do
Update tto MEHash
DPTable[| MEHash|][£]: the dynamic programming table
index = |MEHash|-1
DPTable[index][1] = new Group(?)
index = index-1
for each player in MEHash but not owning ¢ do
UpdateDPTable{DPTable, Priplayer), index)
index = index-1
end for
put all groups in DPT[0] into cHash
end for
classify all groups bv size and sort each class by probability
return all groups and their probability

Function UpdateDPTable(DPTable, P, index)

fori=1tokdo
multiply all groups in DPT[index+1][i-1] by P, and add to DPT[index][{]
multiply all groups in DPT[index+1][{] bv 1-P, and add to DPT[index][{]

end for

Figure 3-1: AlgorithmGroupGen.

In Figure 3-2we illustrate the process of updating the dyngmagramming table. In

each scan of a new tuplee would put the object related the new tuptdc the last row and

other objects appeared so fato the higher rowg the dynamic programming tal. Note

that, the order of other objects does not matteresthey are all independentWe start from
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the bottom leftell and append a new group {Cto the cell. Sincany2-group cannot be
generated by only one object, we stop the updatieeotast row anscar upwards. For a
cell X, the groups inside are generated by two ways. i©fiem the lower le cell A. In
this case, all groups in ghouldbe extended with and appended to,>and the probabilit
of each group should be multiplied by iexistence probability of O The other is from th
lower cell B. This timeave simply append all groupga B to X with their probability
multiplied by the norexistenc probability of @ (1 — Pr (0;)). When we finish updatin
all cells in the table, the groups in the first rag the gray regiorarethe ones with correct

probability in this scan.

1 2 i il k
O1
Oz
O; X
O A | B
trelatedto O | {O7}

Figure 3-2:lllustration of updating the dynamic programminglé.

Since the norgkylinekGROUPSs must be worse than a spe&@ROUP byDefinition

3-6 and Definition 3-8we can ignore them is this stefWe will introduceSubsetFilter to
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retrieve the skylindGROUPs without computing all HiRank vectors. Hoeewbefore we
discuss the algorithrBubsetFilter, we need to show some properties ofkBROUPs.

Property 1. For akGROUP G and itsHiRank vector Vg, any other kGROUP
having an i-group whoserank is higher than Vg.i (thevaluein dimension i of V) would
never be dominated by G.

Proof: Assume that KGROUP A is dominated by G and having sorggoup whose
rank is higher than thiegroup in G.  Here we denote the HiRank vector cdsAVxa. We
can obtain two formulas from this assumption. Q8e(Vj,Vy.j = Vg.j) A (3),Va.j >
V;.j), and the other isV,.i < V;.i. However, it is contradiction between these two
formulas. Hence, the assumption is false and wevka kGROUP having somegroup
whose rank is higher thang¥ must not be dominated by G.

It is easy to verify the correctness of this proper Recall the definition of dominating.
We can formulate the equivalence proposition of A vector A is said not to dominate
another vector B if and only if the value of A isegt than that of B in any dimension. Hence,
thekGROUPs with thé-group extended from anygroup whose rank is higher tha.V
must have angroup whose rank is higher than G in dimensionThis is why we claim they
must not be dominated by G.

Property 2. 1f akGROUP G has a k-group with the highest aggregated probability
and thereisno other k-group with the same probability asit, thiskGROUP G must bea
skyline KGROUP.

Proof: We prove this by the equivalence propositiolf G is a hon-skylintGROUP,
there must be EGROUP A dominating G. That i{Vi,Va.i < Vg.i) A (3i, Va0 < V. Q).

In dimensiork, there are two situations. One is whéqn k < V;. k. It turns out that G does

not have &-group with the highest aggregated probability. e Dither is wherV,. k = V. k.
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It makes that there are at least ®"@ROUPSs having thk-group with the same aggregated
probability. Since the equivalence propositiotrige, Property 2 is proven.

To use this property, we assume that each timandigshing a skylinkGROUP, we
would prune alkGROUPs dominated by it. That is, k@ROUPs not being removed so far
must not be dominated by any reported skykB&ROUP. Moreover, thetGROUP having
thek-group with the highest aggregated probability rmegtbe dominated by any other
KGROUP having th&-group whose rank is lower than it. Since #&ROUP cannot be
dominated, it must be a skylik&ROUP. Note that, if there are more than kGBROUPs
having thek-group with the highest aggregated probabilityeast one of them must be a
skylinekGROUP.

In algorithmSubsetFilter, shown in Figure 3-3, we take all groups as irgnd it outputs
all skylinekGROUPs. At first, S is used to keep all the pdesiimswers (line 1). We start
from thekGROUP G having thk-group with the highest aggregated probability adicm to
Property 2 (line 3-8). Then, we use Property filter out thosek-groups extends from
i-groups whose ranks are higher tivarior somei-game and remove othlkigroups since the
KGROUPs created from them must be non-skyline dimes15-19). After adding G into S
(line 20), we repeat the whole process until thputrset K is empty.  Finally, we can return

all skylinekGROUPs.

25



Input: K: all &-groups; O other groups
Output: all skvline #GER.OUPs
1 5= keeps all skyvline XGROUPs
2 while K is not empty do
3 if more than one f-groups with the highest aggregated probabilitv then
4 create fGFOUPs for all these &-groups according to Definition 3-4
5 G = anv skvline ZGROUP of them
6 else
7 G=a kGROUPhaving the kgroup and its sub-groups according to Definition 3-4
8 end if
9 remove the &-group chosen by G
10 v =the HiRank vector of G
11 Subset = : a set to filter out possible skvline HfGROUPs
12 for each dimension i do
13 add all i-groups whose rank is higher than or equal to 1.7 to Subset
14 end for
15 for each g whose rank is lower than or equal tovkin K do
16 if g is not a superset of anv of Subset then
17 remove g from K
18 end if
19 end for
20 add Ginto 5
21 end while
22 returmall ZGROUPin 5

Figure 3-3: AlgorithmSubsetFilter.

After we retrieve all skylinkGROUPSs, we can directgpmpare each other to obtain -
best one since the size of skylkGROUPs isnuch smaller than the size of origit

KGROUPs The algorithm to retrieve the bkGROUPSs is shown iRigure3-4.
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Input: 5: keeps all skvline AGROUPs
Output: the best FGROUPs
1  Answer: keeps all possible answers
2 foreachgin Sdo
3 for each a in Answer do
4 if g is better than @ then
5 ais removed from Answer and g is appended to Answer
6 else if @ is better than g then
7 break
8 else
9 gis appended to Answer
10 end if
11 end for
12  end for
13 return all xGROUPsin Answer

Figure 3-4: AlgorithmBestGROUP.

Note that, the be&tGROUPsfrom all players are supposed to have the lardestae tc
be better than other onesThat is, when we randomly seleckGROUPx from any other
ones the probability of the bekGROUPSs being better tharskould be high. In anoth
consideration, the number KGROUPs dominated by a skylik&ROUPcan be viewed as
the lower bound of its number KGROUPsbeing worse than it. A skylirkGROUP x
being better than another skylioney must have larger number than y since when xt®t
thany, x is also better than any dominated bylwg. this papr, the beskGROUPs are defined
as the onenot being worse than any otfones. That is, no othkGROUPshave larger
number than the best onesAnd it leads to the largest charof the answeto be the best

KGROUPs.
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3.3 TheHeuristic Approaches
We analyze the time complexity GroupGen and obtain the time complexitQ (nkN).
However, in each iteration, the cell of the dynapregramming table contain@.‘) groups,
wherei is the size of groups. That is, when we condidercomputation in each cell, the
total complexity become® (n* - nkN). It is why we turn to heuristics to reduce thstco
An observation is that the probabilities of mamgups are low or even equal to zero.
We have an attempt to ignore the groups with tledaility O and it is called
IgnoreGroupGen.  IgnoreGroupGen makes no difference in the membership of skyline
KGROUPs. However, the cost of this attempt mighttst high. Another attempt,
LimitGroupGen, is to restrict the size of each cellLimitGroupGen would lead to an amount
of inaccuracy but benefit the cost greatly.  Ityokeepsan(a) groups with the highest

probability in each cell where the equatiofw) is defined as following.
[ . [ n
|m1n<(k),a-log(k)>, k<

{kmi“ (([ ) “’g(ﬁ)) ; j

Equation 1

m(a) =

In Equation 1, we define the equatim(w) with respect to the log of the maximum value

of (%), whereq is a scale parameter aiis$ from 1 tok. If kis less than’z—l, the maximum
value will be (7), otherwise([ﬁ]). Note that, whek or n is too small, the log of}) (or
2

([ﬁl)) might be less tharf};) (or (['ﬂl])), and we should choosg') (or ([g])) in these cases.

More analyses of the heuristic approaches witm@wvn in Experiment Section.

28



4 EXPERIMENTS

In this section, we set up experiments to compareBestkGROUP query and other
uncertain topk queries proposed in previous work. Here we cardido algorithms as
following: U-Topk and Tofx-PNN. Besides, we use the expected value apprasdtine
baseline of our experiments since it is the masigitforward one.

In our experiments, we generate 20 players aridgberes. Each player has at least
one score and at most ten scores in the distributidlote that, there are no two or more
players with the same scores.

Here we compare the probability of defeating otfrelups in a composite competition

and execution time. In addition, we also examireegccuracy afimitGroupGen.

4.1 Experiment Setup

Before we start the experiments, we should firéihdethe inputs. The input is thSET
which is a set ok groups and includes one each for all sizes offggou For an-group in
thiskSET, it must be the sub-group of thgroup in the samkSET. From the definition
above, we know thkSET is the superset of tk&ROUP and we can take the answer of the
BestkGROUP query as theSET. For each algorithm except our BRGIROUP query, the
kKSET consists of thiegroup which is the answer of the query on paramdt® each.
However, when the answer is not the sub-group@kiroup in thekSET, we randomly
choose one of the sub-groups of khgroup since the algorithm does not provide other
answers.

In the competition experiments, we make 20 contpasimpetitions in iteration and in
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each iteration, we randomly generateS&T to compete with the one of the algorithm to be
compared. These 20 composite competitions coofdifferent number of games. A
competition withk players is composed &fdistinct games, from 1-gamekagyame. Ina
composite competition witk players, we have to input twSETs and then obtain the better
of this competition. Note that, the betkSET here is defined the same as the better
KGROUP, so is the bekSET. We sum up the counts of preference of thes&$ETSs.

Here tha-group of eactkSET is for tha-game. The one with more preferences defeats
another in this competition. We use the probabditdefeating othekSETs over 100
iterations to compare all algorithms.

Here we introduce the way to perform the experinneeachi-game. Since each
player has many scores as a discrete distributtemeed to model the distribution rather than
use the expected value to simplify it.  We usaaghtforward approach to model all the
distribution of all players. We randomly pick ase from his/her distribution as the
performance of this player. Assuming that the cemky-picking approach would fit the
probability model in large quantities, we performststep MAX_BOUND times (line 21).
Then, in each iteration, we sort all players withit randomly-picked scores. Amgroup
has exactly the topplayers would obtain one count. Tikgroup with more counts after
MAX_BOUND iterations is the one gaining a preferenc The detail process of the

experiment is shown in Figure 4-1.
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Input: two kSETs, A and B
Output: the better of A and B

BetterCountOfA =0
BetterCountOfB =0
for each i-game do
preferred = MorePreferences(i-group of A, i-group of B, i)
if A is the prefered then
BetterCountOfA ++
else
BetterCountOfB ++
end if
end for
if BetterCountOfA > BetterCountOfB then
return A is the better
else if BetterCountOfA < BetterCountOfB then
return B is the better
else
return cannot be distinguished
end if

Function MorePreferences(A, B, i)
PreferenceCountOfA =0
PreferenceCountOfB =0
while count < MAX_BOUND do
for each player in database do
randomly pick a score from the distribution of player
end for
sort all players with score
if members in A is exactly the top-i of all players then
PreferenceCountOfA ++
else if members in B is exactly the top-i of all players then
PreferenceCountOfB ++
end if
end while
if PreferenceCountOfA > PreferenceCountOfB then
return A
else if PreferenceCountOfA < PreferenceCountOfB then
return B
else
MorePreferences(A, B, i) // perform again to decide which to return
end if

Figure 4-1: Experiment process.
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4.2 On Execution Time

In Figure 4-2, we first compare the execution ten@ong these algorithms in two types of
datasets. One is uniform distribution and the oiheaormal distribution. Here we do not
perform the algorithnGroupGen because it costs too much space. But we can kxaatly
that it must take longer time thégnoreGroupGen does.

The average execution time of normal distributiataset is larger since we have to
model the normal distribution by almost 10 scomekeep the characteristic of the normal
distribution while the datasets of uniform disttiion is unrestricted.

The baseline and T&PNN cost a constant time for evéryalue on datasets of both
distributions. However, in the dataset of unifadistribution, the time U-Tdpcosts raises
up severely wheh increases because U-Topeeds to scan the whole database to find the
answers. Also, the timgnoreGroupGen andLimitGroupGen cost is almost the same
because the score range of each player overlajsaad the probability might be little but
hardly be 0. In this case, the drawback imitGroupGen sorting all groups in each cell
becomes more obvious. On the other hand, in tteseiaof normal distribution, the case of
overlapping is reduced so that U-kapins with a constant time, too. Since the prdiigbi
of a group becomes 0 when the scores of some phayen this group have all appeared, less
overlapping leads to more groups with probability Here,|gnoreGroupGen takes almost
twice the time oLimitGroupGen does. In other words, the number of groups ignofed

IgnoreGroupGen might be also about twice of thatlamitGroupGen.
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Time cost on uniform distribution datasets
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Figure 4-2: Execution time among different algarith
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4.3 On Accuracy
Here we compare the accuracy betw&eoupGen andLimitGroupGen.

We can see the accuracy from the Figure 4-3 beloMne F1-measure is computed by
the value of precision and recall. We find alltd€SROUPs fronGroupGen and
LimitGroupGen, separately. The precision is the percentageek@ROUPs matched in
two approaches over all generatedoyitGroupGen while the recall is over all generated by
GroupGen.

Here the value aof can be 5, 100, 500, and 1000. The larger the \@flues, the
higher the accuracy is. However, the differenagoisobvious in Figure 4-3. It might be
because of the small size of our datasets. Theesalf F1-measure are almost 1 but wken
is 8, the value is relatively low. It is becaulke groups ignored in the cells of a dynamic
programming table affect the rankings of the relaeups so that so&ROUPSs have
wrong HiRank vectors and the algorithm repostsateng answer. Hence, the value of

F1l-measure is only related to the reason and weotastimate the trend in F1-measure.

Accuracy of difference a

0.95 -
0.9 -

0.85 -

Average F1-measure

0.8 -

0.75 A

The composite competitions with different k

Ma=5 WMa=100 ma=500 ma=1000

Figure 4-3: Accuracy dfimitGroupGen.

34



4.4 On Performance of the Composite Competition
In this section, we would compare the performarfdb@expected value approach (baseline),

U-Topk, Topk-PNN, andk-group. We use the experiment process mention&eation 4.1.

Performance on datasets over two distributions

Probability of defeating other kSETs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The composite competitions with different k

M Baseline mU-Topk ®™ Topk-PNN m Best-kGROUP

Figure 4-4: Probability of defeating othe8ETs among different algorithms.

From Figure 4-4, we can see the probability obdéhg othekSETs is lower down
when the value df increases in baseline, U-Tig@and To-PNN. The baseline considers
the multiple scores as an expected value and @ththe answer ingame is the players
with the highest expected value, the real probistiidi be the top-ones is not considered. In
Topk-PNN, although the real probability is computedjaes not consider to pkiplayers in
one group. Instead, it puts each player in a sigghup and independently computes the
probability of each group. However, U-Tloponsiders the real probability and puglayers
into one group, but its algorithmtigple-wise and incoherent. The term “tuple-wise” means

that each-group represents a specific performancepdayers and the consideration is not
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comprehensive. Moreover, when a group is repateithe answer of U-Tépthe players of
any of its sub-groups may not have high probabibtipe the top-players. Whelk
increases and the competition becomes complictitede three algorithms cannot give a
good answer for the competition.

Therefore, the BekGROUP query outperforms other algorithms in setecthe best
KGROUP for a composite competition. Also, whendbmpetition becomes more and more

complicated, the Be’SROUP query shows the distinction.

36



5 CONCLUSIONSAND FUTURE WORK

In this paper, we propose a novel problem to sehecbeskGROUP in a composite
competition. The concept of the composite comjpetiis not considered in previous work
so that their answers are not suitable for addrgdsis problem.

In addition, we use heuristics to reduce the obgenerating all groups with aggregated
probability. By a skyline filter, we can remok@€ROUPs with no chance to be the answer.
The SubsetFilter algorithm furthermore exploits the relationshipag dimensions to
retrieve the skyline without redundant steps. Atke experiments show the value of our
heuristic approaches and the outperformance oBeatkGROUP query.

Our future work will be solving the problem in are realistic environment. The
databases should be updated when players play aewsgyand have new records. Reusing
the computing results in the past would reducectis but is challenging. Besides, current
uncertain model uses a discrete distribution. dfdiscuss objects with continuous
distribution such as moving objects, what the besertain model is should be first
considered. Moreover, the algorithm to generdtgralips with probability is costly, in this
paper, we use heuristics to reduce the cost amateviwoking for other algorithms to improve
the complexity. Overall, this paper only describesfirst and simple step of our work and

we believe further research would also be intemgsti
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