A Phase-type Queueing Model with Multiple
Servers by Matrix Decomposition Approaches
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Abstract

Stationary probabilities are fundamental in response to various measures
of performance in queueing networks. Solving stationary probabilities
in Quasi-Birth-and-Death (QBD) with phase-type distribution normally
are dependent on the structure of the queueing network. In this thesis,
a new computing scheme is developed for attaining stationary probabili-
ties in queueing networks with multiple servers. This scheme provides a
general approach of considering the complexity of computing algorithm.
The result becomes more significant when a large matrix is involved in
computation. After determining the stationary probability, we study the
departure process and the moments of inter-departure times. We com-
pute the moments of inter-departure times and the variance by applying
two numerical methods (Matlab and Promodel). The lag, correlation
of inter-departure times is also introduced in the thesis. The proposed

approach is proved theoretically and verified with illustrative examples.
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Chapter 1

Introduction

The Markovian arrival process (MAP) is a generalization of the Poisson process,
where the arrivals are governed by a Markov chain [10]. We consider a semi
MAP/M/n queueing system, where customers arrive at the system according to
a phase-type process but may leave the system without services. The family of
phase-type distributions is widely used in algorithmic probability [5]. A continu-
ous time phase-type distribution is the distribution of the time until absorption in
an absorbing Markovian process. We assume the inter-arrival time follows a typ-
ical MAP but the arrival rate is smaller since the renege occurs. All n servers of
the system are identical, and their service times are independent and identically
distributed (i.i.d.) random variables following exponential distributions. Each in-
coming customer receives service immediately if he/she finds an idle server upon

arrival.

Although M AP/M /n queues have been studied extensively by many researchers,
analytical solutions for the stationary probability have not yet been studied com-
prehensively in the literature [5]. In this thesis, we study the stationary distribution
of such a semi M AP/M /n queueing system with multiple servers. We compute the
stationary probability by applying the matrix geometric solution procedure in [8],
which will be combined with Ramaswami’s formula [7] and block LU factorization [6]

in this thesis. The main contribution in the thesis is to present a matrix decompo-



sition approach for the stationary probability in a phase-type M AP/M /n queueing
model. Through solving the system of sub-matrices by using Matrix-Geometric

Solution Method, we obtain the stationary probability.

Matrix analytic methods are popular as modeling tools because they give one
the ability to construct and analyze a wide class of queueing models in a unified and
algorithmically tractable way [7]. The Matrix-Geometric Solution Method [5, §]
relies on identifying two parts within the structure of the underlying continuous
time Markov chain, including the initial/boundary part and the repetitive part. The
initial part has a non-regular structure and each component in it must be represented
in detail [8]. The repetitive part has a regular structure and can be represented in
stochastic process algebras as a composition of several components. In Matrix-
Geometric Solution Method, the infinitesimal generator matrix is decomposed into
sub-matrices, with each one of them representing the transition rates in a particular
area within a given part, or between them [5, 8]. The size of the state space would
be reasonably small compared with the size of the infinitesimal generator matrix of

the Markovian process even if the system is infinite [3].

The inter-departure times of customers leaving the system are correlated [4].
In the standard network node approximation approach, the departure process from a
workstation system is normally approximated by assuming that these inter-departure
times are independent and identically distributed (i.i.d.). However, this i.i.d. as-
sumption allows for a simple approximation [12] of the squared coefficient of variation
(SCV) of departure process (C?) as a function of the systems utilization (u) and the

arrival and service processes SCV’s (C2%,C?) for a G/G/n queue as

Ci=(1—u)(C; —1) +u*(C = 1) /v/n.

Bitran and Dasu [1] developed a phase-type distribution representation of the
departure process from a single server system and provided moments of the inter-
departure times of a > Ph;/Ph/1 queue. We extend those results to get the moment

of inter-departure times and correlations between successive departures.



The remainder of the thesis is organized as follows. Chapter 2 introduces a
queueing model with phase-type Markovian arrival process. In Chapter 3, we present
a matrix decomposition approach for the stationary probability in a phase-type
MAP/M/n queueing model by applying the Matrix-Geometric Solution Method
combined with Ramaswami’s formula and LU factorization. We introduce the inter-
departure times in Chapter 4. Numerical results of M AP/M /n queueing systems
with multiple servers are given in Chapter 5, and numerical results of the stationary
distribution are compared with approximation methods and simulations. Conclud-

ing remarks are to be given in Chapter 6.



Chapter 2

Problem Definitions

2.1 Markovian arrival process with phase-type dis-

tributions

We consider a single queueing station and model the queueing network as a semi
MAP/M/n queue shown in Fig. 2.1, where n servers are all identical. The mean
service times of each server is exponentially distributed with rate p. Let S; and Sy,
represent a transition of service that customer stays with the server and finishes the

service, individually, i.e.,
s [ ). 5= ]

The queueing network has two independent and identical arrival streams, where
there are two phases for each arrival stream [4]. For the first arrival stream, the time
spent in the first phase is exponentially distributed with rate A, and the time spent
in the second phase is also exponentially distributed with rate Ay. Similarly, for the
other arrival stream, the time spent in the first phase is exponentially distributed
with rate 1, and the time spent in the second phase is also exponentially distributed
with rate 5. After the first phase of arrival stream, the incoming arrival goes to

the queueing system (and is to be served) with probability 0 < p < 1; otherwise, it



jumps to the second phase and then departs directly with probability (1 — p). All

arrival streams operate in a similar manner.

Figure 2.1: A semi M AP/M /n queueing model

Hence, customers arrive at the system according to a phase-type process with

mean arrival rate A > 0, where the mean arrival rate is defined as

— 1 1 1 1 1 1
A=pl(~p+(+—+—)1=p] +pl(=p+(—+—=)1-p)] "

(Gt (5 A4 3@ =P+ Pl (- + )1 - )
These two arrival processes are independent to each other, and parameters are

given by (A1, p, A2) and (y1,p,72), individually. Namely, arrival processes of this

queueing model are characterized by

M (1 =p)\ A
T, — 1 ( P) 1 ’ T, — PA1 ’
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~ 1 —
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Note that matrices T,,, for m = 1,2 correspond to phase transitions, and T,,,
corresponds to the rate as arrivals enter the system. Both arrival processes are MAP
distributed inter-arrival times denoted by (e, T, Tno), for m = 1,2, where e; is a

2 x 1 vector with the first element equals to 1 and another element equals to 0.

The advantage of phase-type distributions is their generality and versatility,
which permits the calculation of performance measures of stochastic models with a

high degree of accuracy [3]. The Matrix-Geometric Solution Methods allows us to



deal with the models whose activities are not necessarily exponentially distributed,
while at the same time overcoming the problem of the rapid growth of the state space
introduced by the need to explicitly construct the infinitesimal generator matrix of

the underlying Markovian process.

The one-step transition matrix embedded in the Markov chain of the arrival

process is given by

By C 0 O
0 By C 0
0 0 By C

where there exists nonnegative off-diagonal and negative diagonal elements in the
matrix Bog = [b;;], and the elements of matrix C = [¢;;] are nonnegative. Since ®

is the infinitesimal generator of the MAP, we have
(BOO + C)l S O,

where 1 is an 4 x 1 vector with all its elements equal to 1. Since (Bgyy + C) is the

infinitesimal generator, there exists a stationary probability vector
0 =(01,1,012,02,,0,5),

where 0, ; is the stationary probability that an arrival is in the i-th phase of the first
stream and the other arrival is in the j-th phase of the second stream. The repetition
of the state transitions for vector processes implies a geometric form where scalars
are replaced by matrices. Such Markovian processes are called Matrix-Geometric
Solution processes. To determine the stationary probability, we need to solve the

following balance equations

6(Bo+C) =0, 61 = 1.

In the following section, we recall a special phase-type distributions.



2.2 A phase-type queueing model

In general, the embedded Markov chain is ergodic if the stability condition of the
system is p = \/(nu) < 1.

Lemma 1. Given the mean arrival rate X > 0 and p = \/(nu) < 1, the effective

range of p is 0 < p < w, where

, —b — Vb? — 4ac
w = min{1, o |2

a = 11721 + A Aay1 + npAiv,

b = —(MA2y2 + Miv2A1 + Moy + e + npdoys + 2npdiy + npdiy),

and

C = n,u()\l aF )\2)(’71 + 72).

Proof :

Because \/(nu) < 1, we have

1 1

X = bl + (G4 DA =D Al Cp (= + ) =p) < (22)

A o

It implies that

A1p 4 Y1p
M+ =MD m+r—mp

< np. (2.3)

By using the form ap? + bp + ¢ > 0, we can combine the above inequality, and

then solve the inequality.

It gives

—b+ Vb2 — dac
P> 5

2a

or

- —b— Vb? — 4ac
p 5

2a

where a = Y171 + A\ Aoy + npuAi,

b= —(AAay2 + 1721 + Moy + T2 + npdoyr + 2npAiy + npAie),



and ¢ = np(A + A2) (11 +72).

Because the probability p satisfies 0 < p < 1, we have 0 < p < w if

—b— Vb2 — 4ac}
2a ’

w = min{1,

Let A(t) denote the number of customers arriving in (0, t] and J(t) be the state
of the Markov chain at time t with state space {(1,1),(1,2),(2,1),(2,2)}. Then
{A(t), J(t)} is a three-dimensional Markovian process with state space {(k,1,7) :
k>0, i,j = 1,2}, where k is the number of customers in the system, 7 is the phase

of the first arrival stream, and j is the phase of the second arrival stream.

The state {(k,1,1),(k, 1,2), (k,2,1), (k,2,2)} is called the level k of the system,
for £ > 0. Then, there exists an integer n such that the levels 0 up to n — 1 from
the boundary, and those for £ > n are repeating. Transitions between the repeating
states have the property that the rates from (k,4, j) to the state (k + v,d’,5’) for 0
< v < ooandi,j = 1,2 are independent of the value k for £ > n. From that n
onwards, the behavior of the system for all £ > n is the same as the behavior of the
system for n, where k is the number of queued customers. Such similarity needs not
for (0,1,--- ,n—1). We define the vector of probabilities that there are k customers

in the system as
me = lim Pr{A(t) = k. J(t) = (i.))}

= (7Tk,1,1 Tk1,2 Tk2,1 7Tk,2,2); (24)

where 7 can be partitioned into blocks which correspond to state 0, state 1, state

2, etc., e.g., ™ = (Mo, 71, Mo, -+ ).
Recall that the Kronecker product of any two matrices L and M is defined as
LoM = [I;;M] forall i, j,
where L;; is the ith row and jth column element of the matrix L.

In addition, the Kronecker sum of any two matrices L and M is given by

LeM=L®Iy+1,®M.



By applying Kronecker matrix operations, we obtain

Byp=T & Ty =

and

C= (Tlo & e{) ©® (T2o ® e{) =

A -1 (1-=pmn
2 —A1 — 72
A2 0
0 A2

i=prh 0 |
0 (1—=p\
De—m L—pm |
Y2 —>\2—’Y2_
phtm) 0 0 0]
0 ph 0 0
0 0O pn O
0 0 0 0

Using the arrival and service process parameters in terms of the Kronecker

product and sum, we obtain sub-matrices Ao, As1, A()i-1), A, which represent a

customer is in service, finishes the service, and departs the system, respectively.

Ap=1Ir ® Sy,

Ay =17 ® (S1,@ S1o)

1
0
0
0

Ay =Ir ® (S1,® -+ @ Sy,)

for3<i<n—1and

A=Ir ® (S10D--- D Sy,)

-~
%

n

00 0]
w0 0

0 u 0|

0 0 u

2% 0 0 0 |
0 2u 0 0

0 0 2u 0 |
0O 0 0 2,u_
[ 0 0 0 |

o w0 0

1o 0w o |
[0 0 0 i |

-nu 0 0 O-
0O nuw 0 O
0 0 nu 0 |
0O 0 O n |




where Ir is an identity matrix of dimensions equal to the sum of the dimensions of

the two arrival processes, i.e., It = I;4.

Next, we define sub-matrices By, B11, B;;, and B as follows, where the internal

phase changes for the composite arrival process, which are

By =T, ® T,
“A-=1 (I=-pn (1-p\ 0
. 2 —A1— 72 0 (1 - p))\1
A2 0 —X2—m (1 - p)%
I 0 A2 Vo =2 — 72 |
B,=T, & Ty ®S;
~M—m—p  (1-=pm (1—p)\ 0
B Y2 M= —p 0 (L=p)M
Ao 0 A =71 — H (I=p)m
I 0 Ao V2 A=

B,=T12T, S, ¢--- &S,
~—_——

A= =i (I=p)n (L=p)\t 0
B Yo —AL— Y2 — i 0 (I—=p)\
- A2 0 X —m—ip  (1=pn |
I 0 Ao Y2 —Xo — Yo — il |

for2<i<n—1,

B=T, ¢TSS, ®--- &S
——————

“A—m—np (L—pm (1=p)M 0
B V2 —A1— Y2 —np 0 (1=p)M
B Ao 0 —Xa — Y1 — N (1—p)m 7
I 0 A2 V2 —A2 — Y2 —np ]

10



and

0 pPA 00
C= (Tlo X e{) S¥ <T2o 0%y e{) =

0 0 pn O

0 0 0 0

representing that a customer goes into the queueing system.

Hence, in our queueing model, there exists the infinitesimal generator matrix

of a continuous time Markovian process with the structure,

By C O 0 0 o0
Ay By C 0 0 O
0 Ay By 0 0 O
Q= Y (2.5)
0 0 O Bienni) C |0
0 0 0 A B C
0 0 0 0 A B

where n is the number of servers in the system. The matrix Q is composed of

sub-matrices along with the block tridiagonal matrix.

11



Chapter 3

Matrix-Geometric Solutions

3.1 State balance equations

The stationary probabilities for the queue satisfy 7Q =0, 71 =1, and w > 0. We
can find the 7r;’s by solving the following state balance equations (3.1)-(3.5):

moBgo + T A =0, (3.1)

7T()C + 71'1B11 + 772A21 = 0, (32)

7T10 -+ 7T2B22 —+ 7T3A32 = 0, (33)

Tn—2C 4+ T 1Bu—yn-1) + TnAm)m-1) = 0. (3.4)

The equation for the repeating states of the process is given by:

71 C+mB+m 1 A=0, i=nn+1ln+2---. (3.5)

Using (3.5), the matrix geometric procedure gives the vector solution 7, ;1 =

m,_1R¥, for k = 0,1,2,---, where R is the matrix solution of the equation C +

12



RB + R?A = 0. Neuts [8] showed that the iteration
Ry = —(C+R;A)B™!
converges to the solution R starting with Ry = 0.

We rewrite the above equations (3.1)-(3.5) in matrix form as follows

Ty 1 =+ Tp_1 Ty |- Ql = Oa (36)
where
By C 0 0 0 0
Ay, B, C 0 0 0
0 Ay By C 0 0
Q=
0 0 0 - AGp w2 Bu-1)m-1 C
0 0 o --. e A B +RA

In addition, by using the normalization condition, we obtain

m-1+m -1+ +m,(I-R) ' 1=1 (3.7)

Then the solution for the probabilities 7q, 7r1..., 7, can be determined by

my o Wy Wy | Qo =[1,0], (3.8)
where
1 By C 0 e 0 0
1 A10 B11 C B 0 0
1 0 A21 B22 . 0 0
Q. =
1 0 0 - Au-pn-2 Bu-1ym-1 C
I-R)'-1 0 0 - S A  B+RA

By the stability assumption, the infinitesimal generator matrix is irreducible.

The necessary condition for this is that matrices B and By;, fori =0,1,2,--- ,n—1,

13



are nonsingular, which implies that inverses of those matrices can be determined.

The computation of the matrix R is by means of the iterative procedure [5].

The sequence { Ry} is entry-wise nondecreasing and converges monotonically
to a nonnegative matrix R. This follows the fact that B~! is a nonnegative matrix.
The number of iterations needed for convergence increases as the spectral radius of

R increases. We terminate the iteration and return with the solution of R when
|IRk+1 — Ryl <,

where ¢ is a given small constants.

3.2 An algorithm for matrix decomposition

Ramaswami’s formula [7]

Consider computing 7r such that wQ = 0. That is,

By | B 0 O
]BlBCO

*
™ Tnt1 Tny2

where 7" = [, 71, ..., 7Ty,

By C 0 "o 0 0
A10 B11 C 0 0
0 Ay B 0 0
BO _ ‘ 21 22 ’
0 0 - Ap-nw-2 Bu-nm-1n C
0o 0 - . A B
Ax4(n+1)

14



B, =
0
C
L J4(n+1)x4
It also gives ) i
B C o0
A B C
= VW,
0 A B
where _ 3 ~ _
Vo Vi 0 1 0
0 Vo V, -H I
V = , W =
0 0 V, 0 —-H
Then we have
B, | By O
B_;
|:7T* i1 Tpio ] :0,
0 VW
which is equivalent to
B, | B} O
B_1
[71' Tnt1 Tny2 ] =0.
0 \%
As we know
I 0 O
= H I O
W = ;and | BY 0 0 .}Z[Bloo
0 H I

15



Then, we have B} = B; - 1.
Next, to determine H and V, we solve the following equations:

V, - V,H = B,

and

—VoH = A.

From the first two equations, it yields

B, B;
[ U Tn+1 ] =0.
B, V,

Then, by solving the following equations
ﬂ'*(BQ N B1V0_1B_1> =0 (39)

and

w14+ m 14+ +m,(I-R)"'-1=1,

we get " = [mwo, 1, ..., Ty

LU factorization

Considering the matrix Q. Here, we assume that w*Q; = 0. The equations are
of the homogeneous system. We use LU factorization to obtain 7w* in the following

steps.

Step 1: Let the first column of Q; be replaced by the column vector

(1,---,1,I-R)*-1)7.

16



Then, the modified Q; is rewritten as a new matrix Qz, and we have

where

y:[l 0 0 O}-

Step 2: If we transpose w*Q3, it gives

yT
* T T _xT 0
(7Q3)" = Q@™ =
0
Then, we have
Bi,” Ay Q@ Q - Q2 Q o y"
C B11T A21 0 ce 0 0 ™ 0
0 C Bgz A32 R © 0 0 o 0
0 0 0 o - C (B+RA)” o 0
where ~ _
1 1 1 1
BT * _ (I=py =M — 0 A2
00 )
(I—p)A 0 X2 —m V2
|0 DM P A

1111 1111 I-R)'1

0O uw 0 O 0O 00O _ 0
AIO*: aQ: 7Q:

0 0 w O 0 00O 0

00 0 u 0O 00O 0

Step 3: Applying Gaussian elimination, we transform Q and € into a zero

matrix.

17



Then it gives

BL,™ Ay 0 0 .- 0 0
C BL Ay o0 - 0 0
7 _ 0 C BL Ay - 0 0
T
O 0 O ct C B(n—l)(n—l) A.
0 0 0 - - C (B+RA)T

where BY,™", A1p™, are obtained by Gaussian elimination.

Theorem 1. Z, is a nonsingular matriz.

Proof : By Step 1, we know

7T*Q3: |:y 0 c oo Oi|7
where

YZ[l 00 0]-

The solution of 7* is unique by Matrix Geometric Solution, and Q3 is a non-
sigular matrix. We transpose the matrix Qs to Q2. By Step 3, we determine Z,,.

Q3 is a nonsigular matrix, so is Z,.

Theorem 2. (Roger and Charles [9]) Let Z € M, xm, a set of m x m matrices.
There exists permutation matrices D, . € M,,xm, a lower triangular matriz L €

M,,.sxm, and an upper triangular matric U € M,,,x,, such that

Z = DLUE.

If Z is nonsingular, one may take E =1 and Z may be written as

Z =DLU.

Proof :

18



If rank Z=Fk, Z has a k-by-k nonsingular submatrix, which may, by permutation
of rows and columns, be permuted into the upper left corner. Now apply Theorem
D in Appendix B to the upper left corner and apply Theorem LU in Appendix A to
achieve a factorization. If Z is nonsingular, Theorem D in Appendix B indicates that
permutation on the right is unnecessary in order to apply Theorem D in Appendix

B, which verifies the second factorization and completes the proof.

Step 4:
By i i
yT
0
0
Zn . 7T*T _ :
0
0

and according to above Theorems 1 and 2, we can infer that as follows Remark 1
and Remark 2. Let Z,({i}), ¢ = 1,--- ,4(n + 1) be formed with the first i rows
squared matrix of Z,,. Z,,({1,2,--- ,i}) denote a series of matrices Z,,({1}), Z,({2}),

s Za({7}).

Remark 1. Z, is a 4(n + 1) x 4(n + 1) matrix and nonsingular, and
which implies Z,, = LU [9].

Because Z,, = LU, we can slove [mg, 7y, ..., 7,] by

yT

0

19



It gives the LU factorization of Z,, as follows:

I 0 0 0 --- 0 O
L, I 0 0 -~ 0 O
0 L, I 0 0 0
0 0 O | 0
0 0 O L, I

U
0

jen]

F, 0
U1 F2
0 U,
0O O
0 O

The following algorithm is given for L; and Uj:

Algorithm 1: LU factorization
Input Uy = BL,™
fori=1:n
do L; = CU;
do U, =Bl - L;F,

end

After completing the LU factorization, the vector 7 can be obtained via block

forward and backward substitution:

Algorithm 2: Forward and backward substitution

Input yo = [1,0,0,0]
fori=1:n
doy; = —Liyi 1
end

do w, =U_ 'y,

20

0
0
F3




fori=n—-1:-1:0
do m; = U; ' (y; — Fiy1miy1)

end

According the above algorithm, we obtain the stationary probability «* =

[Tfo, T1y ey 7Tn]

Remark 2. If Z, is a 4(n + 1) x 4(n + 1) matrix and singular with some 1 < j <
4(n + 1) such that

det(Zy)({j}) = 0,
then by Theorem 2 there exists a permutation matrix D € My 41)x4(n+1) matrix
such that

det(DTZ,)({1,--+ ,j}) #0, j=1,--- 4n+1)

which implies D?Z,, = LU and Z,, = DLU.

Because Z,, = DLU, we can slove w* by

y’ y!
0 0
0 0
DLU - 77 = | -~ LU.xT=DT.
0 0
0 0

After completing the LU factorization, the vector 7 can be obtained via block

forward and backward substitution:

Algorithm 1: Forward and backward substitution
Input yo = [D"({4})][1,0,0,0"
fori=1:n

doy, = —Ljyi1
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end
do w, = U_ 'y,
fori=n—-1:-1:0

do m; = U; (y; — Fip1mis1)

2

end

In the above Algorithm, DT ({4}) is the first four rows and columns composing

a 4 X 4 matrix.

According to the above algorithm, we obtain the stationary probability 7* =

(700, 701, .0y 700

22



Chapter 4

Inter-Departure times

4.1 Departure process

Characterizing the departure process involves developing an infinitesimal generator
for the inter-departure times. The elements needed in this development are the
departure-point stationary probabilities d = (do,d;,ds, -+ ). They are related to
the continuous time stationary probabilities w = (7w, 71, w9, - - - ) by the following
relationships. Here, we denote the total arrival average rate by A due to superposi-

tion of the two arrival streams, and

X =pllgp+ (o 300 =P ol (= ) =)
dy = ™AL/, (4.1)
d; = moAs /2, (4.2)
dy = 5 A5/, (4.3)
d,_ = ﬂiAi(i,l)/X, fori=3,4,--- n. (4.4)

The departure process has three different partitions:

First, when there is no customer in the system, a departure has to wait until

at least one customer has occurred followed by a service.
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Second, when there is at least 1 and at most (n — 1) customers in the system,
the inter-departure time can be a function of single processing customer’s remaining

service or it could evolve from a customer arrived and its completion of service.

Third, when a departing customer leaves the system with at least n remaining
customers, the minimum of the remaining service time of one of these customers or

a complete service time of another customer becomes the inter-departure time.

We find that when there remain at least n customers in the system, the inter-
departure time characteristics are the same for all these cases. The infinitesimal

generator matrix for the departure process G, is given by

0 1 2 .. n—1 nt
0 [By C 0 - 0 0
1 0o B, C ... 0 0
Gau= 2 0 0 By - 0 0 ,
n-1/0 0 0 . Bpiuy C
nt o 0 o0 - 0 SSin

where only two of these sub-matrices are given by
SSin =S1® - ® Sy,
C=C-1.

The probabilities of the departure-process system starting in the various states

d = (do,dy, - ,d,+) are made up of the departure point probabilities, with

dpr = ( i TraA/X)l.

a=n+1

This series can be written in closed form as

o0

dp = () mRTA/N

a=n—+1

=m,[(I-R)™ —IJA/M1.
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4.2 Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized
by [d,Gpi]. Thus, from Neuts [8], the moments of inter-departure times random

variable X are given below
E[X*] = kl(-1)*d(Gn) "1 k=1,2,...,

Var[X] = E[X?] — (E[X])*.

4.3 Lag, correlations between successive depar-
tures

The stationary probabilities of the states of the arrival process, 0, are obtained from

its Markovian arrival process representation. We define

;&n(n—l) =0R (Sla @D Slo>‘

To get the lagy correlations of the output inter-departure times, it is necessary
to develop the generator matrix é\n segmented into two matrices: the internal tran-
sitions(without departures) G,,; and the matrix containing the departure transition

G, such that C/}\n =G, + Go.

The matrix G,,5 is characterized as

0 1 2 n—1 nt
0 0 0 0 - 0 0
1 |Ay 0 0 0 0
Gpo= 2 0 Ay O 0 0o
n-1/ 0 0 0 0 0
nt 0 0 0 . (1-HAumy SSou
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where t is the probability that departure leaves the system with at least n customers
remaining. Define ¢ and SS,,; as

00
Za:n—H a1l _ i+

t= =
Tl + > 0 el dp 14 dys

Ssout - Slo D---D Slo-

Given the G,,; and G2 matrices, from Bodrog, Horvath, Telek [2], and Telek,

Horvath [11], the lagy correlation is computed by

N)2d(=G) " ((—G1) ' Gi2)*(—Gor) 11 — 1
2(0)2d(—G1)™21 - 1) '

lag, =
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Chapter 5

Numerical Examples

5.1 Queueing models with two servers

In this Chapter we present four sets of numerical examples to demonstrate the
matrix decomposition approach for stationary probabilities of phase-type queueing

models with multiple servers.

M/M/2 queueing models

Consider a classic model of multiple servers for a further comparison and validate our
model. Without loss of the Poisson assumption, we consider an arrival stream com-
bined by two independent Poisson processes. Here, we present a numerical example

of M/M/2 queueing model. The parameters of two arrival processes (A1, p, A2) and

(’ylapv 72) are given as ()‘bpa )\2) = (107 17 10)a (’ylvp? 72) - <5a 1720>7 n = 10.

By applying the MA, RA, and LU methods, we take mg 71 --- 7o T3 to

compare the values. We find that they are the same.
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v 0 m T 3 Ty s 6
MA | 0.1429 | 0.2143 | 0.1607 | 0.1205 | 0.0904 | 0.0678 | 0.0508
RA | 0.1429 | 0.2143 | 0.1607 | 0.1205 | 0.0904 | 0.0678 | 0.0508

LU | 0.1429 | 0.2143 | 0.1607 | 0.1205 | 0.0904 | 0.0678 | 0.0508

e 7 T8 Ty T10 11 12 13
MA | 0.0381 | 0.0286 | 0.0214 | 0.0160 | 0.0121 | 0.0090 | 0.0068
RA | 0.0381 | 0.0286 | 0.0214 | 0.0160 | 0.0121 | 0.0090 | 0.0068

LU | 0.0381 | 0.0286 | 0.0214 | 0.0160 | 0.0121 | 0.0090 | 0.0068

Then we take the example as an M /M /2 queueing model. We find the proba-
bility of idle system is 0.142857. The value is the same as 7.

In M /M /2 queues, we find that the busy rate of the queueing is (A +71)/(2p) =
15/20 = 0.75. We estimate the values by using 1 — 75 — %7?1. The busy rate of the
queueing is 1 —0.1429 — % x 0.2143 = 0.74995 = 0.75. All results are consistent with

the standards of the classic model.

The stationary probabilities of the states of the

arrival process

Then, we consider the system with two servers, where parameters of arrival processes

are given by (A1, p, A2) = (10,0.4,10), (71,p,72) = (20,0.4,5), and let u = 10.

The stationary probabilities of the states of the arrival process, 8, are obtained

from its Markovian arrival process representation.

By solving the following equations 8(By + C) = 0 and 81 = 1 with Matlab
[13], we have
0 = (0.1838,0.4412,0.1103, 0.2647).

For comparison of estimated values @, we also use a simulation programming
of queueing models, Promodel [14]. From the stationary probabilities obtained by

simulation with Promodel, the results are shown in Table 5.1.

28



We have the values 8 = ( 0.1860, 0.4340, 0.1110, 0.2590). We can find that the

value is close to

Mo+ +mo+my+ ... =mo+m +m(I—R)™" = (0.1838,0.4412,0.1103, 0.2647).

Table 5.1: Arrival processes of two phases simulated in Promodel.

arrival phase 1 phase 2 phase 1 phase 2

in stream 1 | in stream 1 | in stream 2 | in stream 2

average content 0.62 0.37 0.30 0.70
state (k,1,1) (k,1,2) (k,2,1) (k,2,2)
stationary probability | 0.1860 0.4340 0.1110 0.2590

The matrix geometric solution procedure
By the matrix geometric solution procedure of the vector solution, we use wQ = 0,
w1l =1, and m > 0 to determine 7. It gives

7o = (0.0873,0.2798,0.0612,0.1962),

7y = (0.0608, 0.1187,0.0332, 0.0529),

and

75 = (0.0230, 0.0295, 0.0105, 0.0106),

which are consistent with the numerical results of simulation in Promodel.

Ramaswami’s formula

With RA method [7], we have
7o = (0.0874,0.2798,0.0613,0.1962),

7, = (0.0608,0.1186,0.0333,0.0528),
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and

7 = (0.0229,0.0293,0.0105, 0.0104),

which will be compared with simulation, LU approach in the next section.

LU factorization

Next, by applying the algorithm of LU factorization, it gives
7o = (0.0873,0.2798,0.0612,0.1962),

71 = (0.0608, 0.1187,0.0332,0.0529),

and

75 = (0.0230,0.0295, 0.0105, 0.0106),

Numerical experiments by changing p

Here, we observe the numerical results of changing values of p, and other variables
are fixed. That is, it gives (A, p,A2) = (10,p,10), (11,p,72) = (20,p,5), p = 10,
and 0 < p < 0.8840, where p = 0.1,0.2,0.3,0.4, 0.5, 0.6.

The numerical results are compared in three different approaches, M A repre-
sents the matrix geometric solution procedure, RA represents Ramaswami’s for-
mula, and LU represents LU factorization. Let 7; be the probability of ¢ customers
in system, i.e., m; = m;1. Table 5.2 and Table 5.3 shows the comparison of numerical

results.

Promodel

In order to estimate the my, 7; and 7y accurately. By simulation in Promodel

[14], it gives the queue empty rates which are shown in Table 5.4. Here, the
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Table 5.2: Probabilities obtained from three methods with p = 0.1, 0.2, 0.3.

p |01

0.2

0.3

MA

RA

LU

MA

RA

LU

MA

RA

LU

0.0976
o | 0.3732
0.0910
0.3477

0.0976
0.3732
0.0910
0.3477

0.0976
0.3732
0.0910
0.3477

0.0949
0.3448
0.0816
0.2963

0.0949
0.3448
0.0816
0.2963

0.0949
0.3448
0.0816
0.2963

0.0916
0.3139
0.0717
0.2458

0.0916
0.3140
0.0717
0.2458

0.0916
0.3139
0.0717
0.2458

mo | 0.9095

0.9095

0.9095

0.8176

0.8176

0.8176

0.7230

0.7231

0.7230

0.0153
m; | 0.0364
0.0111
0.0219

0.0153
0.0364
0.0111
0.0219

0.0153
0.0364
0.0111
0.0219

0.0308
0.0690
0.0206
0.0381

0.0308
0.0690
0.0206
0.0381

0.0308
0.0690
0.0206
0.0381

0.0461
0.0969
0.0281
0.0485

0.0461
0.0969
0.0281
0.0485

0.0461
0.0969
0.0281
0.0485

m | 0.0847

0.0847

0.0847

0.1585

0.1585

0.1585

0.2196

0.2196

0.2196

0.0013
o | 0.0021
0.0008
0.0010

0.0013
0.0021
0.0008
0.0010

0.0013
0.0021
0.0008
0.0010

0.0055
0.0081
0.0031
0.0036

0.0055
0.0081
0.0031
0.0036

0.0055
0.0081
0.0031
0.0036

0.0127
0.0176
0.0065
0.0070

0.0127
0.0175
0.0065
0.0070

0.0127
0.0176
0.0065
0.0070

my | 0.0052

0.0052

0.0052

0.0203

0.0203

0.0203

0.0438

0.0437

0.0437

queue empty rate is referred to the probability of no customer in the queue. We

find that the sum Zi:o 7, is equal to the queue empty rate obtained with sim-

ulations, where (A,p, \y) =

(107177 10)7 (71ap7’72) = (207]9’ 5)7 0 < P < 088407

p=0.1,0.2,0.3,0.4,0.5,0.6 and p = 10. The comparison results are shown in Table

5.4 .

According to Table 5.2 and Table 5.3, we find that if the value of p is smaller,

the 7r; value of three methods are very close. But when the value of p is closed to

its upper bound, the 7;’s are a little different.
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Table 5.3: Probabilities obtained from three methods with p = 0.4, 0.5, 0.6.

p |04

0.5

0.6

MA | RA LU

MA

RA

LU

MA

RA

LU

0.0873 | 0.0874 | 0.0873
o | 0.2798 | 0.2798 | 0.2798
0.0612 | 0.0613 | 0.0612
0.1962 | 0.1962 | 0.1962

0.0815
0.2410
0.0500
0.1478

0.0817
0.2410
0.0502
0.1480

0.0815
0.2410
0.0500
0.1478

0.0730
0.1956
0.0379
0.1014

0.0727
0.1948
0.0377
0.1010

0.0730
0.1956
0.0379
0.1014

mo | 0.6245 | 0.6247 | 0.6245

0.5203

0.5209

0.5203

0.4079

0.4062

0.4079

0.0608 | 0.0608 | 0.0608
| 0.1187 | 0.1186 | 0.1187
0.0332 | 0.0333 | 0.0332
0.0529 | 0.0528 | 0.0529

0.0739
0.1321
0.0354
0.0512

0.0740
0.1317
0.0355
0.0510

0.0739
0.1321
0.0354
0.0512

0.0832
0.1336
0.0338
0.0436

0.0834
0.1323
0.0340
0.0431

0.0832
0.1336
0.0338
0.0436

m | 0.2656 | 0.2655 | 0.2656

0.2926

0.2922

0.2926

0.2942

0.2938

0.2942

0.0230 | 0.0229 | 0.0230
o | 0.0295 | 0.0293 | 0.0295
0.0105 | 0.0105 | 0.0105
0.0106 | 0.0104 | 0.0106

0.0360
0.0423
0.0145
0.0133

0.0360
0.0417
0.0145
0.0129

0.0360
0.0423
0.0145
0.0133

0.0505
0.0533
0.0173
0.0142

0.0504
0.0515
0.0162
0.0135

0.0505
0.0533
0.0173
0.0142

my | 0.0736 | 0.0731 | 0.0736

0.1061

0.1051

0.1061

0.1353

0.1326

0.1353

Table 5.4: Comparison of queue empty rates of two servers.

p

0.1

0.2

0.3

0.4

0.5

0.6

T+ +7o

(Matrix geometric method)

0.9996

0.9963

0.9863

0.9637

0.9192

0.8373

Queue empty rate

(Promodel 20 hours)

0.9996

0.9964

0.9877

0.9675

0.9139

0.8448
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Inter-departure times

The departure process has three different partitions:

First, when there is no customer in the system, a departure has to wait until

at least one customer has occurred followed by a service.

Second, when there is one customer in the system, the inter-departure time can
be a function of single processing customer ’s remaining service or it could evolve

from a customer arrived and its completion of service.

Third, when a departing customer leaves the system with at least two remaining
customers, the minimum of the remaining service time of one of these customers or

complete service time of another customer becomes the inter-departure time.

Now, we begin by describing the two arrival processes (A1, p, A2) = (10,0.4, 10),
(71,p,72) = (20,0.4,5), and let p = 10.

Then, we find that when there remain at least two customers in the system,
the inter-departure time characteristics are the same for all these cases (k > 2).
The infinitesimal generator matrix for the departure process Go; has three different

segmentations given by

0 1 2t
0 By C 0
G21 = A )

21 0 0 SS;

where

@)

—C-1= ,

SSi =S98 = | —20 |.
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Thus, we have

=30 12 6 0 12 0 0 0 0

5 —=15 0 6 0 4 0 0 0

10 0 =30 12 0 0 8 0 0

0 10 5 =15 0 0 0 0 0

Go = 0 0 0 0 —40 12 6 0 12
0 0 0 0 5 =25 0 6 4

0 0 0 0 10 0 —40 12 8

0 0 0 0 0 10 5 =25 0

i 0 0 0 0 0 0 0 0 -20 |

The probabilities of the departure-process system starting in the various states

d = (dy,d;, da+) are made up of the departure point probabilites, with
do = m A/ X;
d=mw 2A21/ X;
do+ = (i T, A/
n=3
This series can be written in closed form as

dye = (D mR"A/N1,

n=3

= m[(I-R)" —IJA/M1.

By above equations. We can compute d :
do = (0.1253,0.2446, 0.0685, 0.1090),

d; = (0.0946,0.1215,0.0434, 0.0436),

do+ = 0.1495.
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Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized
by [d, Ga1]. Thus, from Neuts [8] we know that the moments of inter-departure

times random variable X are given by

E[X] = (-1)d(Gy) 1.

Then we use different p to compute E[X]| by Matlab and Promodel :

P 0.1 0.2 0.3 0.4 0.5 0.6
E[X] Matlab | 1.0405 | 0.4846 | 0.2991 | 0.2061 | 0.1500 | 0.1123
E[X] Promodel | 1.00 | 049 |0.30 [0.21 |0.15 |0.11

and we use the same parameters to compute Var[X] by Matlab and Promodel,

Var[X] = E[X?] = E[X]*.

D 0.1 0.2 0.3 0.4 0.5 0.6
Var[X] Matlab 1.1703 | 0.2711 | 0.1091 | 0.0541 | 0.0295 | 0.0167
Var[X] Promodel | 1.1484 | 0.2796 | 0.1339 | 0.0559 | 0.0344 | 0.0156

Lag;. correlations between successive departures

To get the lagy correlations of the output inter-departure times, it is necessary to
develop the infinitesimal generator matrix (/31\2 segmented into two matrices: the in-
ternal transitions (without departures) Gg; and the matrix containing the departure

transition Ggy such that (/}\2 = Ga1 + Goo.

The matrix Goy is characterized as

0 1 2"
0 0 0 0
G22 = )
1 | Ap 0 0
2| 0 (1—1t)As 1SSpuw
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where t is the probability that departure leaves the system with at least two cus-

tomers remaining and (1 — t) is the probability that only one customer remains.

We define ¢ as

f— ZZO:?) 7Ta]_ d2+ d2+

= = = = 0.3303.
71'21+22137Ta1 d1+d2+ 1 —do]_

Two of sub-matrices in Goy are given by
Az =0 ® (S10® S1,) = [0.1838,0.4412, 0.1103, 0.2647] ® [20],

SSout - Slo @ Slo - [20]

Thus, we have

0 0 0 O 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
Gp=|10 0 0 0 0 0 0 0 0
0 10 0 O 0 0 0 0 0
0 0 10 O 0 0 0 0 0
0 0 0 10 0 0 0 0 0
I 0 0 0 0 24620 5.9088 1.4772 3.5453 6.6066 |

Given Gy and Gyy matrices, from Bodrog, Horvath, Telek [2], and Telek, Hor-

vath [11], we have that the lag, correlation is computed by

lagn — (A)2d(=Ga1) ' ((=Ga1) 'G)*(=Goy) 1 — 1
I 2(N2d(—Gar) 21 — 1) ’

where A = (p[(5:p + (55 + 5)(L =) 7" + (5 + (5 + 55)(1 = p)] " = 4.8529) is

the average effective arrival rate. We can compute lagy (k = 1,2,3,4),

lag, = 0.0342, lagy = 0.0224, lags = 0.0206, lags = 0.0203.
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5.2 Queueing models with three servers

M/M/3 queueing models

Once more, we present a numerical example of M /M /3 queues to verify our model.
Here, two arrival processes (A1,p, \2) and (71,p,72) are given with (A,p, \y) =
(10,1,10), (y1,p,72) = (5,1,20), and = 10.

By applying the MA, RA, and LU methods, we take 7y 7 --- 72 T3 to

compare the values. We find that they are the same.

T o ™ U 3 T4 s e

MA | 0.2105 | 0.3158 | 0.2368 | 0.1184 | 0.0592 | 0.0296 | 0.0148
RA | 0.2105 | 0.3158 | 0.2368 | 0.1184 | 0.0592 | 0.0296 | 0.0148
LU | 0.2105 | 0.3158 | 0.2368 | 0.1184 | 0.0592 | 0.0296 | 0.0148

@ 7 T8 9 10 11 12 13

MA | 0.0074 | 0.0037 | 0.0018 | 0.0009 | 0.0005 | 0.0002 | 0.0001
RA | 0.0074 | 0.0037 | 0.0018 | 0.0009 | 0.0005 | 0.0002 | 0.0001
LU | 0.0074 | 0.0037 | 0.0018 | 0.0009 | 0.0005 | 0.0002 | 0.0001

In this example, we find the probability of idle system is 0.210526, which is
the same as 7y. In M/M/3 queues, we know that the busy rate of the queueing is
(A +m1)/(3p) = 15/30 = 0.5. By using 1 — g — 21 — 73, it gives the busy rate

of queues as follows

1 2
1-0.2105 — 3 x 0.3158 — 3 x 0.2368 = 0.5263 = 0.5.

The matrix geometric solution procedure

Here, we present numerical results of queueing systems with three servers, where two
arrival processes are given with (A1, p, A2) = (10,0.4,10), (71,p,72) = (20,0.4,5),
and let p = 10.
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From the matrix geometric solution procedure, we solve 7Q = 0, w1l = 1, and

7 > 0 to estimate 7. Then, it gives the vector solution
7o = (0.0887,0.2838,0.0622,0.1988),

71 = (0.0621, 0.1204, 0.0339, 0.0534),
75 = (0.0240, 0.0297,0.0109, 0.0103),

and

73 = (0.0066,0.0056, 0.0026,0.0017).

Ramaswami’s formula

By applying RA method, we have
7 = (0.0887,0.2838,0.0622,0.1988),

71 = (0.0621,0.1204,0.0339, 0.0534),
75 = (0.0240, 0.0297,0.0109, 0.0103),

and

73 = (0.0066, 0.0056, 0.0026, 0.0017).

LU factorization

By using LU factorization given in previous section, we obtain
7o = (0.0887,0.2838,0.0622,0.1988),

71 = (0.0621, 0.1204, 0.0339, 0.0534),
75 = (0.0240, 0.0297,0.0109, 0.0103),

and

73 = (0.0066, 0.0056, 0.0026, 0.0017).
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Numerical experiments by changing p

We observe the effect of changing p on the numerical results obtained from three
methods. Here, we have (A, p, \2) = (10,p, 10), (71,p,72) = (20,p,5), u = 10, and
0<p<w=1, forp=020304,0.5,0.6,0.7,0.8,0.9. Tables 5.5-5.7 show the

comparison of numerical results.

Table 5.5: Probabilities obtained from three methods with p = 0.2, 0.3, 0.4.

p |02 0.3 0.4

MA RA LU MA RA LU MA RA LU

0.0950 | 0.0950 | 0.0950 | 0.0921 | 0.0921 | 0.0921 | 0.0887 | 0.0887 | 0.0887
o | 0.3452 | 0.3452 | 0.3452 | 0.3155 | 0.3155 | 0.3155 | 0.2838 | 0.2838 | 0.2838
0.0817 | 0.0817 | 0.0817 | 0.0721 | 0.0721 | 0.0721 | 0.0622 | 0.0622 | 0.0622
0.2967 | 0.2967 | 0.2967 | 0.2469 | 0.2470 | 0.2469 | 0.1988 | 0.1988 | 0.1988

o | 0.8186 | 0.8186 | 0.8186 | 0.7266 | 0.7267 | 0.7266 | 0.6335 | 0.6335 | 0.6335

0.0308 | 0.0308 | 0.0308 | 0.0465 | 0.0465 | 0.0465 | 0.0621 | 0.0621 | 0.0621
;| 0.0691 | 0.0691 | 0.0691 | 0.0974 | 0.0974 | 0.0974 | 0.1204 | 0.1204 | 0.1204
0.0207 | 0.0207 | 0.0207 | 0.0283 | 0.0283 | 0.0283 | 0.0339 | 0.0339 | 0.0339
0.0381 | 0.0381 | 0.0381 | 0.0486 | 0.0486 | 0.0486 | 0.0534 | 0.0534 | 0.0534

71 | 0.1587 | 0.1587 | 0.1587 | 0.2208 | 0.2208 | 0.2208 | 0.2698 | 0.2698 | 0.2698

0.0056 | 0.0056 | 0.0056 | 0.0130 | 0.0130 | 0.0130 | 0.0240 | 0.0240 | 0.0240
o | 0.0081 | 0.0081 | 0.0081 | 0.0176 | 0.0176 | 0.0176 | 0.0297 | 0.0297 | 0.0297
0.0031 | 0.0031 | 0.0031 | 0.0066 | 0.0066 | 0.0066 | 0.0109 | 0.0109 | 0.0109
0.0035 | 0.0035 | 0.0035 | 0.0069 | 0.0068 | 0.0069 | 0.0103 | 0.0103 | 0.0103

mo | 0.0203 | 0.0203 | 0.0203 | 0.0441 | 0.0440 | 0.0441 | 0.0749 | 0.0749 | 0.0749

0.0007 | 0.0007 | 0.0007 | 0.0026 | 0.0026 | 0.0026 | 0.0066 | 0.0065 | 0.0066
s | 0.0007 | 0.0007 | 0.0007 | 0.0024 | 0.0024 | 0.0024 | 0.0056 | 0.0056 | 0.0056
0.0003 | 0.0003 | 0.0003 | 0.0011 | 0.0011 | 0.0011 | 0.0026 | 0.0026 | 0.0026
0.0003 | 0.0003 | 0.0003 | 0.0008 | 0.0008 | 0.0008 | 0.0017 | 0.0017 | 0.0017

s | 0.0020 | 0.0020 | 0.0020 | 0.0069 | 0.0069 | 0.0069 | 0.0165 | 0.0164 | 0.0165
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Table 5.6: Probabilities obtained from three methods with p = 0.5, 0.6, 0.7.

p

0.5

0.6

0.7

MA

RA

LU

MA

RA

LU

MA

RA

LU

0.0847
0.2493
0.0519
0.1527

0.0847
0.2493
0.0519
0.1527

0.0847
0.2493
0.0519
0.1527

0.0796
0.2112
0.0411
0.1091

0.0797
0.2113
0.0412
0.1092

0.0796
0.2112
0.0411
0.1091

0.0728
0.1679
0.0299
0.0690

0.0730
0.1681
0.0302
0.0693

0.0728
0.1679
0.0299
0.0690

0.5386

0.5386

0.5386

0.4410

0.4414

0.4410

0.3396

0.3406

0.3396

0.0775
0.1366
0.0369
0.0525

0.0776
0.1366
0.0369
0.0525

0.0775
0.1366
0.0369
0.0525

0.0921
0.1440
0.0370
0.0462

0.0922
0.1438
0.0371
0.0462

0.0921
0.1440
0.0370
0.0462

0.1044
0.1392
0.0335
0.0352

0.1046
0.1387
0.0337
0.0351

0.1044
0.1392
0.0335
0.0352

0.3035

0.3036

0.3035

0.3193

0.3193

0.3193

0.3123

0.3121

0.3123

0.0390
0.0434
0.0154
0.0130

0.0390
0.0433
0.0154
0.0130

0.0390
0.0434
0.0154
0.0130

0.0581
0.0567
0.0194
0.0142

0.0581
0.0564
0.0194
0.0141

0.0581
0.0567
0.0194
0.0142

0.0809
0.0663
0.0215
0.0131

0.0809
0.0655
0.0216
0.0129

0.0809
0.0663
0.0215
0.0131

0.1108

0.1107

0.1108

0.1484

0.1480

0.1484

0.1818

0.1809

0.1818

0.0138
0.0106
0.0047
0.0028

0.0138
0.0105
0.0047
0.0027

0.0138
0.0106
0.0047
0.0028

0.0256
0.0171
0.0074
0.0038

0.0256
0.0168
0.0074
0.0037

0.0256
0.0171
0.0074
0.0038

0.0435
0.0243
0.0100
0.0043

0.0434
0.0235
0.0100
0.0041

0.0435
0.0243
0.0100
0.0043

0.0319

0.0317

0.0319

0.0539

0.0535

0.0539

0.0821

0.0810

0.0821
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Table 5.7: Probabilities obtained from three methods with p = 0.8, 0.9.
p |08 0.9

MA RA LU MA RA LU
0.0625 | 0.0631 | 0.0625 | 0.0446 | 0.0453 | 0.0446
o | 0.1173 | 0.1174 | 0.1173 | 0.0568 | 0.0565 | 0.0568
0.0184 | 0.0189 | 0.0184 | 0.0072 | 0.0079 | 0.0072
0.0344 | 0.0379 | 0.0344 | 0.0090 | 0.0099 | 0.0090
mo | 0.2326 | 0.2373 | 0.2326 | 0.1176 | 0.1196 | 0.1176
0.1106 | 0.1111 | 0.1106 | 0.0984 | 0.0991 | 0.0984
m | 0.1165 | 0.1154 | 0.1165 | 0.0672 | 0.0650 | 0.0672
0.0255 | 0.0259 | 0.0255 | 0.0125 | 0.0133 | 0.0125
0.0208 | 0.0208 | 0.0208 | 0.0065 | 0.0067 | 0.0065
m | 0.2734 | 0.2732 | 0.2734 | 0.1846 | 0.1841 | 0.1846
0.1042 | 0.1044 | 0.1042 | 0.1134 | 0.1136 | 0.1134
o | 0.0662 | 0.0643 | 0.0662 | 0.0453 | 0.0422 | 0.0453
0.0200 | 0.0202 | 0.0200 | 0.0120 | 0.0126 | 0.0120
0.0093 | 0.0090 | 0.0093 | 0.0035 | 0.0034 | 0.0035
mo | 0.1997 | 0.1979 | 0.1997 | 0.1742 | 0.1718 | 0.1742
0.0676 | 0.0675 | 0.0676 | 0.0890 | 0.0887 | 0.0890
s [ 0.0292 | 0.0272 | 0.0292 | 0.0240 | 0.0207 | 0.0240
0.0112 | 0.0112 | 0.0112 | 0.0082 | 0.0083 | 0.0082
0.0038 | 0.0034 | 0.0038 | 0.0017 | 0.0015 | 0.0017
m3 | 0.1118 | 0.1093 | 0.1118 | 0.1229 | 0.1192 | 0.1229

Promodel

We compare the values of Zz:o 7, with the queue empty rate obtained by using
simulation in ProModel. The variable values are given as (A1, p, A\y) = (10, p, 10),

(7,p,72) = (20,p,5), and p varies from 0.2 to 0.9, with x = 10. Table 5.8 shows
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the comparison of numerical results.

Table 5.8: Comparison of the queue empty rates of three servers.

P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tot+m1+m2+73 0.9997 | 0.9985 | 0.9945 | 0.9846 | 0.9625 | 0.9158 | 0.8174 | 0.5993
(Matrix geometric method)

Queue empty rate 0.9997 | 0.9985 | 0.9954 | 0.9854 | 0.9633 | 0.9214 | 0.8255 | 0.6017
(Promodel 20 hours)

It shows the same situation like the queueing with two servers. According to

Tables 5.5-5.7, we find that if the value of p is smaller, the 7; value of three methods

are very close. But when the value of p is closed to its upper bound, the m;’s are a

little different.

Inter-departure times

Now, we begin by describing the two arrival processes as (A1, p, A2) = (10,0.4, 10),

(71, p,72) = (20,0.4,5), and p = 10.

Then, we find that when there remain at least three customers in the system,

the inter-departure time characteristics are the same for all these cases (k > 3).

The infinitesimal generator matrix for the departure process Gs; has three different

segmentations are given by

o 1 2 3t

0 Bh C 0 0
Gu= 1|0 B; C 0o ,

2| 0 0 By C

3*/ o o o0 SS,
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where sub-matrices given by

@)

—C-1= ,

S8 =888, 88 = | =30 |.

Thus, we have

(3 12 6 0 12 0 0 0 0 0O 0 0 0 |
5 -15 0 6 0 4 0 0 0 0 0 0 0
0 0 <3 12 0 0 8 0 0 0 0 0 0
0 10 5 —-15 0 0 0 0 0 0 0 0 0
0 0 0 0 -4 12 6 0 12 0 0 0 0
0 0 0 0 5 -2 0 6 0 4 0 0 0

Gu=| 0 0 0 0 10 0 —40 12 0 0 8 0 0
o 0 0 0 0 10 5 =25 0 0 0 0 0
o 0 0 0 0 0 0 0 -5 12 6 0 12
o 0 0 0 0 0 0 0 5 -3 0 6 4
o 0 0 0 ©0 0 0 0 10 0 -5 12 8
o 0 0 ©0 0 0O 0 0 0 10 5 -3 0
0 0 0 0 0 0 0 0 0 0 0 0 =30

The probabilities of the departure-process system starting in the various states

d = (do,d;,ds, d3+) are made up of the departure point probabilites, with

do = 7T1A10/X7
d, = 7F2A21/X;
d; = 7F3A32/X,
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This series can be written in closed form as

d3+ = (Z Wan_SA/X)]_

n=4
=m[(I-R)" —IJA/N1.
By above equations. We can compute d
do = (0.1280, 0.2480, 0.0698, 0.1100)

d; = (0.0989, 0.1226, 0.0448, 0.0424)
d» = (0.0407,0.0347,0.0158, 0.0105)

ds+ = 0.0338

Moments of inter-departure times

The stationary inter-departure time is of the phase type distribution characterized
by [d,Gs;]. Thus, from Neuts [8] we know that the moments of inter-departure

times random variable X are given by

E[X] = (-1)d(Gz) L.

Then we use different p to compute E[X] by Matlab and Promodel :

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E[X] Matlab 0.4846 | 0.2991 | 0.2061 | 0.1500 | 0.1123 | 0.0851 | 0.0643 | 0.0475
E[X] Promodel | 0.50 0.31 0.21 0.15 0.11 0.08 0.06 0.04

and we use the same parameters to compute Var[X] by Matlab and Promodel,

Var[X] = E[X?] — E[X]*.

P 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Var[X] Matlab 0.2712 | 0.1093 | 0.0543 | 0.0299 | 0.0172 | 0.0099 | 0.0055 | 0.0027

Var[X] Promodel | 0.32 0.1176 | 0.0516 | 0.0344 | 0.0156 | 0.0119 | 0.0051 | 0.0025
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Lag; correlations between successive departures

To get the lagy correlations of the output inter-departure times, it is necessary to
develop the infinitesimal generator matrix é\3 segmented into two matrices: the in-
ternal transitions (without departures) Gs; and the matrix containing the departure

transition Gsy such that é\g = G31 + G3sg.

The matrix Gsy is characterized as

0o 1 2 3+
0/ 0 0 0 0
Gz= 1 |A; 0 0 0o
2| 0 Ay 0 0
351 0 0 (1—t) Aspy tSSou

where t is the probability that departure leaves the system with at least three cus-

tomers remaining. We compute ¢ as

. 22024 7Ta1 d3+ d3+

= = = = 0.2494.
7731+220:47Ta]. d21+d3+ 1 —dol—d11

Two of these sub-matrices are given by
Ass =0 ® (S1,® S1,® S1,) = [0.1838,0.4412,0.1103, 0.2647] @ [30],

SSou = S10 ® S1, & S1, = [30].

Thus, we have
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—
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20

\]

(e}
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o O O O O o o o o o o
o O O o O o o o o o o
o O O O O o o o o o o
o O O o O o o o o o o
o O O o O o o o o o o
o O O o O o o o o o o

]
)

o O O o o o o o
o o o o o o o©
o o o o o O

o o o o o

0
0 0

0 0 0 20 0 0 0 0 0
00 0 0 41391 9.9339 2.4835 59604 7.4831 |

Given Gg; and Ga matrices, from Bodrog, Horvath, Telek [2], and Telek, Hor-

vath [11], we have that the lagy correlation is computed by

(N)2d(—Gi1) "1 ((—G1) ' Gag) (= Gy) 11 — 1
2(\)2d(—G3)~21 — 1) ’

lag, =

where A = (p[(5;p + (5 + ;) (L= p)] 7 +pl(5p + (5 + )1 —p)] " = 4.8529) is

the average effective arrival rate. We can compute lagy (k= 1,2,3,4),

lagy = 0.0344, lag, = 0.0133, lags = 0.0111, lags = 0.0106.

5.3 Queueing models with more than twenty servers

With twenty servers

Here, we present numerical results of queueing systems with twenty servers. The pa-
rameters of two arrival processes are given with (A1, p, A2) = (10, 0.4, 10), (71, p, 72) =
(20,0.4,5), and let p = 0.8.
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The numerical results are compared in three different approaches, M A repre-
sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.

; o ™ T 3 T4 s e

MA | 0.0040 | 0.0202 | 0.0525 | 0.0939 | 0.1303 | 0.1491 | 0.1464
RA | 0.0040 | 0.0202 | 0.0525 | 0.0939 | 0.1303 | 0.1491 | 0.1465
LU | 0.0040 | 0.0202 | 0.0525 | 0.0939 | 0.1302 | 0.1490 | 0.1464

i 7 g 9 10 T T2 13

MA | 0.1269 | 0.0989 | 0.0703 | 0.0461 | 0.0281 | 0.0161 | 0.0087
RA | 0.1269 | 0.0989 | 0.0703 | 0.0461 | 0.0281 | 0.0161 | 0.0087
LU | 0.1269 | 0.0988 | 0.0703 | 0.0461 | 0.0281 | 0.0161 | 0.0087

T T4 15 16 7 18 T19 20

MA | 0.0045 | 0.0022 | 0.0010 | 0.0005 | 0.0002 | 0.0000 | 0.0000
RA | 0.0045 | 0.0022 | 0.0010 | 0.0005 | 0.0002 | 0.0000 | 0.0000
LU | 0.0045 | 0.0022 | 0.0010 | 0.0005 | 0.0002 | 0.0000 | 0.0000

According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 20

Next, we consider the system with twenty servers, where p varies from 0 to 0.75.
Here, parameters of arrival processes are given by (A1, p, A2) = (10, p, 10), (71, p,72) =
(20,p,5), and let = 0.8.

By Lemma 1, we have 0 < p < w = 0.8098.

Table 5.9 shows the comparison of numerical results with three different meth-

ods.
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Table 5.9: The queue empty rate of twenty servers versus probabilities p.

P 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Matrix geometric method | 1.0000 | 0.9998 | 0.9990 | 0.9953 | 0.9822 | 0.9430 | 0.8421 | 0.6122
Ramawami 1.0000 | 0.9998 | 0.9990 | 0.9953 | 0.9828 | 0.9468 | 0.8582 | 0.6570
LU factorization 1.0000 | 0.9998 | 0.9990 | 0.9953 | 0.9822 | 0.9430 | 0.8421 | 0.6122

With twenty-five servers

Here, we present numerical results of queueing systems with twenty-five servers.
The parameters of two arrival processes are given with (A, p, A\2) = (10,0.5,10),

(7,p,72) = (20,0.5,5), and let = 0.9.

The numerical results are compared in three different approaches. MA repre-
sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.

7o 7o e Tt 73 4 s Tig

MA | 0.0015 | 0.0084 | 0.0251 | 0.0521 | 0.0841 | 0.1124 | 0.1294
RA | 0.0015 | 0.0084 | 0.0251 | 0.0521 | 0.0841 | 0.1124 | 0.1294
LU | 0.0015 | 0.0084 | 0.0251 | 0.0521 | 0.0841 | 0.1124 | 0.1294

MA | 0.1317 | 0.1208 | 0.1014 | 0.0786 | 0.0569 | 0.0387 | 0.0249
RA | 0.1317 | 0.1208 | 0.1014 | 0.0786 | 0.0569 | 0.0387 | 0.0249
LU | 0.1317 | 0.1208 | 0.1014 | 0.0786 | 0.0569 | 0.0387 | 0.0249

5 T14 m15 T16 17 m18 T19 T20

MA | 0.0152 | 0.0088 | 0.0049 | 0.0026 | 0.0013 | 0.0007 | 0.0003
RA | 0.0152 | 0.0088 | 0.0049 | 0.0026 | 0.0013 | 0.0007 | 0.0003
LU | 0.0152 | 0.0088 | 0.0049 | 0.0026 | 0.0013 | 0.0007 | 0.0003

s 21 T2 23 24 25

MA | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000
RA | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000
LU | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000
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According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 25

Next, we consider the system with twenty-five servers, where p varies from 0 to
0.85. Here, parameters of arrival processes are given by (A1, p, A2) = (10, p, 10),
(71,p,72) = (20,p,5), and let p = 0.9.

By Lemma 1, we have 0 < p < w = 0.9206.

Table 5.10 shows the comparison of numerical results with three different meth-

ods.

Table 5.10: The queue empty rate of twenty-five servers versus probabilities p.

P 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Matrix geometric method | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9942 | 0.9769 | 0.9201 | 0.7562
Ramawami 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9943 | 0.9779 | 0.9266 | 0.7835
LU factorization 1.0000 | 1.0000 | 0.9998 | 0.9986 | 0.9942 | 0.9769 | 0.9201 | 0.7562

With thirty servers

Here, we present numerical results of queueing systems with thirty servers. The pa-
rameters of two arrival processes are given with (A1, p, Ay) = (10, 0.6, 10), (71, p, 2) =
(20,0.6,5), and let p = 1.

The numerical results are compared in three different approaches, M A repre-
sents matrix geometric solution procedure, RA represents Ramaswami’s formula,

and LU represents LU factorization.

Then, it gives the solutions.
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According to the above three forms, we can find that the values calculated by

three methods are almost equal.

Numerical experiments by changing of p with n = 30

Next, we consider the system with thirty servers, where p varies from 0 to 0.95. Here,

(10,p,10), (y1,p,72) =

parameters of arrival processes are given by (A1, p, \2)

(20,p,5), and let pu = 1.

By Lemma 1, we have 0 < p < w = 1.

20

i o ™ ™ 3 Ty T Te
MA | 0.0005 | 0.0032 | 0.0110 | 0.0258 | 0.0474 | 0.0723 | 0.0953
RA | 0.0005 | 0.0032 | 0.0110 | 0.0258 | 0.0474 | 0.0723 | 0.0953
LU | 0.0005 | 0.0032 | 0.0110 | 0.0258 | 0.0474 | 0.0723 | 0.0953
i 7 T8 9 10 T T2 T3
MA | 0.1113 | 0.1175 | 0.1136 | 0.1018 | 0.0853 | 0.0672 | 0.0501
RA | 0.1113 | 0.1175 | 0.1136 | 0.1018 | 0.0853 | 0.0672 | 0.0501
LU | 0.1113 | 0.1175 | 0.1136 | 0.1018 | 0.0853 | 0.0672 | 0.0501
gy T14 15 T16 m7 T8 19 20
MA | 0.0355 | 0.0240 | 0.0156 | 0.0097 | 0.0058 | 0.0033 | 0.0019
RA | 0.0355 | 0.0240 | 0.0156 | 0.0097 | 0.0058 | 0.0033 | 0.0019
LU | 0.0355 | 0.0240 | 0.0156 | 0.0097 | 0.0058 | 0.0033 | 0.0019
ur 21 T2 o3 24 o5 T26 o7
MA | 0.0010 | 0.0005 | 0.0003 | 0.0001 | 0.0000 | 0.0000 | 0.0000
RA | 0.0010 | 0.0005 | 0.0003 | 0.0001 | 0.0000 | 0.0000 | 0.0000
LU | 0.0010 | 0.0005 | 0.0003 | 0.0001 | 0.0000 | 0.0000 | 0.0000
i Tog 29 30

MA | 0.0000 | 0.0000 | 0.0000

RA | 0.0000 | 0.0000 | 0.0000

LU | 0.0000 | 0.0000 | 0.0000




Table 5.11 shows the comparison of numerical results with three different meth-

ods.

Table 5.11: The queue empty rate of thirty servers versus probabilities p.

p

0.6

0.65

0.7 0.75

0.8 0.85

0.9 0.95

Matrix geometric method

1.0000 | 1.0000

0.9999 | 0.9995

0.9973 | 0.9860

0.9377 | 0.7493

Ramawami

1.0000 | 1.0000

0.9999 | 0.9995

0.9973 | 0.9864

0.9441 | 0.7655

LU factorization

1.0000 | 1.0000

0.9999 | 0.9995

0.9973 | 0.9860

0.9377 | 0.7493

Numerical comparsion with simulation of twenty

Servers

We compare the values of zzozo 7, with the queue empty rate obtained by using

simulation in ProModel. The variable values are given as (Ai,p, A\2) = (10, p, 10),

(71,p,72) = (20,p,5), and p varies from 0 to 0.75, u = 0.8. Table 5.12 shows the

comparison of numerical results.

Table 5.12: Comparison of queue empty rates of twenty servers.

P 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
o+ -+ 1.0000 | 0.9998 | 0.9990 | 0.9953 | 0.9822 | 0.9430 | 0.8421 | 0.6122
(Matrix geometric method)

Queue empty rate 1.0000 | 1.0000 | 0.9998 | 0.9974 | 0.9899 | 0.9636 | 0.8569 | 0.6025
(Promodel 20 hours)

Figure 5.1: The queue empty rate determined by four different methods
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Figure 5.2: Relative errors of three methods compared with Promodel
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Accorrding to two Figures 5.1-2, we can find that when p is close to its upper

bound (0.8098), the relative error becomes large.

Numerical comparsion with simulation of twenty-

five servers

We compare the values of Ziio 7 with the queue empty rate obtained by using
simulation in ProModel. The variable values are given as (A, p, A\2) = (10, p, 10),
(71,p,72) = (20,p,5), and p varies from 0 to 0.85, 4 = 0.9. Table 5.13 shows the

comparison of numerical results.

Table 5.13: Comparison of queue empty rates of twenty-five servers.

D 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

To+m1+ -+ +725 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9942 | 0.9769 | 0.9201 | 0.7562

(Matrix geometric method)

Queue empty rate 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9945 | 0.9772 | 0.9241 | 0.7547
(Promodel 20 hours)

Accorrding to two Figures 5.3-4, we can find that when p is close to its upper

bound (0.9206), the relative error becomes large.
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Figure 5.3: The queue empty rate determined by four different methods
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Figure 5.4: Relative errors of three methods compared with Promodel
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Numerical comparsion with simulation of thirty

Servers

We compare the values of 220:0 7, with the queue empty rate obtained by using
(10, p, 10),
(7,p,72) = (20,p,5), and p varies from 0 to 0.95, p = 1. Table 5.14 shows the

simulation in ProModel. The variable values are given as (A1, p, \2)

comparison of numerical results.

Table 5.14: Comparison of queue empty rates of thirty servers.

D 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
To+71+- - +730 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9973 | 0.9860 | 0.9377 | 0.7493
(Matrix geometric method)

Queue empty rate 1.0000 | 1.0000 | 0.9998 | 0.9998 | 0.9979 | 0.9846 | 0.9526 | 0.7707

(Promodel 20 hours)

Accorrding to two Figures 5.5-6, we can find that when p is close to its upper
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Figure 5.5: The queue empty rate determined by four different methods
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bound (1), the relative error becomes large.

Inter-departure times with simulation of twenty

Servers

Now, we begin by describing the two arrival processes as (A1, p, A\2) = (10, p, 10), (71, p,72) =

(20,p,5), and let p = 0.8.

Moments of inter-departure times with n = 20

We obtain the moments of inter-departure times.
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P 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
E[X] Matlab 0.2061 | 0.1750 | 0.1500 | 0.1295 | 0.1123 | 0.0997 | 0.0851 | 0.0741
E[X] Promodel | 0.21 0.18 0.15 0.13 0.12 0.10 0.08 0.07

Then we use the same parameters to compute Var[X] by Matlab and Promodel.

Var[X] = E[X? — E[X]?

P 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Var[X] Matlab 0.0451 | 0.0325 | 0.0239 | 0.0178 | 0.0143 | 0.0101 | 0.0076 | 0.0057
Var[X] Promodel | 0.0459 | 0.0376 | 0.0275 | 0.0171 | 0.0128 | 0.0100 | 0.0070 | 0.0049

The lag, correlations of the output inter-departure times.

P 0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

lagy | 0.0245

0.0253

0.0258

0.0260

0.0258

0.0248

0.0223

0.0163

lags | 0.0208

0.0220

0.0228

0.0234

0.0236

0.0230

0.0209

0.0154

lags | 0.0177

0.0191

0.0202

0.0211

0.0215

0.0213

0.0195

0.0146

lagy | 0.0151

0.0166

0.0179

0.0190

0.0197

0.0197

0.0182

0.0137

5.4 Numerical

Servers

experiments with more than forty

Condition numbers

In this section, we compare the condition numbers given by RA and LU methods

with forty, fifty, sixty, seventy and eighty servers.

First, we recall the condition number. In our example, the condition number

associated with the linear system 7w*Qs = [1 0] in (3.6) and (3.7) gives a bound on

how inaccurate the solution 7v* will be after an approximate solution. In particular,

if the condition number is large, even a small error in [1 0] may cause a large error

in 7v*. On the other hand, if the condition number is small then the error in 7w* will

not be much bigger than the error in [1 0].
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Let &€ be the error in [1 0]. Since that Qs is a square matrix, the error in the
solution [1 0]Qz* is £€Q3z'. The ratio of the relative error in the solution to the

relative error in [1 0] is

1€Q; '[I/1I[1 0)Qs5 ||
g/ op

This is easily transformed to

(11€Qs " ID/1IED - (/1L 01Q5 ™)

The maximum value is easily seen to be the product of the two operator norms:

R(Qs) = [1Qs]l - 11Q5 I,

k(Qj3) is the condition number of Q3.

We consider the matrix Qs in Matrix geometric method and LU factorization.
Because of w*Q3 = [1 0], we apply Q3 to compute the condition number by Matlab
in the following. The parameters of arrival processes are given by (A,p, \y) =
(10,p,10), (71,p,72) = (20,p,5), and consider p = X/(nu) from 0.04 to 0.88 with
respect to different p.

Figure 5.7: Condition number determined by Qg
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Next, we define the matrix P = By — B;V;'B_; in (3.9) and (3.7) with RA
method. Let the first column of P be replaced by the column vector (1,---,1,(I—
R)™!' - 1)T. Then, the modified P is rewritten as a new matrix P;. Because of

7*P; = [1 0], we apply P; to compute the condition number by Matlab in the
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following. The parameters of arrival processes are given by (A1, p, Ao) = (10, p, 10),

(71,p,72) = (20,p,5), and consider p = \/(nu) from 0.04 to 0.88 with respect to

different p’s.

Figure 5.8: Condition number determined by P,
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Queue empty rate

In this section, we consider the queue empty rate by comparing MA, RA and LU
methods wit forty, fifty, sixty, seventy and eighty servers.

The parameters of arrival processes are given by (A1, p, A2) = (10, p, 10), (71, p,72) =
(20,p, 5), and consider p = \/(np) from 0.04 to 0.88 with respect to different p’s.

Figure 5.9: The queue empty rate computed by LU method
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Then we use the RA method to compute the queue empty rate. The parameters
of arrival processes are given by (Ay,p, A2) = (10, p,10), (71,p,72) = (20,p,5), and
from 0.04 to 0.88 with respect to different p’s.

Figure 5.10: The queue empty rate computed by RA method
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Chapter 6

Conclusion

In this thesis, we present a new computing scheme for computing the stationary
probabilities of a phase-type queueing model with multiple servers. The matrix
geometric solution procedure has been compared by using Ramaswami’s formula and
blocks LU factorization. With LU factorization, an efficient algorithm for solving
stationary probabilities is provided to deal with the complex computation of large
matrices due to a large number of system states. Through a number of smaller
sub-matrices, the state balance equations of a phase-type M AP/M/n queue are
solved. Numerical examples are given to demonstrate the proposed matrix geometric
solution procedure. Performance measures of these models are also illustrated with
a number of approximation and simulation results. As the traffic is light, we find
that the stationary probabilities obtained from our approaches and simulations are
almost the same. At last, we use two different methods (Matlab and Promodel) to
compute the moments of inter-departure times and the variance. We can find the

values of two different methods are almost the same.
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Appendix A
Theorem LU.(Thm 3.5.2 in [9] )

Suppose that A € M,,,, and that rank A = k. If

d@tA({]_, a]}) 7&07 .]: 1a 7k7
then A may be factored as
A=LU

with L € M,,«,, lower triangular and U € M,,,, upper triangular. Furthermore, the
factorization may be chosen so that either L or U is nonsingular; both L and U may

be chosen nonsingular if and only if £ = n, that is, if and only if A is nonsingular.
Proof :

We first show that, under the assumption on leading minors, A({1,--- , k}) may
be factored as L({1,--- ,k}) U({1,--- ,k}), with both nonsingular. It is possible to

solve for the relevant entries of L and U, one by one. Let L = [[;;] and U = [u;].

Set ull :17 and let l11:a7,17 i:17... ’k'_
Solve for
u1] = &7 — 2’ . 7]{:
I
Continue. Set ugy =1 and let lix = ajo — liyui2, @ =2, -+ , k. Solve for
Qo — log Uy
U2j:—2j 2 1j7 j:3,'-~,k‘.

l22

Continue, letting successive diagonal entries of U be 1 and then solving for the

next column of L({1,--- ,k}) and then the next row of U({1,--- ,k}).

Each time there is one equation in one unknown to be solved. This equation will
be solvable since each l;; is nonzero (because det L({1,--- ,i})xdet U({1,--- ,i}) =
det A({1,---,i})). this completes the factorization of A({1,--- ,k}).
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Partition A. Since rank A = k = rank A1, we see that the rows of [Ag; Ags]

are unique linear combinations of rows of [Aj; Aj], that is
A21 = BAH cmd A.22 = BA12,

for some uniquely determined B € M,,_; ;. Now partition the desired L and U,

noting that nonsingular Ly; and U;; have been

U12 = L;11A12 and L21 = AQlUil.

Then

Agy = Lo Uja+LgUsgy = A21Uf11Lf11A12+L22U22 = BA11AI11A12+L22U22 =
Ay + LoypyUy

To complete the factorization, it is necessary and sufficient that LysUgy = 0

We may, for example, choose Loy (respectively Ugy) to be any nonsingular lower
(respectively upper) triangular matrix in M,,_ we like and choose Usy (respectively
Lss ) to be 0. Since Ly; and Uy are nonsingular, either L or U may be chosen to
be nonsingular. If £ = n, L = Ly; and U = Uy; will be nonsingular; if £ < n, not

both L and U can be nonsingular because A is singular. This completes the proof.
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Appendix B
Theorem D.(Thm 3.5.6 in [9] )

Let Zj, € My« be nonsingular. Then there is a permutation matrix D € M«
such that
d€t<DTZk)<{17 e 7.7}) 7é 07 ] = 17 e 7k

Note that DTZ, is just a recordering of the rows of Z.
Proof :

The demonstrations is by induction on k, If k£ =1 or 2, the result is clear by
inspection; suppose that it is valid up to and including £ —1. Consider a nonsingular
Z; € Mjy, matrix and delete its last column. The remaining £ — 1 cloumns are
linearly independent and hence contain k£ — 1 linearly independent rows. Permute
these rows to the first k — 1 positions and apply the induction hypothesis to the
nonsingular upper (k — 1)-by-(k — 1) submatrix. This determines a desired overall

permutation. Since D?Z;, is nonsingular, the proof is complete.
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Appendix C

Following is the code of the program.

function Rmatrixn(laml,lam2,gaml,gam2,mu,p,n)
%hhhhh% input data
lami1=10;
lam2=10;
gaml1=5;
gam2=20;
mu=input (’\n Please input the service rate at all phase, \mu=’);
p=input (’\n Please input the probability that the customer leaves the system after the first phase of the service time, \p=’);
n=input (’\n Please input the number of server, \n=’);
BIIIII TSI DD LD hhhh The range of pAAAAAAAALAALLLLLLS
prange=1/2/(gaml*gam2*laml+laml*lam2*gaml+n*mu*lami*gaml)* (lami*lam2*gam2+gami*gam2+lami+lami*lam2+gami+gaml*gam2*lam2+n*mu*lam2*gamli+
2*n*mu*laml*gaml+n*mu*lami*gam2- (2+laml*lam2"2*gaml~2*gam2+2*laml~2*lam2*gaml”2*gam2+2*laml~2*lam2" 2*gaml*gam2+
2*gaml*gam2~2*laml”2*lam2+2*gaml~2*xgam2~2*laml*lam2+2*xgaml ~2*gam2*lam2~2*n*mu+2*laml~2*lam2*gam2” 2*n*mu+n”2*mu”~2*laml "~ 2*gam2” 2+
lam1”2*lam2”2*gam2~2+laml”~2*lam2”2*gaml~2+gaml~2*gam2~2*1laml~2+gaml~2*gam2~2*lam2"2+2*laml*lam2"~2*gam2~2*gaml+
n"2xmu”2*lam2”2*gaml~2-2*laml*lam2” 2*gam2*nimuxgami+2*laml " 2*lam2*gam2*n*mu*gaml-2*gaml*gam2 " 2*laml*n*mu*lam2+
2*gaml”2*gam2*lami*n*mu*lam2-2*gami*gam2~2*laml~2*n*mu-2%laml*lam2”2*gaml”2*n*mu-2%n"2+mu”2*lam2*gami*lami*gam2) ~ (1/2))
Whhhhthlh’hs Define the basic matrices — LUhAhhhIILhAS
Ti=[-laml (1-p)*laml;lam2 -lam2];
T10=[p*laml;0];
T10p=kron(T10, [1,0]);
T2=[-gaml (1-p)*gaml;gam2 -gam2];
T20=[p*gam1;0];
T20p=kron(T20, [1,0]);
Tp=kron(T10p,eye(2))+kron(eye(2),T20p) ;% go into server transposed matrix
S1=[-mu];
S10=[mu] ; %departure server transposed matrix
An=kron(n*mu,eye(4));
Bn=[-lamil-gaml-n*mu, (1-p)*gaml, (1-p)*lami,0;gam2,-laml-gam2-n*mu,0, (1-p)*lami;
lam2,0,-lam2-gaml-n*mu, (1-p)*gam1;0,lam2,gam2,-lam2-gam2-n*mu] ;
C=Tp;
F=[kron(T1,eye(2))+kron(eye(2),T2)+C,ones(4,1)];
BRI I bbbt mean arrival ratehhhhhhhlhhhhhhhhhhbhhlh
lam=(inv((1/lam1)*p + ((1/lam1)+(1/lam2))*(1-p))+inv((1/gam1)*p + ((1/gaml)+(1/gam2))*(1-p)))*p %total arrival rate
BRI AL ANYS Compute R matrix AALAALAILAIEAIAADIADSS
R2=zeros(4,4);
R1=-C*inv(Bn) ;
i=0;
delta=10;
while delta > (10°-8)
R2=-Cxinv(Bn)-R1"2*An*inv(Bn) ;
delta=norm(R2-R1,inf);
R1=R2;

i=i+1;

I

t1l = cputime;

% Start Matrix geometric method %%

Qn=[zeros (4% (n+1) ,4*(n+1)) ,ones(4*(n+1),1)];7% steady state
Qn(4*(n+1)-3:4%(n+1) ,4%(n+1)-3:4*(n+1)+1)=[Bn+R2*An, inv(eye (4) -R2) *ones (4,1)];
for k=1:n

Qn(4* (k+1)-3:4* (k+1) ,4%k-3:4%k)= kron(k*mu,eye(4)) ;

Qn(4%k-3:4*k,4%k-3:4xk)=[-laml-gaml-(k-1)*mu, (1-p)*gamil, (1-p)*1laml,0;
gam2,-laml-gam2-(k-1)*mu,0, (1-p)*lamil;
lam2,0,-lam2-gami-(k-1)*mu, (1-p)*gami;
0,lam2,gam2,-lam2-gam2-(k-1)*mu] ;

Qn(4%k-3:4xk, 4% (k+1)-3:4*(k+1))=C ;
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end

Qn;
sol = [zeros(1,(n+1)*4),1] / Qn % Use the matrix geometric procedure to solve pi_0 pi_1 pi_2... pi_n
sum(sol) %The queue empty rate by the matrix geometric
t2 = cputime;

t2-t1% Cpu time of the matrix geometric method

Yy %% Start Ramaswami’s formulal% Hh
t3 = cputime;

A01=[An] ;

A0=[Bn];

A1=[C];

B_O=[zeros(4x(n+1) ,4*(n+1))1;
B_0(4#n+1:4*n+4,4*n+1:4%n+4)=[-laml-gami-n*mu, (1-p)*gaml, (1-p)*laml,0;gam2,-laml-gam2-n*mu,0, (1-p)*laml;
lam2,0,-lam2-gaml-n*mu, (1-p)*gam1;0,lam2,gam2,-lam2-gam2-n*mu] ;

for k=1:n

B_0 (4% (k+1)-3:4x(k+1) ,4*k-3:4%k)= kron(k*mu,eye(4)) ;

B_0(4%k-3:4xk,4*k-3:4%k)=[-laml-gaml-(k-1)*mu, (1-p)*gami, (1-p)*laml,0;
gam2,-laml-gam2-(k-1)*mu,0, (1-p)*laml;
lam2,0,-lam2-gaml-(k-1)*mu, (1-p)*gami;
0,lam2,gam2,-lam2-gam2-(k-1)*mu] ;

B_0(4%k-3:4xk,4%(k+1)-3:4%(k+1))=C ;

end

B_O;

Bi=[zeros(4*n,4);C];

BO1=[zeros(4,4*n),An];

R3=zeros(4,4);
R1=-C*inv(Bn) ;

i=0;

delta=10;

while delta > (10°-8)
R3=-An*inv(Bn)-R1~2*C*inv(Bn) ;
delta=norm(R3-R1,inf);
R1=R3;

i=i+1;

end

i;

R3;

U0=Bn+C*R3;

P=B_0-B1xinv(U0)*B01;

sol = [zeros(1,4*(n+1)),1] / [P, [ones(4x(n-1),1);inv(eye(4)-R2)*ones(4,1);zeros(4,1)]1% Use Ramaswami’s formula to solve pi_0,...pi_n
sum(sol) %The queue empty rate of Ramaswami

t4 = cputime;

t4-t3 % CPU time by Ramaswami

M
Qn=[zeros (4*(n+1) ,4*(n+1))];% steady state

%% Starting of verifying Matrix with a replaced column %% Tt
Qn(4*(n+1)-3:4x(n+1) ,4*%(n+1)-3:4%(n+1))=[-laml-gami-(n)*mu, (1-p) *gaml, (1-p)*1ami,0;gam2, -lami-gam2- (n)*mu,0, (1-p)*laml;
lam2,0,-lam2-gami-(n)*mu, (1-p) *gam1;0,lam2, gam2, -lam2-gam2- (n) *mu] +R2xkron (n*mu, eye (4)) ;

for k=1:n

Qn (4% (k+1)-3:4% (k+1) ,4%k-3:4%k)= kron(k*mu,eye(4)) ;

Qn(4%k-3:4%k,4%k-3:4xk)=[-laml-gaml-(k-1)*mu, (1-p)*gaml, (1-p)*laml,0;
gam2,-laml-gam2-(k-1)*mu,0, (1-p)*lamil;
lam2,0,-lam2-gami-(k-1)*mu, (1-p) *gaml;
0,lam2,gam2, -lam2-gam2- (k-1) *mu] ;

Qn(4%k-3:4%k, 4% (k+1)-3:4*(k+1))=C;

end

Qn;

J1=[ones (4*(n),1) ;inv(eye(4)-R2)*ones(4,1)];

Z=[J1, Qn( 1:4x(n+1),2:4*%(n+1) )];

sol = [1,zeros(1,4*(n+1)-1)1 / [Z1;%

sum(sol) %The queue empty rate

WAL A RNLS Start LU factorizationhhhhhhhhhhhhhhte
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t5 = cputime;

J=(J1)’;% Transpose

K=[J1, Qn( 1:4%(n+1),2:4%(n+1) )]’;%Use Gaussian elimination
temp=[J];

for i=4*(n+1):-1:9

for j=i-1:-1:1

temp (j)=temp(j)-(K(i-4,j)/K(i-4,i))*temp(i);

end

temp(i)=0;

end

temp;%Use Gaussian elimination to make first row to be zero
YANYANA
S=[temp;K(2:4%(n+1),1:4%(n+1))];%Use Gaussian elimination
I
U(1:4,1:4)=8(1:4,1:4);

for i = 2:(n+1)

L((i-1)*4+1: (i-1)*4+4, (i-2)*4+1: (1-2)*4+4) = S((i-1)#4+1: (i-1)*4+4, (i-2)*4+1: (1-2)*4+4)*
/(U((1-2)*4+1: (1-2) *4+4, (i-2) *4+1: (1-2)*4+4)) ;
U((i-1)*4+1: (i-1)*4+4, (i-1)*4+1: (i-1)*4+4) = S((i-1)*4+1:(i-1)*4+4, (i-1)*4+1: (i-1)#4+4)-L((i-1)*
4+1: (i-1)*4+4, (1-2) *4+1: (1-2) %4+4) *S ((1-2) *4+1: (1-2) *4+4, (i-1) *4+1: (i-1)*4+4) ;

Wlelets Compute Z_n bt lelo ol ol oo o o oo o oo o oo

i Algorithm 1: LU factorization %%

end
L;%get L1,L2,...,Ln
U;%get U1,U2,...,Un
YANYANA
y=zeros(4*(n+1),1);

(%%%% Algorithm 2: Forward and backward substitution%i%%%%

for i=2:(n+1)

y(1:4,1)=[1;0;0;01;

y(4%i-3:4%i,1)=[zeros(4,1)-L((i-1)*4+1: (i-1)*4+4, (i-2) *4+1: (i-2) *4+4) xy (4* (i-1)-3:4*(i-1),1)];
end

yi%solve y1 y2...yn

x=zeros (4*(n+1),1);

x(4%(n+1)-3:4%(n+1) ,1)=1/(U(4*(n+1)-3:4* (n+1) , 4% (n+1)-3: 4% (n+1) ) ) *y (4* (n+1)-3:4* (n+1) ,1) ;

for i=(n+1):-1:2

x(4%(1-1)-3:4%(i-1),1)=1/(U(4*(i-1)-3:4%(i-1) ,4*%(i-1)-3:4*(i-1))) * [y(4*(i-1)-3:4%(i-1),1)-S(4*(i-1)-3:4*(i-1),4*i-3:4*i)*x(4*i-3:4%i,1)];
end

b4 % Use LU factorization to get pi_O,pi_1,...,pi_n

sum(x) %The queue empty rate by the matrix geometric

t6 = cputime;

t6-t5 YCpu time of the matrix geometric method
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Appendix D

List of frequantly used symbols in the thesis

symbol | its mean

n the number of servers.

Sq an arrival stays in the server.

Sio an arrival finishes the service.

W the service rate.

A1 arrival rate in the first phase of the first stream.

Ao arrival rate in the second phase of the first stream.

Y arrival rate in the first phase of the second stream.

Yo arrival rate in the second phase of the second stream.

P the probability of an arrival to the queue.

B the internal phase changes for the composite arrival process.
C an arrival goes into the system.

A an arrival finishes the service, and departures the system.

0 stationary probability.

A total arrival rate.

T,. correspond to phase transitions.

T, correspond to the rate as arrivals enter the systems phase transitions.
g the vector of probabilities of k£ customers in the system.

Q the generator matrix of a continuous time Markovian process.
R means of the iterative procedure.

T [71'0 T o T 71'”]

\% an upper triangular matrix.

\)\% a lower triangular matrix.

H a submatrix of W.

Vo a submatrix of V.

P By - B,V,'B_,.
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its mean

lagy

a 4 x 4 matrix which the first row is 1, else 0.

a block tridiagonal matrix.

permutation matrices.

permutation matrices.

a lower triangular matrix.

an upper triangular matrix.

a submatrix of U.

the departure-point stationary probabilities.

the generator matrix without departures for the departure process.
the generator matrix with departures for the departure process.
G 1+Ge

the probability of departure leaves the system with at least

n customers remaining.

the lag, correlation.
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