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Abstract

In this thesis, we establish the maximum principles for the elliptic dynamic
operators and parabolic dynamic operators on multi-dimensional time scales,
and apply it to obtain some applications. Indeed, we extend the maximum
principles on differential equations and difference equations to the so-called

dynamic equations.
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1 Introduction

Maximum principles are an important tool in the study of partial differ-
ential and difference equations. For example, they can be used to obtain the
existence and uniqueness of solutions and to approximate it. Consequently the
theory of maximum principles in difference and differential equations has been
investigated extensively, see for example [1] and [2] and the references cited

therein.

In recent years, the study of dynamic equations on time scales has received
a lot of attentions since it not only can unify the calculation of difference
and differential equations but also has various applications. In particular, the
maximum principles have been established in [4] for the second order ordinary
dynamic operator and [5] for the elliptic dynamic operator. Motivated by the
above work, in this thesis, we study the maximum principles for the elliptic
dynamic operator
n
Llu] := Z(uviA" + Bjufi 4 Cyu¥?)
i=1
and the parabolic dynamic operator
n
Llu) = Z(uviAi + Bl + CauV) — uVr,
i=1

Our results improve the results in [5].

This thesis is organized as follows. Section 2 contains some basic defini-
tions and the necessary results about time scales. In Section 3, we present
the maximum principles for the elliptic dynamic operators. Finally, in Section
4, we establish the maximum principles for the parabolic dynamic operators,

and apply it to obtain some useful applications.



2 Preliminary

For completeness, we state some fundamental definitions and results con-
cerning partial dynamic equations on time scales that we will use in the sequel.
It can be regarded as a generalization of the one-dimensional case. More details

can be found in [6], [7], [8], and [9].

A time scale is an arbitrary nonempty closed subset of R. Throughout this
thesis, we denote [ = {1,2,--- ,n}, where n € N, and we assume that T;, for

each ¢ € I, is a time scale and the set

A=T; xTyx -+ xT, ={t=(t1,ta,--- ,t,) | t; € T; for each i € I},

defined by the Cartesian product is an n-dimensional time scale.

Definition 2.1 For each i € I, the mappings o;, p; : T; — T; defined by

inf{v € T; | v > u}, if u+# maxT,,
oi(u) =
max T, if u=maxT;,
and
sup{v € T; | v < u}, if u# minT;,
pi(u) :=
min T;, if w=minT;,

are called the ith forward and backward jump operators respectively. In this
definition, the corresponding graininess functions p;, v; = T; — [0,00) are

defined by

pi(u) = oi(u) —u,  vi(u) :=u— pi(u).

For convenience, we define the functions &;, p; : A — A by

5-1(t) = (tlatQa e 7ti—170i(ti)7ti+1a e 7tn)7



and
pi(t) = (L ta, -+ s tima, pilti) s tiga, o+ S L),
for any ¢ € A and ¢ € I. In addition, if u : A — R is a function, then the

functions u%, u?* : A — R are defined by
u(t) = u(Gi(t))  and  uP(t) = u(pi(t),
for any t € A and 7 € I.

Definition 2.2 A point t in A is said to be i-right dense if t; < maxT; and
oi(t;) = t;, and i-left dense if t; > minT; and p;(t;) = t;. Also, if o;(t;) > t;
then t is called i-right scattered, and if p;(t;) < t; thent is called i-left scattered.
Moreover, we say that t is i-scattered if it is both i-left scattered and i-right

scattered, and i-dense if it is both i-left dense and i-right dense.

Definition 2.3 For each i € I, let

T;\ max T;, if T, has a left scattered maximum,
(T)F =
T;, if T; has a left dense maximum.

Then we can define
A = (T)* x (To)* x -+ x (T~

Assume u : A — R is a function and let t € A*. Then we define u®i(t) to be
the number (provided it exists) with the property that given any e > 0, there
exists a 0 > 0 such that

| [u(@i()=ulty, o, -+ s tia, 8, b, -+ )| =u™ (O)]os(ts) —s] [< e | ou(ti)—s |
for all s € (t; — 6,t; + 0) N'Ty. In this case, we call u™i(t) the partial delta

derivative of u at t with respect to t;.

In particular, if we choose n = 1 in this definition, then u is a single

variable function from T; into R, and we denote the delta derivative of u at



t € (T1)* by u®(t). Moreover, we say that u is delta differentiable at ¢ if u®(t)

exists for some ¢ € (T)X.

Definition 2.4 For each i € I, let

T;\ min T;, if T; has a right scattered minimum,
(Ti)x =

T;, of T; has a right dense minimum.

Then we can define

A]C = (Tl);g X (TQ);C X oo X (Tn)IC

Assume u : A — R is a function and let t € Ax. Then we define uVi(t) to be
the number (provided it exists) with the property that given any e > 0, there

exists a & > 0 such that

| [u(pi(t)—ults, o, ticy, Sy tipa, - )] —u¥ () [ps(t:)—s] |< € | ps(ts)—s |,

for all s € (t; — 6,t; + 8) NT;. In this case, we call u¥i(t) the partial nabla

deriwative of u at t with respect to t;.

In particular, if we choose n = 1 in this definition, then u is a single
variable function from T, into R, and we denote the nabla derivative of u at
t € (Ty)k by u¥ (). Moreover, we say that u is nabla differentiable at ¢ if u" ()

exists for some t € (T;)x.
For convenience, we denote the intersection of A* and Ax by AF, i.e.,
Ak = (To)g x (Ta)ig x -+ x (Ta).

Definition 2.5 Let T be an arbitrary time scale. A function f : T — R s
called rd-continuous provided it is continuous at right-dense points in T and

its left-sided limits exist (finite) at left-dense points in T.

Definition 2.6 A function F : T — R is called a delta antiderivative of



f: T — R provided
FA(t) = f(t)  holds for all t € T*,
We then define the integral of f by
/: F(F)Ar = F(t) — F(s)  for all s,t €T,
Lemma 2.7 FEvery rd-continuous function has a delta antiderivative.

Definition 2.8 A function f : T — R s called ld-continuous provided it is
continuous at left-dense points in T and its right-sided limits ezist (finite) at

right-dense points in T.

Definition 2.9 A function F' : T — R is called a nabla antiderivative of

f: T — R provided
FY(t) = f(t)  holds for all t € Tx.
We then define the integral of f by
/:f(T)VT:F(t)—F(s) for all s,t € T.
Lemma 2.10 Fvery ld-continuous function has a nabla antiderivative.

Definition 2.11 Let T be an arbitrary time scale, andp : T — R be a function
and satisfy
1—v(t)p(t) #0  for all t € Tk.

Then we define the nabla exponential function by

ép(t,s) = exp(/tg(T)VT) for s,t €T,

where



Lemma 2.12 Suppose that « is a negative constant and s,t,u € T, then

(a) én(t,s) >0 and é,(t,t) =1,
(b) éa(t,u)éq(u,s) = éu(t,s);
(c) eY(t,s) = aéy(t,s).

Lemma 2.13 Assume that f : T — R is a single variable function and let

t € T, then we have the following:

(a) If f is delta or nabla differentiable at t, then f is continuous at t.
(b) If f is continuous at a right-scattered point t, then f is delta differentiable

at t with
) — f(t)
Af) = f(o( .
@ (u(t)
(c) Ift is right-dense, then f is delta differentiable at t if and only if the limit
() = £(5)

s—t t— s
exists. In this case,

300 -t IO 5)

s—t t— s

(d) If f is delta differentiable at t, then

flo(t)) = £(&) + u()f2(1).

(e) If f is continuous at a left-scattered point t, then f is nabla differentiable

at t with
(f) If t is left-dense, then f is nabla differentiable at t if and only if the limit
()~ £(s)

s—t t—s

exists. In this case,

() — g T 1)

(9) If f is nabla differentiable at t, then

Flp(t) = f(t) = v(t) [ (t).



Hereafter [a,b|r represents an interval on time scale T, that is, [a,blr =
[a,b] N'T. Other types of intervals on a time scale can be represented by the

similar way:.
Lemma 2.14 Assume that f : T — R is a function, then

(a) If £~ >0 on [a,b]r, then f is strictly increasing on [a,b]r.
b
(b) If f > 0 is a continuous function on [a,b|r, then / f()At > 0 and

b
/ f(®)Vt >0, where a, b € T.

Lemma 2.15 Assume that f : T — R is nabla differentiable and fV is con-

tinuous on Tyx. Then f is delta differentiable at t and

A = fYct))  for all t € TF.



3 Maximum principles for the elliptic dynamic operators

In this section, we first consider the dynamic Laplace operator

n
Aru = Z uViti,

i=1
Let

A = [pi(ar), o1 (bi)lr, X -+ X [pa(an), on(bn)]r,-
We shall study the functions in the set

D(A) :={u: A — R | uV** is continuous in A% for each i € I}.

The following lemma provides some basic properties for an interior maxi-

mum point of a function in D(A).

Lemma 3.1 Suppose that uw € D(A) attains its mazimum at an interior point

m of A. Then, for each i € I, we have
uVi(m) >0,  wfi(m) <0, and u'?(m)<0.
In particular, if m s i-right dense, then
u¥i(m) = u®i(m) = 0.
Proof. Since v attains its maximum at an interior point m of A, it follows from
the definition of ©V¢ and u®¢ that

wViim) >0 and  u™(m) <0, (1)

for each i € I. Let us divide our proof into two cases according to the point

type of m with respect to the ith component.

(i) m is i-right dense:

In this case, by applying Lemma 2.15, we have that

u(m) = u¥i(&i(m)) = u¥ (m),



and consequently, together with (1), we conclude that
uVi(m) = u®i(m) = 0.

Now we want to show that «Vi?i(m) < 0. For contradiction, we assume
that «Vi®i(m) > 0. Then the continuity of uVi® and Lemma 2.14 imply
that there exists a § > 0 such that "’ is strictly increasing in t; on J,
where J denotes the set of all points ¢ € A lying on the line segment
joining m and m + de;, where {e; | i € I} denotes the natural basis for
R™. Since m is i-right dense, without loss of generality, we may assume
that m; + & € T;. Since uVi(m) = 0, it follows that uVi(t) > 0 for all
t € J\ {m}. Then, by applying Lemma 2.14, we easily get

m;+06
/ uVi(myyma, M1, Sy Migrs e M) VS = u(mde;)—u(m) > 0,

m;
which contradicts the fact that u(m) is the maximum value on A.
(ii) m is i-right scattered:

Note that

Theorem 3.2 If u € D(A) satisfies
Aru >0, in Ag, (2)
then u cannot attain its maximum at an interior point of A.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of A. By applying Lemma 3.1, we have that uVi?i(m) < 0 for each



1 € I. This implies that
Aru(m) =3 u¥®(m) <0,

=1

which contradicts (2). O

Next we consider the more general operator which contains the first-
derivative terms
Llu] := Z(uv’Ai + Bju®i + CiuV?) = Aqu + Z(Bl-uAi + CuM).
i=1 =1
Following the statement of Lemma 3.1, for each ¢ € A, we define the

auxiliary index sets

Ipp i={i € Lt = oy(ts)},
IES = {Z el t < O'Z(tl)}

Theorem 3.3 If u € D(A) satisfies
Llu] >0, in Af, (3)

and let B; and C; satisfy

(4)
for each t € N§ which is i-right scattered and i € I. Then u cannot attain its

mazximum at an interior point of A.

Proof. For contradiction, we assume that u attains its maximum at an interior

point m of A. Lemma 3.1 yields that at the point m, we have

0, uVi(m) =0, and uVi®i(m) <0  ifi € I[Py,
ufi(m) <0, uVi(m) > 0, and uViti(m) <0 it i € Ifs.

Therefore, together with the assumption (4), we have that

10



= ; u¥' 3 (m) + EI; (Y2 (m) + Bi(m)u™ (m) + Ci(m)u”" (m))
S 07

which contradicts (3). O

Theorem 3.4 Let u € D(A) satisfy the inequality (3) and let B; and C;
satisfy

1+ B;i(t)p(t:) = 0,
()
=1+ Ci(t)pi(ts) <0,
for each t € N which is i-right scattered and i € I. Then u cannot attain its

maximum at an interior point of A.

Proof. For contradiction, we assume that u attains its maximum at an interior
point m of A. Then, by applying Lemma 3.1, we can rewrite L[u](m) in the

following way:

L[u](m)

n

= Z(uviAi(m) + Bi(m)u®(m) + Cy(m)ui(m))

(6)
= Z:n u¥i®i(m) + Zﬂ (V% (m) + Bi(m)u® (m) + Ci(m)u"" (m))
_ ViA; uti(m) —uVi(m) , A ' Vi

; w2 (m) + ; ( e + Bi(m)u~i(m) + Ci(m)u“i(m)).

If I = I}y, then (6) implies that

Lluj(m) = Y uVi%(m) <0,

i€l

11



which contradicts (3). Otherwise, let us define the auxiliary functions

pt) =TI wi(ty).  Aas(t) = I wty).
j€lps i€lhg
JFi

Obviously, if i € Ik we have

lt) = fs(Opilts). (7)

We multiply both sides of the equality (6) by fi(m) > 0 and use (7) to obtain

fu(m)Llu(m)

= jlm) D> uVR(m)

i€l

= jlm) D> u¥(m)

TN

+ Bi(m)u® (m) + Ci(m)uYi(m))

+iimg(m) D7 [(1+ Bi(m)pa(ma))ut(m) + (=1+ Ci(m)ps(my))u™ (m)].

ielpy
Lemma 3.1 together with the assumptions (5), and positivity of fi(m) and
fi_;(m) imply that
fu(m)L[u](m) <0,
which contradicts (3). Therefore we conclude that u cannot achieve its maxi-

mum at an interior point of A. O

12



4 Maximum principles for the parabolic dynamic operators

In this section, we extend our results in the last section to the parabolic
dynamic operators. Let A be an n-dimensional time scale defined in Section

3. Then we define the (n + 1)-dimensional time scale 2 by

Q=Ax]0,T]

Trt1o

where T, ;; is an arbitrary time scale and 0,7 € T, ;. In addition, we set
B=Ax{0} and S=0Ax(0,Tr,,,,
then we can define the parabolic boundary Pf) by

PQ=SUB.

Throughout this section, we study the functions in the set

D(Q) :={u: Q— R | uVi® is continuous in Ag x [0, 7]y, ,, for each i € I
and u¥V"+! is continuous in A x ([0, Ty, ., ) }-
Theorem 4.1 If u € D(Q) satisfies
Aru — uVrtt = iuviAi —u¥ >0, in Agx ([0,T)r,, )k, (8)
i=1

Then uw cannot attain its maximum anywhere other than on the parabolic

boundary.

Proof. For contradiction, we assume that u attains its maximum at a point
m € 2\ PQ. This implies that m € Al x ([0, Ty, ,,)x. Therefore, by applying

Lemma 3.1, we have

uVi®i(m) <0 for each i€ I.

13



Since u attains its maximum at m, by the definition of partial nabla derivative
of u, we obtain
u¥m 1 (m) > 0. (9)

It follows that
(Aru—uT4)(m) = 3w (m) — u¥ (m) <0,
i=1
which contradicts (8). O

Similarly, we consider the more general operator
n ~ ~
Llu) := Z(uViAi + By + CuV) — uVnt,
i=1

Theorem 4.2 If u € D(Q) satisfies
Liu] >0, in Agx ([0, T)r,. )k, (10)

and let B; and C, satisfy

B;(t) >0,
(11)
Ci(t) <0,

for each t € N x ([0, T)r,,, ) which is i-right scattered and i € I. Then u

cannot attain its mazimum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point

m € Q\ PQ. Lemma 3.1 together with the assumptions (11) and (9) imply

that
Llu](m)
= i(uvzm(m) + Bi(m)uPi(m) + Cy(m)uVi(m)) — u¥m+ (m)
— ; quAz<m) + zﬂ; (uViAz' (m) -+ éi(m)qu (m) + C*z(m)uvl (m)) . uV"+1 (m)
<0

14



which contradicts (10). O

Theorem 4.3 Let u € D(Q) satisfy the inequality (10) and let B; and C;
satisfy

1+ Bi(t)pi(ti) > 0,

(12)
-1+ éz(t),uz(tl) <0,

for each t € A x ([0,T)r,,,)c which is i-right scattered and i € I. Then u

cannot attain its mazimum anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains its maximum at a point
m € Q\ PQ. As similar as the proof of Theorem 3.4, we rewrite Lu|(m) in

the following way:

Llu](m)

= > u(m) (13)

ubi(m) —uVi(m)  ~ A SN -
+ zj; ( i) + Bi(m)u~t(m) + Ci(m)u"i(m)) —u (m).

If I = Iy, then (13) and (9) imply that

Liu)(m) = > uV®i(m) —u¥r+(m) <0,

ielfy

which contradicts (10). Otherwise, we multiply both sides of the equality (13)
by fi(m) > 0 and use (7) and (9) to obtain that

15



which contradicts (10) and the proof is done. O
Next we consider the operator which contains the non-derivative term
(L + h)[u] := En:(uviAi + BiuPi + CouVi) — uVr 4 hu
i=1
Theorem 4.4 Let u € D(R2) satisfy
(L+h)u] >0, in Ak x ([0,T)r,.,)k, (14)
and let B; and C; satisfy the inequality (12). Moreover, we suppose that

h(t) <0, (15)

for each t € N x ([0,Tr,,, ). Then u cannot attain a nonnegative mazimum

anywhere other than on the parabolic boundary.

Proof. For contradiction, we assume that u attains a nonnegative maximum

at a point m € Q\ PQ. By the proof of Theorem 4.3, we know that
Llul(m) <0,

if u attains its maximum at the point m. Then, together with the condition

h(m)u(m) < 0, we easily see that

(L + W) (m) = L{u)(m) + h(m)u(m) <0,

16



which contradicts (14). O

Theorem 4.5 If u € D(R2) satisfies

=1

in Ag x ([0,T)r,,,)x. Further, we assume that

1+ (Bi(t) + ma(t:) Bi() pui(t;) > 0,

(17)
—1+ (Cilt) = wilta)n(t))pats) < 0,
for each t € Ak x ([0,Tr,,,)x which is i-right scattered and i € I, and
h+3"(Bi4+v) <0, in Ak x ((0,T]r,, )k (18)

i=1
Then u cannot attain a nonnegative maximum anywhere other than on the

parabolic boundary.

Proof. Using the formulas (d) and (g) in the Lemma 2.13, we can obtain the

two analogues equalities:

for each t € AR x ([0,T)r,.,)x and i € I. Substituting these into (16), we

n+1)
obtain
Z(ulel+(B,+uz(tl)ﬁz)uA’+(C~’l—Vl(tz)%)um)—uV”“—i—(h—l—Z(ﬁz—l—%))u > 0.
i=1 =1

Obviously, this operator has the form of (14), and the assumptions (17) and
(18) ensure that the inequalities (12) and (15) hold. Consequently, we can use

Theorem 4.4 to verify the statement. O

Finally, we establish the weak maximum principles for the parabolic dy-

namic operators and apply it to obtain the uniqueness of solutions for the

17



initial boundary value problem.
Theorem 4.6 Let u € D(Q2) satisfy
L[u] >0, in AE X ([07T]Tn+1)’C7 (19>

and we assume that B; be bounded above and C; < 0 satisfy the inequalities

(12). Then u attains its mazimum on the parabolic boundary, i.e.,

SUp u = sup u. (20)
Q PQ

Proof. Since B is bounded above, there exists a negative constant a such that
a+ By <0, in Agx([0,T]r,. )k (21)

Select any point ¢ € T;. Then, applying Lemma 2.12 and 2.15, we obtain

Ll (t1,1)] = (éa(ty, 1))V + By (éa(ts, £))2t 4+ Cy(é4(ty, 1))V
= (o + B1)é3 (11, 1) + aCiéa(ti,1)
= (a+ B)eY'(o1(t), 1) + alCiéa(ts, 1) (22)
= (o + By)aéy(o1(ty), ) + aCiéy(ty, 01(t1))éq(o1(t1), ©)
= aéa(o1(tr), D)+ By + Ciéa(ty, o1(t1))].
The assumption C; < 0 together with (21), we see that
Lléa(t1,0)] >0, in Ag x ([0, T, ., )k
Then for each € > 0, we have
Llu + eé,(t1,1)] = Lu] + eL[é4(t1,1)] > 0, (23)
in A% x ([0, Tr, ., )x, so that

Sup(u+€éa(tl>£)) = Sup(u+5éa(t1a£))7 (24)
Q PQ

18



by applying the Theorem 4.3.

Now we want to show that supu = sup u. For contradiction, we assume that

Q PQ
supu > supu. Since the time scale T; is bounded, this implies that 0 <
Q PQ
éalt1, 1) < M for some M > 0. We set K = supu — supu > 0 and take
Q PQ
K

€= then by applying (24) we can deduce that

2M

sup(u + é4(t1,1)) < sup(u +eM) = supu + M
PQ PQ PQ

K
= (supu — K)+ — < supu
Q 2 Q

< sup(u + €, (t1, f)) = sup(u + €é,(t1, f)),
Q PQ

which is a contradiction and the proof is done. O

The above proven maximum principles yields the uniqueness of solutions

for the following problem:

n

ST (@Vid 4 Bl + CouYi) —uVm = f(8) - on A x ([0, T)r,. ) )k,

u(t) =g(t)  on B, (25)

Theorem 4.7 Suppose that the assumptions of Theorem 4.6 hold. If u; and

ug are solutions of the initial boundary value problem (25), then u; = us.

Proof. First of all, we define the auxiliary function v = u; — us. Since both u;

and uy are solutions of (25), this implies that

Z(UVZAZ' + Bv®i+ C’ivvi) —oVrtt =0 on AR x ([0, T, .1 )i -
i=1 26

v(t)=0 on PXQ
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Obviously, we know that —v is also a solution of (26). Then by applying
Theorem 4.6, we have that

supv =supv =0 and  sup(—v)=sup(—v) = 0.
Q PQ Q PQ

It follows that
v(t) <0  and  —w(t) <0,

for each t € ). Consequently, we get the conclusion that v = u; —uy =0. O
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