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Abstract

Geographically weighted regression (GWR), first proposed in the 1990s, is a
modelling technique used to deal with spatial non-stationarity. The main
characteristic of GWR is that it allows regression coefficients to vary across
space, and so the values of the parameters can vary depending on locations. The
parameters for each location can be estimated by observations within a fixed
range (or bandwidth). However, if the parameters differ considerably, the fixed

bandwidth may produce unreliable or even unstable estimates.

To deal with the estimation of greatly varying parameter values, we propose
Conditional-based GWR (CGWR), where a different bandwidth is selected for
each independent variable. The bandwidths for the independent variables are
derived via an iteration algorithm using cross-validation. In addition to showing
the convergence of the algorithm, we also use computer simulation to compare the
proposed method with the basic GWR and a local linear method (Wang and Mei,
2008). We found that the CGWR outperforms the other two methods if the
parameters are positively correlated. In addition, we use elderly disability data

from Taiwan to demonstrate the proposed method.

Keywords: Geographically weighted regression, Generalized additive model,
Cross validation, Jacobi iteration, Computer simulation, Modifiable areal unit

problem
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Chapter 1.

Introduction

In recent years, spatial regression has become an important tool for
analyzing spatial data. In applying the analysis, first order stationarity is a
common assumption and the expected values at different locations are assumed to
be fixed. Thus, similar to the development of time series analysis, the focus of
spatial regression is on the covariance structure. Some well-known spatial
covariance models such as Simultaneous autoregressive (SAR) and moving
average (MA) can be treated as spatial versions of the AR and MA models used in
the time series analysis. However, first order stationarity is a questionable
assumption in practice. For example, the term Modifiable areal unit problem
(MAUP), used in the geography, particularly on the scaling effect can be treated
as a spatial version of Simpson Paradox, is often encountered when dealing with
spatial data. Other than the problem that the parameters’ values are not identical in
all locations, including the data with different attributes for estimation may also
produce biased results.

In other words, estimating the parameters using all of the data and the
ordinary least squares (OLS) method would distort the local distinctness. One
possible solution is only considering the data from areas with similar attributes.
However, it is difficult to define the locations of homogeneity. Moreover, the
mean of a non-stationary process is usually continuous across the space and does
not follow a step-function (Fotheringham et al., 2002), making it difficult to find
the exact boundary of the appropriate data points.

The other possibility is the varying coefficient model (Cleveland et al.,

1991). The model allows the coefficient terms being a functional form of a scalar,
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which is related to locally linear models (Fan and Zhang, 2008). Note that, the
varying coefficient model has been plugged into different kinds of application
such as survival analysis, time series model, etc, and is a popular tool to explore
the dynamic feature. Based on the concept of varying coefficient model,
geographically weighted regression (GWR) was proposed to solve the problem of
MAUP (Brunsdon et al., 1996).

The GWR allows the regression coefficients to vary across the space or map.
It is used to obtain estimates from a moving data window and is analogous to
kernel regression for obtaining a smoothing estimate. The OLS can be treated as a
special case of GWR, i.e., a window with infinite length, but the local distinctness
is likely to be lost by averaging all of the observations. The optimal length (or
bandwidth) of the moving windows in GWR is usually determined by cross-
validation (CV) or Akaike’s information criterion (AIC), and is fixed for all
variables.

Nevertheless, there is still room for improvement, mainly related to the
selection and testing of the bandwidth. For example, using CV and AIC to select
the optimal bandwidth is a data-driven method, and like in kernel regression, the
estimates are sensitive to outliers (Farber and Péaez, 2007). In addition, the data
variations are not necessarily the same and the bandwidth should not be fixed as
well. On the other hand, the hypothesis testing of the parameters depends on the
bandwidth. For example, Leung et al. (2000) proposed some goodness-of-fit tests
and found that the degree of freedom of GWR residuals is a function of the
bandwidth. Since selecting the bandwidth can be somewhat subjective, it is
possible to come up with totally different results by using different tests.

Several GWR modifications were proposed since its introduction, most of

which are related to determining the bandwidth. Brunsdon et al. (1999) introduced
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a mixed GWR model that allows the inclusion of both stationary and non-
stationary coefficients. They also proposed vector bandwidths, allowing
coefficients with different bandwidths via a backfitting algorithm and bandwidths
that were functions of data density. Shi et al. (2006) proposed a weighting
function that allows the GWR spatial weight to be influenced by the attribute,
rather than the distance. Furthermore, Farber and Paez (2007) found that it is
possible to reduce the bias by modifying the CV procedure. Recently, Wang et al.
(2008) introduced a local linear estimation, or a polynomial fitting technique, to
reduce the bias.

However, in spite of these GWR modifications, the issue that the variations
of each coefficient can be very different has not yet been discussed in details.
Intuitively, it is reasonable to provide separate bandwidths if the coefficients
behave differently. Under the classic GWR setting, the bandwidth is the same for
all of the coefficients and the estimates are likely to be over-smoothed or under-
smoothed.

Meanwhile, enormous data analysis based on GWR showed that the
correlations often exist between GWR coefficients. Despite most of them didn't
mention the exact index, the correlations are apparent through the outcome
mapping. Bivand and Brunstad (2005) even calculated the correlation index,
which is nearly high correlated. Note that, the correlation can be additional
information to improve the estimation, as the Control variant technique on
Variance reduction. Therefore, the information should be sufficiently use rather
than ignore it. Although the problem we are dealing with is not entire identical in
variance reduction, the idea can be borrowed to modify the estimator.

To complete the puzzle, in this paper, we propose a method to provide

separate bandwidths for different coefficients via an iteration algorithm. We also
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evaluate the validity of the proposed method by comparing it with the basic GWR
and local linear method by Wang et al. (2008). The next section will first
introduce the GWR and its extension. Next, Section 3 will introduce proposed
method, namely Conditional-based GWR (CGWR), and its theoretical results.
Section 4 discusses simulation studies of comparing the performance of the
proposed method with that of the basic GWR and local linear method. In addition
to simulations, we also apply the proposed method to a real data set, as shown in
Section 5. Section 6 provides a discussion of the proposed method that includes its

limitations and scope for possible future developments.



Chapter 2.
GWR and its extension

2.1 GWR
We shall first provide a brief introduction of the GWR, followed by an

introduction of the proposed method. The GWR uses a dependent variable y
modelled as a linear function of a set of p independent variables, X, X, ..., X, and

IR A B ]

can be expressed as
p
Y, :ﬂi0+2ﬂikxik+gi’ 1)
k=1

where S, and  x, are the parameter and observed value of variable k (k=1,...,p)
for observation i, respectively, and ¢, is the error term for observation i, which is
generally assumed to be from a normal distribution with zero mean and constant
variance o (ie., & ~N(0,6%)). The subscript i represents the spatial location
of observation i (i=1,...,n). In other words, in the GWR model, each location

can be thought of as having its own regression model for the dependent variable
and independent variables. Thus, the essence of GWR is to obtain local regression
with nearby data for each location, and choosing anappropriate range for the data
becomes a key factor. We will use the term ‘“bandwidth” to represent this data

range for the rest of this paper.

The parameter set g, of observation i can be estimated by
B = (X"WX)TXTWY @
where B, = (Bo B By) X = (X0 X)TY = (Y Yo)T, and W is a
diagonal weight matrix. The weight matrix contains the weights of the

neighbourhoods for the i observation, and can be expressed as:



w-l:  w @)

where W; (j=1,..,n) are obtained by kernel functions. The kernel functions

chosen are usually distance-weighted and Gaussian type,
1 » 4
Wi :exp['E(dij /h)7] 4)

However, if data locations are sparse at somewhere on the space, distance-
weighted kernel might not appropriate due to lack of information. Brunsdon et al.
(2002) introduced rank-based and k nearest neighbourhood method as the
solutions. In addition, as we mentioned before, bandwidth selection is generally

calibrated via minimizing Cross-validation score or AIC.

2.2 Local linear method

Wang et al. (2008) proposed local linear-fitting-based GWR, which is
Taylor expansion version of GWR. The main essence of it is to reduce bias by
using second continuous partial derivatives with respect to geographical location
coordinates. For any given location, the regression parameter can be locally
approximated as

ﬁj ~ Pi +ﬂi}u ’(u—u0)+,8ijv((Q/—v0)
1=12,...,p,

()

where S, is any of regression parameter and /S; is the parameter of the given

location. A{”and A" are the partial derivatives of A, at location i, that is,

two-dimensional coordinates on the location, with respect to each axis.



To estimate the parameters, the matrix of independent variables can be

simply rewritten as

X 4 Xl(lu_lil') X(l_vi)/ pX1 p)(l_u]j)u pé(i_

Xf: X5 1 X2(lu_2 iL) X§1_V a )’ pX2 p)(Z_ uzi)u p{(z

Xy XL ur- & x(v Y. Xop XipU U &)
where u and v are the coordinates of the locations. By adding intercept into the

matrix,(i.e. X; =(1,u-u,,v-v,,X})), the parameters can be estimated by
b= (XTWX )X @)

which is similar to the original GWR estimator.

2.3 Drawbacks

Using a single bandwidth in the GWR is likely to create unsatisfactory
estimates if the corresponding surfaces of independent variables have different
attributes (such as different shapes or variations). Allowing different bandwidths
seems to be a natural modification to the GWR. Unfortunately, the weighted
least squares and equation (2) cannot handle the situation of varying bandwidths
for different variables. Brunsdon et al. (1999) proposed an approach similar to a
stepwise regression and backfitting algorithm for selecting different bandwidths.
However, they did not provide suggestions for choosing bandwidths. Of course,
choosing the optimal bandwidths is similar to the problem of minimization, and
thus the methods such as grid search can be used. However, these methods
usually require intensive computation and might not be feasible.

Local linear method solves the aforementioned problems when all the

coefficient surfaces are linear, since the remainder of the Taylor expansion would

be zero in this case. In other words, all bandwidths are infinite and same due to



unbiasness. But, the method suffers from the bandwidth problem again when it is
not the case.

On the other hand, there is another problem that we should concern on
local linear estimation. In such complex surface, the slope could different on
different location, and we might expect this method would mislead the surface at
somewhere slopes change rapidly, which mostly happen on non-linear surface.
Finally, we would like to point that adding additional dependent variable could
increase the variance too.

In this study, we introduce an approach to determine different bandwidths
using iteration. This approach is inspired by the vector bandwidth of Brunsdon et
al. (1999) and by the kernel smoothing used in the varying-coefficient model of
Wu and Chiang (2000). We combine these ideas and propose a method (and an
algorithm to establish the estimation) for selecting each variable’s bandwidth. The
proposed method uses some existing techniques such as the generalized additive

model (GAM) and the Jacobi iteration method, which will be mentioned first.



Chapter 3.
Methodology

3.1 Generalized Additive Model

Hastie and Tishibirani (1990) proposed the GAM, replacing the linear
function x, by a polynomial function of x,, or m,(x.), in equation (1). This
model can be written as:

Yi =my +my (%) +my (%) +---m (X, ) + &
where m, is a constant and m, (x,) is a function of x, . Then, the following linear

system can be used to estimate these m, (-) functions:

IS, s, .7 [SY]
s, I . . S|f| |sy
S, 'S, NENREN

where | is an identity matrix, S, ,...,S,are a set of nxn_smoothing matrices, and

f,,..., f are a set of nxlvectors. Some typical form of S matrix are Moving

average, Spline, B-Spline, etc. Hastie and Tisibirani (1990) applied the block
Gauss-Seidel iteration procedure to estimate the m, (-) function, which is also the
essence of our approach. Under some regular conditions, the Gauss-Siedel
iteration will converge. The reader can refer Hastie and Tisibirani (1990) for more
details. In the following, we discuss the details of the Jacobi and Gauss-Seidel

iterations.

3.2 Jacobi lteration

Jacobi iteration is a two-century old numerical method to solve a linear
system, Ax = b, iteratively. It is a widely-known method and has many successors

such as the Gauss-Seidel iteration and the successive over-relaxation method. The
9
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major difference between these methods involves the convergence rate, with the
Jacobi iteration converging slower in most cases. However, the Jacobi iteration is
easy to implement and can be written as the following steps.

Consider a linear system: Ax = b, where A is an nxn matrix, x and b are
nx1 vectors, and x is the solution to be determined. The Jacobi iteration

procedure is as follows: (Let x.{I} denote the Ith iteration value of x; .)

1. Set the initial solution of x;to be 0, ie., x{0}=0.

b —Za”xj{l -1}

a.

2. Foreachelement x;, x{lI}=

3. Repeat (2) until the stopping criteria is reached.

3.3 Proposed CGWR

The proposed method has the following main characteristics: it allows a
different bandwidth for each coefficient and an iteration algorithm is incorporated
into the approach. We adapt the ideas of the GAM and Jacobi iteration and use
them to determine appropriate bandwidths. By applying the concept behind the

GAM, the GWR model can be rewritten as:

Yi=f+.+ fi+.+f+g (10)
where f, = £, xx, and p, is the parameter coefficient of the variable k at
location i. If f, is the intercept, thenx, is set to be 1. Then, we can use the
Jacobi iteration to iteratively solve for parameter f, one-by-one. Again, we let
f {I}denote the It iteration vector of f,, and let f {I}be a nx1 vector composed
by f,. The proposed method can be summarized as follows: (CGWR procedure)

1. Set the initial solution of f, to be 0, or f{0}=0, k=1,...,p, and let

I=1.

10



2. For each element f {I}, apply the basic GWR model with only one

independent variable, x,. The value of the dependent variable used is

p p
y = y-ij{I -1}, (ie., we regress y—z f,{l -1} |on variable x,
j=1 =

=k j=k
without a fitting intercept). The bandwidth is obtained by minimizing the
CVSS (or AIC).
3. Repeat (2) until the stopping criteria is reached.

The bandwidths are modified iteratively according to the preceding process.
Note that the vector bandwidth and the mixed GWR can be treated as special
cases of CGWR. The bandwidth is usually large at first, and it is possible to reach
the global estimate first, before the local effect enters. We anticipate that the
proposed procedure can increase the estimation accuracy because it finds the
individual optimal bandwidth for each component.

There are at least two reasons for finding optimal bandwidth solutions
individually using the Jacobi iteration. First, although more complex numerical
methods (such as the quasi-Newton method) could be used, it can reduce the
computation time and cost. Second, as mentioned previously, there are algorithms
that converge faster than the Jacobi iteration, but they are likely to produce biased
estimates. For example, in the Gauss-Siedel iteration process, the estimate of one
component is updated based on the simultaneous estimates of other components.
If the estimates of some components have severe biases, it is possible to
contaminate the estimates of other components. In other words, although the
proposed method is conservative, we are willing to sacrifice some of the

efficiency in exchange for accuracy and stability. Therefore, unlike the vector
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bandwidth and mixed GWR, the Jacobi iteration is used in the proposed method,
instead of the Gauss-Siedel iteration.

The rest of this section summarizes some properties related to the CGWR.
First, although Brunsdon et al. (1999) proposed an estimation method for solving
different bandwidths, they did not prove the convergence of this method. We will
first use the case of two coefficients as an example and give the proof of
convergence in the following. Note that the method of Brunsdon et al. can be
treated as a special case of CGWR (i.e., the bandwidths are never updated) and
the next result might shed light on the complete proof of CGWR.
Proposition 1: Suppose that the bandwidths are fixed. Assume that there is only an
independent variable, i.e., there are two coefficients, an intercept and an
explanatory variable. In addition, the bandwidths are fixed during the iteration

process. If the largest absolute eigenvalue of the product of two smoothing
matrices, i.e., S, xS, , is smaller than 1, then the CGWR estimation would

converge.

The outline of the proof is given in Appendix A. Note that the convergence
can be extended to a case with more than two coefficients (or two or more
independent variables), with a similar proof.

Unfortunately, showing the convergence of the CGWR estimation (i.e.,
changing bandwidths) is more complicated, although it is similar to that in
Proposition 1. Nonetheless, we consider several scenarios and the estimation
process seems to produce stable and reliable estimates. In the next section, we will
evaluate the stability of the CGWR via computer simulation, and compare it with
the basic GWR and a local linear method.

For the remainder of this section, we introduce some results of the CGWR,

and also provide possible explanations. First, the estimation variances with
12



CGWR are usually smaller than those for the basic GWR. We will provide a

heuristic proof, since the smoothing matrix of CGWR cannot be written in a

closed form. For simplification, we take only the case of two components as an

example. If there are only two components, then the variance of each estimator

( V(flGWR)’ vV

(flCGWR)) can be written as the following equation (11), where

S, (i=1,2) is the corresponding CGWR smoothing matrix. Obviously, the

denominator of the basic GWR is smaller than that of CGWR, and thus the

variance of CGWR is smaller.

flGWR SY =V ( f GWR) o2SST

flCGWR S'Y =V ( fCGWR) 525's'T

(5"=5,-5.S,+5,8,8,-5,S,5:S, +...+R, ), where R, denote the remainder term.
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Moreover, there is no guarantee that the proposed method works when two
or more coefficients are negatively correlated with each other. A possible
explanation is that the dissimilarity of the coefficients would inflate the mean-
bias, which will be zero if the coefficients are perfectly positively correlated. This
is similar to factor analysis, since if two or more variables are highly correlated, a
single factor (i.e., variable) can provide a good summary of these variables.
However, if two variables are negatively correlated, different signs would
complicate the convergence process.

Another explanation is the unstable of negative correlation matrix. If all the
element on the correlation matrix greater than zero, there are some perfect
properties such as all eigenvalue will be the real number that smaller or equal to
1 . However, it doesn’t hold when some of them are negative as results as bad
estimation.

Finally, there are two intrinsic meanings on the term 'conditional'. To begin
with, CGWR update each variable conditionally by fixing others. In fact, the
concept is more like the Hasting algorithm in Monte Carlo Markov Chain method.
The constraint on CGWR is another aspect, since CGWR only works well when

inter-correlation between variables is positive.
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Chapter 4.
Simulation Study

We use simulations to evaluate the performance of the proposed CGWR,
comparing it to the basic GWR and a local linear estimation. These simulation
studies are separated into two parts: fixed effect model and random effect model.
For the fixed effect model, we examine both single type and mixed type surfaces.
The difference between these two scenarios is whether the coefficients’ surfaces
are similar or different. Moreover, we assume that the coefficients at different
locations follow one of the following four surfaces functions: linear, quadratic,
ridge and hillside. To simplify the discussion, we assume that there were two
coefficients, i.e., one intercept and one independent variable,

Y, =B+ L% +& 1=12,..,n (12)
where i indicates the location of the observation.

We should define the term S/N ratio, i.e., signal vs. noise. In a sense, the
signal represents the variations in the coefficients’ surface, and the noise is the
random fluctuation from observations. Hence, the S/N ratio can be interpreted as
the ratio of standard deviations or variation levels, with larger S/N ratios
associated with larger variations in the coefficient surface (i.e., the trend of the
coefficients is more obvious). In particular, we assume that:

_ 1
D (BB Y

1. Signal = 3x| -
n-1

2. Noise = Standard deviation of the error term. (Here it is 0.5.)
Intuitively, the coefficient estimates will be close to the true values if the noise is
small (or the S/N ratio is large). The bias and variance of the estimates can be

used together to evaluate the accuracy of the proposed CGWR. We can define:
15



nil ( |vlSEmethod )

Average Discount rate: —— (13)
n=2 (MSE,s)

where MSE refers to the mean squares error, or the squared root of (bias)2 plus
variance. Note that (13) uses the MSE of the estimate from OLS as a bench mark.
Furthermore, (13) can be computed for all locations and we can use the weighted

mean of the discount rate for comparisons,

Z[(MSEOLS)Iocation i X ( MSEmethOd / MSEO'—S )Iocation i:|

! . (14)
Z (MSEOLS )Iocation i
Moreover, we can also define other evaluation indices:
Average bandwidth: n™)’ (bandwidth, ) (15)
Average Variance: n’lz(Var( ,@ik )) (16)
Average Bias: n‘lz((ﬁik - B, )2) (17)

The above evaluation indices allow us to check the accuracy and precision of the
estimators individually. In general, a good estimator should have small variance,
bias and MSE.

4.1 Simulation Setting:

As mentioned above, there were four types of surfaces for the coefficients
(Figure 1). Cases 1 and 2 were polynomial functions (close to linear functions) of
the independent variables, and cases 3 and 4 were non-linear functions. Similar
settings also appeared in previous studies on GWR, and they have practical
meanings. For example, the quadratic surface (Case 2) often occurs in situations
involving housing prices, where prices are significantly higher for locations near a

town centre or transportation centre. For example, the relationship between the
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size of a house and its price is more obvious in downtown areas than in the
countryside. Non-linear surfaces can be used to determine the relationship
between floor space and price for both industrial and commercial areas. For every
non-stationary surface, we assume that there are 10 by 10 regular lattice points
(100 locations).

For the fixed effect model, two major scenarios are tested under different
S/N ratio. The first scenario is single type surfaces. In this scenario, both intercept
and independent variables are composed by same surface, and all four types of
aforementioned surfaces will be considered. The second scenario, i.e., mixed type
surfaces, is more realistic and assumes that intercept and independent variables
follow different surfaces. We examine the second scenario with two cases, linear-
quadratic (polynomial surface) and ridge- hillside (non-polynomial surface).

To ensure the randomness of the experiment and prevent the nuisance effect
caused by specific pattern, the independent variable at each location is drawn
from a uniform distribution on the interval (0, 1) and is fixed for all 100
simulation runs. We consider various values for the independent variable and the
results are very consistent. To simply the discussion, we will choose only one of
the results as a demonstration. For both models, the errors are drawn from a
normal distribution with a mean of 0 and a standard deviation of 0.5. Also, the
reason for choosing the standard deviation 0.5 is to incorporate the values of the
S/N ratio.

However, in the real scenario, the dependent variables are often random due
to measurement errors. Moreover, performing the simulation under different
dependent variable sets can make the results carry more conviction. Hence, we

redo the single-type surfaces simulations under the random effect model, which
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the dependent variable set is drawn repeatedly from uniform distribution on the

interval (0, 1) at each sample.
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Figure 1: Four coefficient surfaces. Cases 1 & 2 are polynomial surfaces and Cases 3 & 4 are non-

polynomial surfaces.

For the CGWR, the Gaussian kernel is chosen and the optimal bandwidth is
the one with the minimum cross-validated sum of squares (CVSS). Furthermore,
we require that the bandwidth is within a reasonable range, to prevent the
estimation from being too localized or globalized, for extremely small or large
bandwidths, respectively. The upper bound of the range is the maximum length on

the map and the lower bound is to have at least 5 data points (each with 1/5 of the
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weight). The preceding setting is also used in the “spgwr” package (Bivard and
Yu, 2010, ver0.5-4) in R, a free statistical software.

The rest of this section discusses the simulation results for the single type
surfaces, followed by those for the mixed type surfaces, and finally the random
effect models. Specifically, we will compare the performances of three GWR
estimations based on the average discount rate, the average bandwidth and the
average variance and average bias of the estimates. In addition, the stopping
criteria in following simulations are average absolute change rate ( 8, & p,) less
than 0.005, which is 0.01% of the noise. The settings is different from the usual
settings because the convergence times to 10~ is much greater than 0.005. Due to
the mass simulations considered in this paper, we sacrifice a little precision in
exchange of the simulation time and the results would be similar for smaller
stopping criteria.

To simplify the notation, we will use g, and p, to denote the
coefficients of the intercept and slope of independent variable x in the following
tables, respectively.

4.2 Single type surfaces:

Table 1-1 shows the results of the discount rates in the case where BO and
B1 satisfy a linear surface. We can see that both the proposed CGWR and the
local linear method have significant improvements over the basic CGWR.
Interestingly, the local linear method is better (with respect to smaller discount
rates) than the GWR when the S/N ratio is large, but the basic GWR is better
when the S/N is small. The reason might be that larger noises produce larger
fluctuations, and thus the average tangent line in the local linear method is not

accurate or stable. Similar patterns also appear for the other three surfaces (Tables
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1-2, 1-3, 1-4). This suggests that the local linear method is not very stable if the

S/N ratio is small.

The CGWR and the local linear method again outperform the basic GWR in

the case of a quadratic surface. However, the CGWR appears to be the best and

the edge is more obvious when the S/N increased. For the nonlinear surfaces, the

CGWR continues to work satisfactorily, but the local linear model does not. It is

possible to create worse results than the basic GWR. The CGWR is still reliable in

the cases of non-linear surfaces, performing much better than the other two

methods.

Table 1-1. The average discount rates on a linear surface (single-type)

BO Bl
BO 1 3 5 1 B 5

Bl

1 1.064 0.312 0.158 1.815 1.589 1.328
Basic GWR 3 1348 0.321  0.173 0.598 0.663  0.755

5 1775 0.382  0.199 0.329 0397  0.459

1 1.317 0.192 0.078 2111 1.033 0.686
Local-Linear 3 1.107 0.164 0.069 0.403 0.347 0.284

5 1299 0.188  0.059 0.197 0179  0.126

1 0.664 0.195 0.082 1.076 0.775 0.412
CGWR 3 0.880  0.202  0.086 0.400 0366  0.286

5 0.899 0227  0.092 0.198  0.207  0.178

Table 1-2. The average discount rates on a quadratic surface (single-type)
BO Bl
BO 1 3 5 1 B 5

Bl

1 1.955 0.791 0.510 2.877 7.729 7.542
Basic GWR 3 3217 0.896 0570 1418 2332  3.650

5 4334 1108 0.639 0.844 1.316 1.819

1 3279 0914 0535 5159 8900  7.941
Local-Linear 3 5.177 1.119 0.599 2.039 2.634 3.481

5 6.147 1.196  0.602 1.001 1.169 1.488

1 1.168  0.324  0.146 1529 1612  0.928
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CGWR 3 1.491 0.380 0.166 0.675 0.713 0.730
5 1.709 0.429 0.183 0.374 0.451 0.430

Table 1-3. The average discount rates on a ridge surface (single-type)

BO Bl
BO 1 3 5 1 3 5

Bl

1 1.740 0.571 0.383 2.642 2.325 2.249
Basic GWR 3 2.623 0.728 0.401 1.150 1.375 1.321

5 2.892 0.824 0.433 0.591 0.810 0.894

1 2.890 1.023 0.621 4.745 4.374 3.672
Local-Linear 3 4.340 1.206 0.618 1.960 2.255 2.023

5 5.385 1.386 0.677 1.081 1.326 1.344

1 0.884 0.203 0.111 1.029 0.428 0.258
CGWR 3 1.048 0.239 0.116 0.529 0.385 0.250

5 0.854 0.221 0.107 0.253 0.208 0.159

Table 1-4. The average discount rates on a hillside surface (single-type)

BO Bl
BO 1 & 5 1 3 5

Bl

1 1.075 0.315 0.153 1.697 1.905 1.359
Basic GWR & 1.353 0.340 0.173 0.583 0.603 0.668

5 1.152 0.343 0.185 0.234 0.278 0.360

1 1.339 0.243 0.149 2.187 1.549 1.239
Local-Linear 3 1.403 0.289 0.188 0.617 0.529 0.722

5 1.113 0.339 0.209 0.266 0.307 0.421

1 0.726 0.170 0.077 1.098 0.761 0.473
CGWR 8 0.926 0.199 0.079 0.384 0.348 0.239

5 0.578 0.192 0.079 0.159 0.158 0.140

To further evaluate the performances of the three different GWR methods, we
can consider the hillside surface (Table 1-4) and the S/N ratioof BO =Bl =5as a

demonstration. We can see that the CGWR produces the best fit and the mean
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surface looks almost identical to the true surface (Figures 1 and 2). The edge of
the mean surface from the basic GWR is not smooth, which may be due to the
fewer observations involved in the estimation, ie., the edge effect. The mean
surface of the local linear method does not look like the shape of a hillside at all,

but looks like a linear surface.

Method 1: Basic GWR Method 2: Local liner estimation Method 3: CGWR

Figure 2: The B1 mean surface of each estimation method from 100 simu lations. The simulation

scenario is a hillside, and the S/N ratio of BO = B1 = 5.

Table 2. The average bandwidths for linear and hillside surfaces (single-type) For CGW R, the first

and second values are the average bandwidths of BO and B1.

Linear surface Hillside surface
Method Basic Local Basic Local
) CGWR _ CGWR
S/N GWR Linear GWR Linear
1 2.35 9.73 4,16 ;7.24 2.25 9.78 4.72 ;7.45
3 1.46 10.8 1.65;2.31 1.47 9.01 1.57 ; 2.80
5 1.2 10.34 1.25;1.47 1.24 6.04 1.25:1.66

Intuitively, we expect that the bandwidth is small if the S/N is large, since
distant observations can be very different and cause biased estimation. Basically,
all three GWR methods have significant drops in bandwidth if we increase the
S/N ratio from 1 to 3. Moreover, the bandwidths in the case of a linear surface
should be larger than those of a nonlinear surface under the same S/N ratio, since

the surface change is quite homogenous inany direction.
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The bandwidth results can also be used to explain why the CGWR
outperforms the other two methods. We will choose two surfaces (linear and
hillside) to discuss these results (Table 2). The local linear method often yields
large optimal bandwidths. If the true surface is close to linear, we can rely on
observations withina larger bandwidth and thus have smaller variances than those
in the case of a nonlinear surface. Since the shape of a hillside is close to linear,
the bandwidths of the hillside case are very similar to those in the linear case
(Table 2) and are much larger than those of the quadratic and ridge cases
(Appendix B).

Furthermore, the values of the CGWR bandwidth match the expected
pattern. For example, if the S/N ratio is small, the bandwidth is expected to be
large in order to provide a stable estimate. If we fix the S/N ratio of B1, the BO
bandwidth of CGWR decreases as the S/N ratio of BO increases, for all four
surfaces (Appendix B). Similar results hold for the B1 bandwidths if we fix the
S/N ratio of BO. This is exactly why we want to consider a different bandwidth for

each coefficient, since the numbers of observations needed can be different.

Table 3-1. The average variances and biases of BO and B1 on a linear surface (single-type)

(i BO

OLS Basic GWR Local linear CGWR
S/N of BO: 1 5 1 5 1 5 1 5
Conditional onS/Nof B1=1
Variance 0.009 0.011 0.039 0.067 0.051 0.052 0.024 0.036
Bias 0.029 0.028 0.002 0.004 0.0003 0.0002 0.001 0.0002
Conditional on S/N of B1 =5
Variance 0.010 0.009 0.090 0.107 0.057 0.043 0.048 0.057
Bias 0.723 0.719 0.026 0.038 0.0005 0.0002 0.012 0.009
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(ii) B1

OLS Basic GWR Local linear CGWR

S/N of BO: 1 5 1 5 1 5 1 5
Conditional onS/Nof B1 =1

Variance 0.031 0.036 0.113 0.190 0.146 0.145 0.071 0.117
Bias 0.038 0.695 0.013 0.051 0.001 0.0005 0.004 0.028
Conditional on S/N of B1 =5

Variance 0.030 0.027 0.248  0.294 0.152 0.114 0.088 0.152
Bias 0.191 0.880 0.048 0.124 0.001 0.0002 0.004 0.010

Table 3-2. The average variances and biases of BO and B1 on a ridge surface (single-type)

(i) BO

OLS Basic GWR Local linear CGWR
S/N of BO: 1 5 1 5 1 5 1 5
Conditionalon S/Nof B1 =1
Variance 0.011 0.010 0.068 0.152 0.118 0.304 0.038 0.044
Bias 0.035 0.049 0.013 0.020 0.011 0.017 0.003 0.006
Conditional on S/N of B1 =5
Variance 0.010  0.010 0.241 0.265 0.487  0.530 0.089 0.084
Bias 0.914 0.947 0.114 0.152 0.091 0.122 0.014 0.018
(i) B1

OLS Basic GWR Local linear CGWR
S/N of BO: 1 5 1 5 1 5 1 5
Conditional onS/Nof B1 =1
Variance 0.026 0.033 0.180 0.433 0.333 0.843 0.067 0.188
Bias 0.049 0.923 0.022 0.136 0.030 0.198 0.011 0.055
Conditional on S/N of B1 =5
Variance 0.029 0.029 0.650 0.717 1.302 1436 0.097 0.178
Bias 0.377 1.370 0.271 0.541 0.203 0.459 0.008 0.046

The variances and biases of the estimates from the three GWR methods can
also be used for comparisons. Again, we will only use the cases of linear and
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ridge surfaces. Because there are many combinations for the S/N ratios of BO and
B1, we will only show the results of S/N = 1 and 5 (Tables 3-1 to 3-2). Unlike in
the previous comparisons, we will also provide the variances and biases of the
OLS estimates. In general, a larger S/N ratio tends to produce a larger bias.
Moreover, the OLS estimates fail to capture the spatial trend causing the largest
bias, but it uses all of the observations in the estimation (i.e., infinity bandwidth)
and thus has the smallest variance. As for the three GWR estimations, the
variances of the estimates are generally larger than the biases of the estimates.

The results for a linear surface are shown in Table 3-1. As mentioned
earlier, the average bandwidths of the local linear method were the largest,
possibly indicating the smallest variances. Inaddition, the local linear method has
the smallest bias, and also the smallest discount rates in the case of a linear
surface (Table 1-1). Although the CGWR has a larger bias than the local linear
method in the case ofa linear surface, it dominates the basic GWR with respect to
both variance and bias. The CGWR has the best performance in the case ofa ridge
surface, and it also outperforms both the basic GWR and the local linear method
for both the variance and bias.

4.3 Mixed type surfaces:

We also repeat the same comparisons of the three GWR estimation
methods with the mixed type surfaces. The results are similar to those in the
single type surfaces, and thus we will only show the results of the discount rates.
As we mentioned before, there are two cases in this scenario: linear-quadratic
(polynomial surface) and ridge-hillside (non-polynomial surface). For the first
case, the underlying surface of intercept is linear, and the slope is quadratic. For
the second case, all surfaces are of non-polynomial type and it is more complex

than the first one.
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Table 4-1. The average discount rates of a linear-quadratic surface (mixed-type)

BO Bl
BO 1 3 5 1 3 5
Bl
1 1062 0.279  0.155 1.934 1.643 1.420
Basic GWR 3 2110  0.407 0.181 1.048 1.067  0.935
5 3119  0.537 0.231 0.688  0.687  0.711
1 1492 0.225 0.080 2.888 1.514  0.905
Local-Linear 3 3.100 0.534 0.169 1.405 1.314 0.954
5 5357 0.775 0.268 0.928 0871  0.753
1 0.764  0.183  0.100 1.301  0.802  0.538
CGWR 3 1132 0.345 0.179 0.708 0849  0.785
5 1.257  0.388  0.217 0.404 0523  0.584
Table 4-2: The average discount rates of a ridge-hillside surface (mixed-type)
BO Bl
BO 1 3 5 1 B 5
Bl
1 1.457 0.545 0.337 2.160 3.268 2.868
Basic GWR 3 1.623 0.582 0.349 0.622 1.373 1.786
5 1511  0.604 0.344 0.251 0586  0.943
1 2105 0.853  0.536 3312 5602  4.755
Local-Linear 3 2236 0.903  0.497 0.896 2.348 2.595
5 1999 0980 0.540 0.333 1.076 1.522
1 0.956  0.245  0.116 1.166  0.750  0.351
CGWR 3 1.279 0.361 0.151 0.544 0.677 0.443
5 1.338 0.485 0.204 0.245 0.434 0.415

Basically, The CGWR also has smaller discount rates than the basic GWR

for the mixed type surfaces (Tables 4-1 to 4-2). We will focus on the results that

are different than those of the single type surfaces. Although the local linear

estimation is better than the GWR in the linear-quadratic surfaces, it has adverse
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performance in the ridge-hillside surfaces. The results might suggest the
instability of local-linear approach. On the contrary, for both cases, the CGWR
dominates other two methods, similar to that in the single type scenario.

Fromthe computer simulations, we found that the proposed CGWR makes
a significant improvement over the basic GWR. If the coefficients surfaces are
non- linear, the CGWR also outperforms the local linear method. In the following
section, we will use an empirical example to compare the CGWR and basic GWR,

providing further evidence for supporting the CGWR.

4.4 Random effect model

We also repeated the same comparisons of the three GWR estimation
methods for the random effect model. The results were similar to those for the
fixed effect model, and thus we will only show the results of the discount rates of

single-type surfaces.

Table 5-1. The average discount rates on a linear surface (random effect).

BO B1
B0 1 3 5 1 3 5
B1
1 0.903  0.264 0.134 1583 1693  1.493
Basic GWR 3 1214 0312  0.159 0590 0.755  0.794
5 1.497 0353  0.169 0310 0379  0.426
1 0912 0146  0.049 1642 1017  0.601
Local-Linear 3 0914 0143  0.053 0.384 0338 0.271
5 0.857 0131  0.052 0142 0125  0.111
1 0.608 0.154  0.067 0.989 0747  0.355
CGWR 3 0.762 0180  0.085 0.365 0364  0.283
5 0.770  0.168  0.079 0.180 0.164  0.164
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Table5-2: The average discount rates on a quadratic surface (randomeffect).

BO B1
1 3 5 1 3 5
B1
1 1500 0.618  0.375 2316 4047 1745
Basic GWR 3 2410 0.682  0.456 1264  1.767 2.376
5 3.056 0.847 0519 0.745 1.020 1.379
1 1959  0.569 0.317 3.243  3.654 3522
Local-Linear 3 2.706 0.621 0.338 1.265 1.497 1.562
5 2800 0.776  0.350 0.641 0794  0.856
1 1.021  0.300 0.136 1.336  0.969  0.644
CGWR 3 1071 0329 0.167 0.638 0.642 0.624
5 1230 0.355  0.159 0.371 0383  0.363
Table 5-3. The average discount rates on a ridge surface (random effect).
BO Bl
1 3 5 1 B 5
Bl
1 1.508  0.506  0.305 2.862  3.497  3.807
Basic GWR 3 2295 0.594 0.340 1.073  1.566 1.931
5 2.481 0.666 0.426 0.586 0.824 1.186
1 2.020 0.681 0.382 3.857 4.313 4.286
Local-Linear 3 2.664 0.778 0.407 1.291 1.861 1.968
5 3.030 0.835 0548 0.746  0.937 1.319
1 0.820 0.227 0.123 1.273 0.883 0.667
CGWR 3 1100 0.244 0.131 0.552 0471  0.484
5 1.047 0.254 0.124 0.291 0.275 0.244
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Table 5-4: The average discount rates on a hillside surface (randomeffect).

BO B1
BO 1 3 5 1 3 5

Bl

1 0.969 0.250 0.134 1.624 1.862 1.526
Basic GWR 3 1.238 0.269 0.140 0.545 0.645 0.752

5 1.356 0.328 0.152 0.307 0.373 0.411

1 1.021 0.179 0.121 1.797 1.191 0.991
Local-Linear 3 1.202 0.227 0.123 0.535 0.468 0.489

5 1.100 0.250 0.122 0.245 0.277 0.259

1 0.620 0.149 0.081 0.913 0.761 0.551
CGWR 3 0.769 0.165 0.069 0.359 0.337 0.243

5 0.747 0.130 0.070 0.189 0.147 0.153

The CGWR and local linear estimation also had smaller discount rates
than the basic GWR for the random effect model (Tables 5-1 to 5-4). We will
focus on the results that were different than those of the fixed effect model.
Although the CGWR still dominated in the cases of ridge and hillside surfaces,
the local linear estimation had better performances when the S/N ratio was larger.
In general, for the random effect model, the local linear estimation was the best in
the case of a linear surface, and the CGWR was the best for the other three cases,
just as with the fixed effect model.

This section showed how computer simulations were used to demonstrate
that the proposed CGWR is a significant improvement over the basic GWR.
Except for the case of a linear surface, the CGWR also outperformed the local
linear method. In the following section, we will show how an empirical study was
used to compare the CGWR and basic GWR to provide further evidence to

support the CGWR.
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Chapter 5.
Empirical Study

We now apply the CGWR to a real data set. The data considered are from
the 2000 Taiwan Population Census and the goal is to study the relationship
between elderly disability and related social factors. Like in many developed
countries, population aging is a serious problem and the elderly population in
Taiwan has increased rapidly. For example, the proportion of people 65 years of
age and over was 10.5% in the beginning of 2009, compared to 7% in 1994.
However, most medical resources are concentrated in metropolitan areas or
northern Taiwan, and this may not match the needs of the elderly. Hu and Yue
(2002) studied this issue and found that the distribution of elderly disability is
spatially autocorrelated and a classic spatial regression model can be applied.
However, Brunsdon (1999) claimed that the phenomenon of spatial
autocorrelation is likely to be caused by correlated random errors or spatial non-
stationarity, (i.e., identifiability). His claim motivates us to re-examine the data
using the GWR-based model.

The Taiwan census data are at the township level and there are 350
townships involved. The dependent variable is the proportion of disabled elderly
people in each township. Since this variable appears to be right skewed, a log
transformation (i.e., y; =log(y, +1)) is applied. Four independent variables are
selected: population density (POP), proportion of elderly (ELD), higher-age
mortality rate (HMR) and education level (EDU). These independent variables are
standardized into the interval [0, 1] before being plugging into the GWR model.
Before applying the GWR, we first test the spatial non-stationarity (Leung et al.,

2000). The F-test of Leung et al. suggests that the model is spatial non-stationary
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(p-value < 0.001). This confirms the conjecture of Brunsdon (1999) and we shall

continue to proceed with the GWR-type analysis.

Table 6. The correlations of coefficients from the disability data. The variables INT and POP were

in group 1, and ELD, HMR, & EDU were in group 2.

INT POP ELD HMR EDU
INT 1.000 0.463  -0.949 -0.951 -0.971
POP 0.463 1.000 -0.281 -0.281 -0.653
ELD -0.949 -0.281 1.000 0.914 0.875
HMR -0.951 -0.281 0.914 1.000 0.868
EDU -0.971 -0.653 0.875 0.868 1.000

Since the correlation of intercept and the variable POP is 0.463 (Table 6),
they are put in the same group. Similarly, the variables ELD, HMR, and EDU are
in the other group. Recall that the CGWR does not work well in the case of
negative correlation. Thus, we focus onthe variables with positive correlation and
we choose to work on the group of intercept and variable POP. First, we treat
variable ELD, HMR, EDU as constant, after getting estimates for them from the
basic GWR. Then, we apply the CGWR to the intercept and the variable POP, as
follows:

(¥, ~ FEELD, ~ S HMR — JS"EDU,) - 5 + fS"POR +1, (19
After fitting the CGWR, the calibrated bandwidths vary across the variables.
Here, we let the lower and upper bounds of the bandwidth be (1 km, 400 km).

Through the surface after fitting with each method, we find that there is a
dramatically different between CGWR and others (Figure 3). For the intercept
term, the other methods review the North-South pattern. However, CGWR shows

that high disability occurred on inland or mountain area. On the other hand, local
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linear method seems to fit with a linear expansion surface, which is a strong

assumption.

We use the pseudo R-square and residual plot to evaluate the performance
of CGWR (Figure 4). The pseudo R-square is the Pearson product moment
correlation coefficient of the fitted value and the observed value, and a larger
value usually indicates a better fit. In this example, the pseudo R-square values of
basic GWR and CGWR are 0.514 and 0.894, respectively. Moreover, the residual
plots are also in favour of the CGWR, since there are fewer outliers and the
outliers appear to have smaller variance.

It should be noted that either one of the variable sets can be chosen as
constant. If we apply the CGWR procedure on the other variable set (i.e., ELD,
HMR, and EDU) then the CGWR still has a better fitting result, although the

pseudo R-square is 0.874, which is slightly lower.

g 7 6

Intercept (GWR) Intercept (Local linear method) Intercept (CGWR)
POP (GWR) POP {Local linsar method) POP (CGWR)

Figure 3: The surface of Intercept and variable POP from different fitting method.
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(Bottom) The X-axis shows the residual value.
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Chapter 6.
Discussion and Concluding Remarks

Beginning from past decade, the GWR has acted as a new modelling
technique used to deal with spatial non-stationarity. This technique allows
regression coefficients to vary across space and obtains their estimates from a
fixed bandwidth of observations. However, using a fixed bandwidth might not be
appropriate since the independent variables would behave differently. In this
paper, we proposed a method (CGWR) for modifying the GWR by relaxing the
restriction of a fixed bandwidth. We compared the proposed method to the GWR
and a local linear estimation, which was shown to be effective at reducing the
bias. Based on simulation results, we found that the CGWR has the best
performances given that the regression coefficients are positively correlated, and
this advantage is especially noticeable in the cases of non-linear surfaces.

Of course, the improvements in the CGWR are due to the fact that it
allows the bandwidth to vary for each coefficient. If the coefficients are positively
correlated, the CGWR can reduce the bias, as well as the variance. In the
empirical study, if the coefficients are not always positively correlated, the
CGWR can still be modified and applied to a set of variables that are positively
correlated for any pairs of variables.

However, the proposed method also has limitations. First, the most critical
one is probably that the current settings for CGWR do not work well in the case of
negative correlation, allowing the basic GWR to outperform the proposed CGWR.
As a solution, we suggest calculating the correlation coefficients of the variables
before applying the CGWR. Nevertheless, we can perform a two-stage fitting as
we did at previous empirical study. In order to verify the feasibility of this

approach, we conduct a experiment in two variables. That is, there are three
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components in this model, which is intercept and two independent variables. Here,
we redo the simulation by fixing second variable at first stage. By ratio of average
discount rate, the outcome is similar to previous result. CGWR seems to fit well
by this approach. Second, the CGWR is a computer intensive method, and would
become extremely time-consuming if there are more variables. To increase the
iteration speed, a moving average method could be used to increase the
convergence speed. Third, we have not shown that the CGWR will converge if
there are many variables, although we found that it would for cases up to four
variables. A possible modification to a case with more variables would be to
separate the variables into two groups and use double iteration. Then, CGWR
could be used on each group of variables (inner loop), and the process re-iterated
between the two groups (outer loop) until both groups of variables converge. To
show that this idea is feasible, we conduct an experiment with six variables. The
variables are separated into two groups of three variables each, and the estimation

does converge.
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Figure 5: Average discount rate of each method by fixing variable x2, The baseline of the ratio of

average discount rate is the GWR.

In this study, we also found some potential problems in applying the
GWR. The GWR still has room for further improvement, especially when the S/N
ratio is small, the surfaces of the coefficients are non-linear and the coefficients
are very different. In addition, the variance reduction of CGWR over GWR is
much more obvious than that for the bias reduction. This indicates that the GWR
estimates have large variances. In other words, if the variances of the GWR
estimates could be reduced, the bias could also be further reduced, and thus it is

likely that the estimates would be more stable.
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Appendix A. The outline proof of the convergence for CGWR with fixed

bandwidths

Consider a non-stationary model with only the intercept and a single
explanatory variable (i.e., y,=f,+ f, +¢), where & israndomerror.

To show the convergence of the CGWR algorithm, we first let the initial

valuesbe f,(0)= f,(0)=0. Thenthe estimationof f, &f, canbe writtenas:

f,(k)=S)Y =S;S,Y +5,S,5Y =S,S,S,S,Y +..+ R,
f,(k)=S,Y =S,SY +S5,55,Y -S,S,S,SY +..+R,

where R, & R, are the remainder terms of the estimators:

To prove the convergence of the CGWR algorithm, we need to show that
both R,and R, will converge to 0. Since the discussions of R, and R, are
similar, we will only show the case for R,.The case for R,can be separated into

two parts:
Let (S,S,)< =P'B¥P, where P is a matrix of eigenvectors for SS,at its
columns, B¥ isa diagonal matrix with eigenvalues for S;S,on the diagonal,

and k* is an arbitrary natural number.

If the largest eigenvalue in the absolute values of S,S,, |/1| is smaller than

1, thenthe remainder R, convergesto 0 as k — oo,

The smoothing matrices in the proof are similar to those used in the GAM.
According to Hastie and Tishibirani (1990), the smoother matrices should satisfy
the bounded condition (p. 121). Moreover, this assumption seems to be true in

practice and it is always the case in our simulation and empirical studies.
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Appendix B. Detailed results for bandwidths (fixed effect models, single-type)

Note that the CGWR has two bandwidths for two coefficients, BO and B1,

respectively.

Linear surface

Quadratic surface

BO 1 3 5 1 3 5
Bl

1 2.35 1.57 1.35 4.03 1.13 0.98
GWR 3 175 1.46 1.26 1.26 1.03 0.94

5 1.56 131 1.20 1.09 0.98 0.92

1 9.73 9.56 10.26 2.63 1.58 1.22
Local-

] 3 10.56 10.8 10.06 171 1.33 1.13

Linear

5 10.01 9.82 10.34 1.50 121 1.06

1 4.16;7.24 1.60;482 1.23;5.19 6.58;7.77  0.87;827 0.66;6.28
CGWR 3 4.23;270 165;231 1.18;228 6.02;369 082;382 0.61;2.10

5 3.50;1.70 1.60; 1.65 1.25; 1.47 4.77 ;144 0.89;1.35 0.61;0.88

Ridge surface Hillside surface

1 4.2 1.01 0.83 2.25 1.67 1.41
GWR 3 1.16 0.89 0.77 1.79 1.47 1.31

5 1.01 0.80 0.73 1.63 1.43 1.24

1 2.61 1.33 1.03 9.78 9.78 8.2
Local-

. 3 1.68 1.12 0.95 9.75 9.01 7.4

Linear

5 1.28 1.01 0.91 8.67 8.93 6.04

1 4.79;8.79 0.85;8.69 0.65;5.45 472 ;7.45 1.63;5.83 1.25;5.34
CGWR 3 524;407 083;215 066;112 498;311 157;280 1.24;270

5 364;116 0.80;099 065;0.79 509;167 1.68;164 1.25;1.66
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