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中文摘要 

     在二十世紀九十年代，學者提出地理加權迴歸（ Geographically 

Weighted Regression;簡稱GWR)。GWR是一個企圖解決空間非穩定性的方

法。此方法最大的特性，是模型中的迴歸係數可以依空間的不同而改變，這

也意味著不同的地理位置可以有不同的迴歸係數。在係數的估計上，每個觀

察值都擁有一個固定環寬，而估計值可以由環寬範圍內的觀察值取得。然

而，若變數之間的特性不同，固定環寬的設定可能會產生不可靠的估計值。 

    為了解決這個問題，本文章提出CGWR(Conditional-based GWR)的方法

嘗試修正估計值，允許各迴歸變數有不同的環寬。在估計的程序中，CGWR

運用疊代法與交叉驗證法得出最終的估計值。本文驗證了CGWR的收斂性，

也同時透過電腦模擬比較GWR, CGWR與local linear法(Wang and Mei, 2008)

的表現。研究發現，當迴歸係數之間存有正相關時，CGWR比其他兩個方法

來的優異。最後，本文使用CGWR分析台灣高齡老人失能資料，驗證CGWR

的效果。 

 

關鍵字 : 地理加權迴歸、廣義加法模型、交叉驗證法、Jacobi疊代法、電腦 

         模擬、MAUP問題 
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Abstract 

 

   Geographically weighted regression (GWR), first proposed in the 1990s, is a 

modelling technique used to deal with spatial non-stationarity. The main 

characteristic of GWR is that it allows regression coefficients to va ry across 

space, and so the values of the parameters can vary depending on locations. The 

parameters for each location can be estimated by observations within a fixed 

range (or bandwidth). However, if the parameters differ considerably, the fixed 

bandwidth may produce unreliable or even unstable estimates.  

   To deal with the estimation of greatly varying parameter values, we propose 

Conditional-based GWR (CGWR), where a different bandwidth is selected for 

each independent variable. The bandwidths for the independent variables are 

derived via an iteration algorithm using cross-validation. In addition to showing 

the convergence of the algorithm, we also use computer simulation to compare the 

proposed method with the basic GWR and a local linear method (Wang and Mei, 

2008). We found that the CGWR outperforms the other two methods if the 

parameters are positively correlated. In addition, we use elderly disability data 

from Taiwan to demonstrate the proposed method.  

 

Keywords: Geographically weighted regression, Generalized additive model, 

Cross validation, Jacobi iteration, Computer simulation, Modifiable areal unit 

problem
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Chapter 1.  

Introduction 

In recent years, spatial regression has become an important tool for 

analyzing spatial data. In applying the analysis, first order stationarity is a 

common assumption and the expected values at different locations are assumed to 

be fixed. Thus, similar to the development of time series analysis, the focus of 

spatial regression is on the covariance structure. Some well-known spatial 

covariance models such as Simultaneous autoregressive (SAR) and moving 

average (MA) can be treated as spatial versions of the AR and MA models used in 

the time series analysis. However, first order stationarity is a questionable 

assumption in practice. For example, the term Modifiable areal unit problem 

(MAUP), used in the geography, particularly on the scaling effect can be treated 

as a spatial version of Simpson Paradox, is often encountered when dealing with 

spatial data. Other than the problem that the parameters’ values are not identical in 

all locations, including the data with different attributes for estimation may also 

produce biased results. 

In other words, estimating the parameters using all of the data and the 

ordinary least squares (OLS) method would distort the local distinctness. One 

possible solution is only considering the data from areas with similar attributes. 

However, it is difficult to define the locations of homogeneity. Moreover, the 

mean of a non-stationary process is usually continuous across the space and does 

not follow a step-function (Fotheringham et al., 2002), making it difficult to find 

the exact boundary of the appropriate data points.  

The other possibility is the varying coefficient model (Cleveland et al., 

1991). The model allows the coefficient terms being a functiona l form of a scalar, 
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which is related to locally linear models (Fan and Zhang, 2008). Note that, the 

varying coefficient model has been plugged into different kinds of application 

such as survival analysis, time series model, etc, and is a popular tool to explore 

the dynamic feature. Based on the concept of varying coefficient model, 

geographically weighted regression (GWR) was proposed to solve the problem of 

MAUP (Brunsdon et al., 1996).  

The GWR allows the regression coefficients to vary across the space or map. 

It is used to obtain estimates from a moving data window and is analogous to 

kernel regression for obtaining a smoothing estimate. The OLS can be treated as a 

special case of GWR, i.e., a window with infinite length, but the local distinctness 

is likely to be lost by averaging all of the observations. The optimal length (or 

bandwidth) of the moving windows in GWR is usually determined by cross-

validation (CV) or Akaike’s information criterion (AIC), and is fixed for all 

variables.  

Nevertheless, there is still room for improvement, mainly related to the 

selection and testing of the bandwidth. For example, using CV and AIC to select 

the optimal bandwidth is a data-driven method, and like in kernel regression, the 

estimates are sensitive to outliers (Farber and Páez, 2007). In addition, the data 

variations are not necessarily the same and the bandwidth should not be fixed as 

well. On the other hand, the hypothesis testing of the parameters depends on the 

bandwidth. For example, Leung et al. (2000) proposed some goodness-of-fit tests 

and found that the degree of freedom of GWR residuals is a function of the 

bandwidth. Since selecting the bandwidth can be somewhat subjective, it is 

possible to come up with totally different results by using different tests.  

Several GWR modifications were proposed since its introduction, most of 

which are related to determining the bandwidth. Brunsdon et al. (1999) introduced 
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a mixed GWR model that allows the inclusion of both stationary and non-

stationary coefficients. They also proposed vector bandwidths, allowing 

coefficients with different bandwidths via a backfitting algorithm and bandwidths 

that were functions of data density. Shi et al. (2006) proposed a weighting 

function that allows the GWR spatial weight to be influenced by the attribute, 

rather than the distance. Furthermore, Farber and Páez (2007) found that it is 

possible to reduce the bias by modifying the CV procedure. Recently, Wang et al. 

(2008) introduced a local linear estimation, or a polynomial fitting technique, to 

reduce the bias.  

However, in spite of these GWR modifications, the issue that the variations 

of each coefficient can be very different has not yet been discussed in details.  

Intuitively, it is reasonable to provide separate bandwidths if the coefficients 

behave differently. Under the classic GWR setting, the bandwidth is the same for 

all of the coefficients and the estimates are likely to be over-smoothed or under-

smoothed.  

Meanwhile, enormous data analysis based on GWR showed that the 

correlations often exist between GWR coefficients. Despite most of them didn't 

mention the exact index, the correlations are apparent through the outcome 

mapping. Bivand and Brunstad (2005) even calculated the correlation index, 

which is nearly high correlated. Note that, the correlation can be additional 

information to improve the estimation, as the Control variant technique on 

Variance reduction. Therefore, the information should be sufficiently use rather 

than ignore it. Although the problem we are dealing with is not entire identical in  

variance reduction, the idea can be borrowed to modify the estimator. 

To complete the puzzle, in this paper, we propose a method to provide 

separate bandwidths for different coefficients via an iteration algorithm. We also 
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evaluate the validity of the proposed method by comparing it with the basic GWR 

and local linear method by Wang et al. (2008). The next section will first 

introduce the GWR and its extension. Next, Section 3 will introduce proposed 

method, namely Conditional-based GWR (CGWR), and its theoretical results. 

Section 4 discusses simulation studies of comparing the performance of the 

proposed method with that of the basic GWR and local linear method. In addition 

to simulations, we also apply the proposed method to a real data set, as shown in 

Section 5. Section 6 provides a discussion of the proposed method that includes its 

limitations and scope for possible future developments.  
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Chapter 2.  

GWR and its extension 

2.1 GWR 

We shall first provide a brief introduction of the GWR, followed by an 

introduction of the proposed method. The GWR uses a dependent variable y 

modelled as a linear function of a set of p independent variables, 1, 2 , , px x x , and 

can be expressed as 

 
0

1

Y
p

i i ik ik i

k

x


     , (1) 

where ik and ikx are the parameter and observed value of variable k ( 1, , )k p   

for observation i, respectively, and i is the error term for observation i, which is 

generally assumed to be from a normal distribution with zero mean and constant 

variance 2  (i.e., 
2~ (0, )i N  ). The subscript i represents the spatial location 

of observation i ),,1( ni  . In other words, in the GWR model, each location 

can be thought of as having its own regression model for the dependent variable 

and independent variables. Thus, the essence of GWR is to obtain local regression 

with nearby data for each location, and choosing an appropriate range for the data 

becomes a key factor. We will use the term “bandwidth” to represent this data 

range for the rest of this paper.  

The parameter set iβ of observation i can be estimated by  

 
ˆ T -1 T

i i= (X WX) X Wiβ Y , (2) 

 where
 

T

1 n
ˆ ˆ ˆ ˆ , , (Y ,...,Y )T T

i i0 i1 ip 1 pβ = β ,β ,..., β = 1, x ,..., x Y =( ) X ( ) , and iW is a 

diagonal weight matrix. The weight matrix contains the weights of the 

neighbourhoods for the 
thi observation, and can be expressed as: 
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1 0

0

i

i i j

in

w

w

w

 
 
 
 
 
 
 
 

W





 





                     (3)  

where ijw ( 1,...,j n ) are obtained by kernel functions. The kernel functions 

chosen are usually distance-weighted and Gaussian type,  

21
exp[- ( / ) ]

2
ij ijw d h                      (4) 

However, if data locations are sparse at somewhere on the space, distance-

weighted kernel might not appropriate due to lack of information. Brunsdon et al. 

(2002) introduced rank-based and k nearest neighbourhood method as the 

solutions. In addition, as we mentioned before, bandwidth selection is generally 

calibrated via minimizing Cross-validation score or AIC.  

     

2.2 Local linear method 

Wang et al. (2008) proposed local linear-fitting-based GWR, which is 

Taylor expansion version of GWR. The main essence of it is to reduce bias by 

using second continuous partial derivatives with respect to geographical location 

coordinates. For any given location, the regression parameter can be locally 

approximated as 

             

( ) ( )

0 0( ) ( )

1,2,..., ,

u v

j ij ij iju u v v

j p

       


              (5) 

where j  is any of regression parameter and ij  is the parameter of the given 

location. 
( )u

ij and 
( )v

ij  are the partial derivatives of j  at location i, that is, 

two-dimensional coordinates on the location, with respect to each axis.  
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To estimate the parameters, the matrix of independent variables can be 

simply rewritten as  

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 1 2 2 1 2 2 2 2 2 2

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
=

( ) ( ) ( ) ( )

i i p p i p i

i i p p i p i

n n n i n n i n p n p n i n p n i

x x u u x v v x x u u x v v

x x u u x v v x x u u x v v

x x u u x v v x x u u x v v

    
 

    
 
      

*

iX


      



    (6) 

where u and v are the coordinates of the locations. By adding intercept into the 

matrix,(i.e. , , )i i

** *

i iX = (1, u - u v - v X ), the parameters can be estimated by  

                    ˆ * * T * * - 1 * * T

i i i i i= ( X W X ) X Wiβ Y                     (7) 

which is similar to the original GWR estimator.  

 

2.3 Drawbacks  

Using a single bandwidth in the GWR is likely to create unsatisfactory 

estimates if the corresponding surfaces of independent variables have different 

attributes (such as different shapes or variations). Allowing different bandwidths 

seems to be a natural modification to the GWR. Unfortunately, the weighted 

least squares and equation (2) cannot handle the situation of varying bandwidths 

for different variables. Brunsdon et al. (1999) proposed an approach similar to a 

stepwise regression and backfitting algorithm for selecting different bandwidths. 

However, they did not provide suggestions for choosing bandwidths. Of course, 

choosing the optimal bandwidths is similar to the problem of minimization, and 

thus the methods such as grid search can be used. However, these methods 

usually require intensive computation and might not be feasible.  

Local linear method solves the aforementioned problems when all the 

coefficient surfaces are linear, since the remainder of the Taylor expansion would 

be zero in this case. In other words, all bandwidths are infinite and same due to 
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unbiasness. But, the method suffers from the bandwidth problem again when it is 

not the case.  

On the other hand, there is another problem that we should concern on 

local linear estimation. In such complex surface, the slope could different on 

different location, and we might expect this method would mislead the surface at 

somewhere slopes change rapidly, which mostly happen on non-linear surface. 

Finally, we would like to point that adding additional dependent variable could 

increase the variance too. 

In this study, we introduce an approach to determine different bandwidths 

using iteration. This approach is inspired by the vector bandwidth of Brunsdon et 

al. (1999) and by the kernel smoothing used in the varying-coefficient model of 

Wu and Chiang (2000). We combine these ideas and propose a method (and an 

algorithm to establish the estimation) for selecting each variable’s bandwidth.  The 

proposed method uses some existing techniques such as the generalized additive 

model (GAM) and the Jacobi iteration method, which will be mentioned first.  
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Chapter 3.  

Methodology 

3.1 Generalized Additive Model 

Hastie and Tishibirani (1990) proposed the GAM, replacing the linear 

function kx by a polynomial function of kx , or ( )k km x , in equation (1). This 

model can be written as: 

 0 1 1 2 2 1 1( ) ( ) ( )     i p p iY m m x m x m x   (8) 

where 0m is a constant and ( )k km x  is a function of kx . Then, the following linear 

system can be used to estimate these )(km functions: 

 

. .

. . . .

. . . .

     
     
     
     
     
     
     
     

1 1 1

2 2 2

p p p

I S S S

S I S S

S S I S

1

2

p

f Y

f Y

f Y

 (9) 

where I is an identity matrix, 1 pS , ,S are a set of n n  smoothing matrices, and 

1 pf , , f are a set of 1n vectors. Some typical form of S matrix are Moving 

average, Spline, B-Spline, etc. Hastie and Tisibirani (1990) applied the block 

Gauss-Seidel iteration procedure to estimate the )(km function, which is also the 

essence of our approach. Under some regular conditions, the Gauss-Siedel 

iteration will converge. The reader can refer Hastie and Tisibirani (1990) for more 

details. In the following, we discuss the details of the Jacobi and Gauss-Seidel 

iterations. 

3.2 Jacobi Iteration 

Jacobi iteration is a two-century old numerical method to solve a linear 

system, Ax = b, iteratively. It is a widely-known method and has many successors 

such as the Gauss-Seidel iteration and the successive over-relaxation method. The 
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major difference between these methods involves the convergence rate, with the 

Jacobi iteration converging slower in most cases. However, the Jacobi iteration is 

easy to implement and can be written as the following steps. 

Consider a linear system: Ax = b, where A is an n n  matrix, x and b are 

1n  vectors, and x is the solution to be determined. The Jacobi iteration 

procedure is as follows: (Let }{lxi denote the lth iteration value of ix .) 

1. Set the initial solution of ix to be 0, i.e., .0}0{ ix   

2. For each element ix , 

{ 1}

{ }

i ij j

i j

i

ii

b a x l

x l
a



 




 

3. Repeat (2) until the stopping criteria is reached. 

3.3 Proposed CGWR  

 The proposed method has the following main characteristics: it allows a 

different bandwidth for each coefficient and an iteration algorithm is incorporated 

into the approach. We adapt the ideas of the GAM and Jacobi iteration and use 

them to determine appropriate bandwidths. By applying the concept behind the 

GAM, the GWR model can be rewritten as: 

 1 ... ...i i ik ip iY f f f        (10) 

where ik ik ikf x   and ik  is the parameter coefficient of the variable k at 

location i. If ikf
 
is the intercept, then ikx is set to be 1. Then, we can use the 

Jacobi iteration to iteratively solve for parameter ikf one-by-one. Again, we let 

{ }k lf denote the lth iteration vector of kf , and let { }k lf be a n×1 vector composed 

by kf . The proposed method can be summarized as follows: (CGWR procedure) 

1. Set the initial solution of kf  to be 0, or {0}k  0f , 1,...,k p , and let 

1l  . 
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2. For each element { }k lf , apply the basic GWR model with only one 

independent variable, .kx The value of the dependent variable used is 

1

{ }
p

j

j
j k



*
y = y - f l - 1 , (i.e., we regress 

1

{ 1}
p

j

j
j k

l



 
  
 
 
 

y f on variable kx
 

without a fitting intercept). The bandwidth is obtained by minimizing the 

CVSS (or AIC). 

3. Repeat (2) until the stopping criteria is reached.  

The bandwidths are modified iteratively according to the preceding process. 

Note that the vector bandwidth and the mixed GWR can be treated as special 

cases of CGWR. The bandwidth is usually large at first, and it is possible to reach 

the global estimate first, before the local effect enters. We anticipate that the 

proposed procedure can increase the estimation accuracy because it finds the 

individual optimal bandwidth for each component.  

There are at least two reasons for finding optimal bandwidth solutions 

individually using the Jacobi iteration. First, although more complex numerical 

methods (such as the quasi-Newton method) could be used, it can reduce the 

computation time and cost. Second, as mentioned previously, there are algorithms 

that converge faster than the Jacobi iteration, but they are likely to produce biased 

estimates. For example, in the Gauss-Siedel iteration process, the estimate of one 

component is updated based on the simultaneous estimates o f other components. 

If the estimates of some components have severe biases, it is possible to 

contaminate the estimates of other components. In other words, although the 

proposed method is conservative, we are willing to sacrifice some of the 

efficiency in exchange for accuracy and stability. Therefore, unlike the vector 
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bandwidth and mixed GWR, the Jacobi iteration is used in the proposed method, 

instead of the Gauss-Siedel iteration.  

The rest of this section summarizes some properties related to the CGWR. 

First, although Brunsdon et al. (1999) proposed an estimation method for solving 

different bandwidths, they did not prove the convergence of this method. We will 

first use the case of two coefficients as an example and give the proof of 

convergence in the following. Note that the method of Brunsdon et al. can be 

treated as a special case of CGWR (i.e., the bandwidths are never updated) and 

the next result might shed light on the complete proof of CGWR. 

Proposition 1: Suppose that the bandwidths are fixed. Assume that there is only an 

independent variable, i.e., there are two coefficients, an intercept and an 

explanatory variable. In addition, the bandwidths are fixed during the iteration 

process. If the largest absolute eigenvalue of the product of two smoothing 

matrices, i.e., 1 2S S , is smaller than 1, then the CGWR estimation would 

converge.  

The outline of the proof is given in Appendix A. Note that the convergence 

can be extended to a case with more than two coefficients (or two or more 

independent variables), with a similar proof.  

Unfortunately, showing the convergence of the CGWR estimation (i.e., 

changing bandwidths) is more complicated, although it is similar to that in 

Proposition 1. Nonetheless, we consider several scenarios and the estimation 

process seems to produce stable and reliable estimates. In the next section, we will 

evaluate the stability of the CGWR via computer simulation, and compare it with 

the basic GWR and a local linear method.  

For the remainder of this section, we introduce some results of the CGWR, 

and also provide possible explanations. First, the estimation variances with 
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CGWR are usually smaller than those for the basic GWR. We will provide a 

heuristic proof, since the smoothing matrix of CGWR cannot be written in a 

closed form. For simplification, we take only the case of two components as an 

example. If there are only two components, then the variance of each estimator  

(  1f̂
GWRV ,  1f̂

CGWRV ) can be written as the following equation (11), where 

( 1, 2)i i S is the corresponding CGWR smoothing matrix. Obviously, the 

denominator of the basic GWR is smaller than that of CGWR, and thus the 

variance of CGWR is smaller.  
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 Moreover, there is no guarantee that the proposed method works when two 

or more coefficients are negatively correlated with each other. A possible 

explanation is that the dissimilarity of the coefficients would inflate the mean-

bias, which will be zero if the coefficients are perfectly positively correlated. This 

is similar to factor analysis, since if two or more variables are highly correlated, a 

single factor (i.e., variable) can provide a good summary of these variables. 

However, if two variables are negatively correlated, different signs would 

complicate the convergence process.  

     Another explanation is the unstable of negative correlation matrix. If all the 

element on the correlation matrix greater than zero, there are some perfect 

properties such as all eigenvalue will be the real number that smaller or equal to 

1 . However, it doesn’t hold when some of them are negative as results as bad 

estimation. 

     Finally, there are two intrinsic meanings on the term 'conditional'. To begin 

with, CGWR update each variable conditionally by fixing others. In fact, the 

concept is more like the Hasting algorithm in Monte Carlo Markov Chain method. 

The constraint on CGWR is another aspect, since CGWR only works well when 

inter-correlation between variables is positive.  
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Chapter 4.  

Simulation Study 

We use simulations to evaluate the performance of the proposed CGWR, 

comparing it to the basic GWR and a local linear estimation. These simulation 

studies are separated into two parts: fixed effect model and random effect model. 

For the fixed effect model, we examine both single type and mixed type surfaces. 

The difference between these two scenarios is whether the coefficients’ surfaces 

are similar or different. Moreover, we assume that the coefficients at different 

locations follow one of the following four surfaces functions: linear, quadratic, 

ridge and hillside. To simplify the discussion, we assume that there were two 

coefficients, i.e., one intercept and one independent variable,  

 0 1       1,2,...,i i i i iY x i n       (12) 

where i indicates the location of the observation.  

We should define the term S/N ratio, i.e., signal vs. noise. In a sense, the 

signal represents the variations in the coefficients’ surface, and the noise is the 

random fluctuation from observations. Hence, the S/N ratio can be interpreted as 

the ratio of standard deviations or variation levels, with larger S/N ratios 

associated with larger variations in the coefficient surface (i.e., the trend of the 

coefficients is more obvious). In particular, we assume that:  

1. Signal = 

1
2 2( )

3
1

 
 


  
 

 ik k

i

n

 

  

2. Noise = Standard deviation of the error term. (Here it is 0.5.)  

Intuitively, the coefficient estimates will be close to the true values if the noise is 

small (or the S/N ratio is large). The bias and variance of the estimates can be 

used together to evaluate the accuracy of the proposed CGWR. We can define:  
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 Average Discount rate: 

 

 

1

1









method

i

OLS

i

n MSE

n MSE
 (13) 

where MSE refers to the mean squares error, or the squared root of (bias)2 plus 

variance. Note that (13) uses the MSE of the estimate from OLS as a bench mark. 

Furthermore, (13) can be computed for all locations and we can use the weighted 

mean of the discount rate for comparisons,  

 

   

 

( ) /

( )

OLS location i method OLS location i
i

OLS location i

i

MSE MSE MSE

MSE

  


. (14) 

Moreover, we can also define other evaluation indices: 

 Average bandwidth:  1  method

i

n bandwidth  (15) 

 Average Variance:   1 ˆ  ik

i

n Var   (16) 

 Average Bias:  
2

1 ˆ   
 

 ik ik

i

n    (17) 

The above evaluation indices allow us to check the accuracy and precision of the 

estimators individually. In general, a good estimator should have small variance, 

bias and MSE. 

4.1 Simulation Setting: 

As mentioned above, there were four types of surfaces for the coefficients 

(Figure 1). Cases 1 and 2 were polynomial functions (close to linear functions) of 

the independent variables, and cases 3 and 4 were non- linear functions. Similar 

settings also appeared in previous studies on GWR, and they have practical 

meanings. For example, the quadratic surface (Case 2) often occurs in situations 

involving housing prices, where prices are significantly higher for locations near a 

town centre or transportation centre. For example, the relationship between the 
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size of a house and its price is more obvious in downtown areas than in the 

countryside. Non- linear surfaces can be used to determine the relationship 

between floor space and price for both industrial and commercial areas. For every 

non-stationary surface, we assume that there are 10 by 10 regular lattice points 

(100 locations).  

For the fixed effect model, two major scenarios are tested under different 

S/N ratio. The first scenario is single type surfaces. In this scenario, both intercept 

and independent variables are composed by same surface, and all four types of 

aforementioned surfaces will be considered. The second scenario, i.e., mixed type 

surfaces, is more realistic and assumes that intercept and independent variables 

follow different surfaces. We examine the second scenario with two cases, linear-

quadratic (polynomial surface) and ridge-hillside (non-polynomial surface). 

To ensure the randomness of the experiment and prevent the nuisance effect 

caused by specific pattern, the independent variable at each location is drawn 

from a uniform distribution on the interval (0, 1) and is fixed for all 100 

simulation runs. We consider various values for the independent variable and the 

results are very consistent. To simply the discussion, we will choose only one of 

the results as a demonstration. For both models, the errors are drawn from a 

normal distribution with a mean of 0 and a standard deviation of 0.5. Also, the 

reason for choosing the standard deviation 0.5 is to incorporate the values of the 

S/N ratio. 

However, in the real scenario, the dependent variables are often random due 

to measurement errors. Moreover, performing the simulation under different 

dependent variable sets can make the results carry more conviction. Hence, we 

redo the single-type surfaces simulations under the random effect model, which 
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the dependent variable set is drawn repeatedly from uniform distribution on the 

interval (0, 1) at each sample.  

  

  

Figure 1: Four coefficient surfaces. Cases 1 & 2 are polynomial surfaces and Cases 3 & 4 are non -

polynomial surfaces. 

  

For the CGWR, the Gaussian kernel is chosen and the optimal bandwidth is 

the one with the minimum cross-validated sum of squares (CVSS). Furthermore, 

we require that the bandwidth is within a reasonable range, to prevent the 

estimation from being too localized or globalized, for extremely small or large 

bandwidths, respectively. The upper bound of the range is the maximum length on 

the map and the lower bound is to have at least 5 data points (each with 1/5 of the 
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weight). The preceding setting is also used in the “spgwr” package (Bivard and 

Yu, 2010, ver0.5-4) in R, a free statistical software.  

The rest of this section discusses the simulation results for the single type 

surfaces, followed by those for the mixed type surfaces, and finally the random 

effect models. Specifically, we will compare the performances of three GWR 

estimations based on the average discount rate, the average bandwidth and the 

average variance and average bias of the estimates. In addition, the stopping 

criteria in following simulations are average absolute change rate ( 0  & 1 ) less 

than 0.005, which is 0.01% of the noise. The settings is different from the usual 

settings because the convergence times to 10-3 is much greater than 0.005. Due to 

the mass simulations considered in this paper, we sacrifice a little precision in 

exchange of the simulation time and the results would be similar for smaller 

stopping criteria.  

To simplify the notation, we will use 0  and 1  to denote the 

coefficients of the intercept and slope of independent variable x in the following 

tables, respectively.  

4.2 Single type surfaces: 

Table 1-1 shows the results of the discount rates in the case where B0 and 

B1 satisfy a linear surface. We can see that both the proposed CGWR and the 

local linear method have significant improvements over the basic CGWR. 

Interestingly, the local linear method is better (with respect to smaller discount 

rates) than the GWR when the S/N ratio is large, but the basic GWR is better 

when the S/N is small. The reason might be that larger noises produce larger 

fluctuations, and thus the average tangent line in the local linear method is not 

accurate or stable. Similar patterns also appear for the other three surfaces (Tables 
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1-2, 1-3, 1-4). This suggests that the local linear method is not very stable if the 

S/N ratio is small.  

The CGWR and the local linear method again outperform the basic GWR in 

the case of a quadratic surface. However, the CGWR appears to be the best and 

the edge is more obvious when the S/N increased. For the nonlinear surfaces, the 

CGWR continues to work satisfactorily, but the local linear model does not. It is 

possible to create worse results than the basic GWR. The CGWR is still reliable in 

the cases of non- linear surfaces, performing much better than the other two 

methods.  

Table 1-1. The average discount rates on a linear surface (single-type)  

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.064 0.312 0.158   1.815 1.589 1.328 

Basic GW R 3 1.348 0.321 0.173   0.598 0.663 0.755 

 5 1.775 0.382 0.199  0.329 0.397 0.459 

 1 1.317 0.192 0.078  2.111 1.033 0.686 

Local-Linear 3 1.107 0.164 0.069  0.403 0.347 0.284 

 5 1.299 0.188 0.059   0.197 0.179 0.126 

 1 0.664 0.195 0.082   1.076 0.775 0.412 

CGW R 3 0.880 0.202 0.086  0.400 0.366 0.286 

 5 0.899 0.227 0.092   0.198 0.207 0.178 

 

Table 1-2. The average discount rates on a quadratic surface (single-type) 

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.955 0.791 0.510  2.877 7.729 7.542 

Basic GW R 3 3.217 0.896 0.570  1.418 2.332 3.650 

 5 4.334 1.108 0.639  0.844 1.316 1.819 

 1 3.279 0.914 0.535  5.159 8.900 7.941 

Local-Linear 3 5.177 1.119 0.599  2.039 2.634 3.481 

 5 6.147 1.196 0.602  1.001 1.169 1.488 

 1 1.168 0.324 0.146  1.529 1.612 0.928 
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CGW R 3 1.491 0.380 0.166  0.675 0.713 0.730 

 5 1.709 0.429 0.183  0.374 0.451 0.430 

 

 

 

 

Table 1-3. The average discount rates on a ridge surface (single-type) 

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.740 0.571 0.383   2.642 2.325 2.249 

Basic GW R 3 2.623 0.728 0.401   1.150 1.375 1.321 

 5 2.892 0.824 0.433  0.591 0.810 0.894 

 1 2.890 1.023 0.621  4.745 4.374 3.672 

Local-Linear 3 4.340 1.206 0.618   1.960 2.255 2.023 

 5 5.385 1.386 0.677   1.081 1.326 1.344 

 1 0.884 0.203 0.111   1.029 0.428 0.258 

CGW R 3 1.048 0.239 0.116  0.529 0.385 0.250 

 5 0.854 0.221 0.107   0.253 0.208 0.159 

 

Table 1-4. The average discount rates on a hillside surface (single-type) 

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.075 0.315 0.153   1.697 1.905 1.359 

Basic GW R 3 1.353 0.340 0.173   0.583 0.603 0.668 

 5 1.152 0.343 0.185  0.234 0.278 0.360 

 1 1.339 0.243 0.149  2.187 1.549 1.239 

Local-Linear 3 1.403 0.289 0.188   0.617 0.529 0.722 

 5 1.113 0.339 0.209   0.266 0.307 0.421 

 1 0.726 0.170 0.077   1.098 0.761 0.473 

CGW R 3 0.926 0.199 0.079  0.384 0.348 0.239 

 5 0.578 0.192 0.079   0.159 0.158 0.140 

 

To further evaluate the performances of the three different GWR methods, we 

can consider the hillside surface (Table 1-4) and the S/N ratio of B0 = B1 = 5 as a 

demonstration. We can see that the CGWR produces the best fit and the mean 
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surface looks almost identical to the true surface (Figures 1 and 2). The edge of 

the mean surface from the basic GWR is not smooth, which may be due to the 

fewer observations involved in the estimation, i.e., the edge effect. The mean 

surface of the local linear method does not look like the shape of a hillside at all, 

but looks like a linear surface. 

 

Method 1: Basic GWR 

 

Method 2: Local liner estimation  

 

Method 3: CGWR 

Figure 2: The
 
B1 mean surface of each estimation method from 100 simulations. The simulation 

scenario is a hillside, and the S/N ratio of B0 = B1 = 5.  

 

Table 2. The average bandwidths for linear and hillside surfaces (single-type) For CGW R, the first 

and second values are the average bandwidths of B0 and B1.  

 Linear surface Hillside surface  

   Method 

S/N  

Basic  

GW R  

Local 

Linear 
CGW R 

Basic  

GW R 

Local 

Linear 
CGW R 

1 2.35 9.73 4.16 ; 7.24 2.25 9.78 4.72 ; 7.45 

3 1.46 10.8 1.65 ; 2.31 1.47 9.01 1.57 ; 2.80 

5 1.2 10.34 1.25 ; 1.47 1.24 6.04 1.25 ; 1.66 

 

Intuitively, we expect that the bandwidth is small if the S/N is large, since 

distant observations can be very different and cause biased estimation. Basically, 

all three GWR methods have significant drops in bandwidth if we increase the 

S/N ratio from 1 to 3. Moreover, the bandwidths in the case of a linear surface 

should be larger than those of a nonlinear surface under the same S/N ratio, since 

the surface change is quite homogenous in any direction.  
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The bandwidth results can also be used to explain why the CGWR 

outperforms the other two methods. We will choose two surfaces (linear and 

hillside) to discuss these results (Table 2). The local linear method often yields 

large optimal bandwidths. If the true surface is close to linear, we can rely on 

observations within a larger bandwidth and thus have smaller variances than those 

in the case of a nonlinear surface. Since the shape of a hillside is close to linear, 

the bandwidths of the hillside case are very similar to those in the linear case 

(Table 2) and are much larger than those of the quadratic and ridge cases 

(Appendix B).  

Furthermore, the values of the CGWR bandwidth match the expected 

pattern. For example, if the S/N ratio is small, the bandwidth is expected to be 

large in order to provide a stable estimate. If we fix the S/N ratio of B1, the B0 

bandwidth of CGWR decreases as the S/N ratio of B0 increases, for all four 

surfaces (Appendix B). Similar results hold for the B1 bandwidths if we fix the 

S/N ratio of B0. This is exactly why we want to consider a different bandwidth for 

each coefficient, since the numbers of observations needed can be different.  

 

Table 3-1. The average variances and biases of B0 and B1 on a linear surface (single-type) 

(i) B0 

 

 

 

 OLS  Basic GWR Local linear  CGWR 

S/N of B0: 1 5 1 5 1 5 1 5 

Conditional on S/N of B1 = 1 

Variance 0.009 0.011 0.039 0.067 0.051 0.052 0.024 0.036 

Bias 0.029 0.028 0.002 0.004 0.0003 0.0002 0.001 0.0002 

Conditional on S/N of B1 = 5 

Variance 0.010 0.009 0.090 0.107 0.057 0.043 0.048 0.057 

Bias 0.723 0.719 0.026 0.038 0.0005 0.0002 0.012 0.009 
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(ii) B1 

 

Table 3-2. The average variances and biases of B0 and B1 on a ridge surface (single-type) 

 (i) B0 

 

(ii) B1 

  

The variances and biases of the estimates from the three GWR methods can 

also be used for comparisons. Again, we will only use the cases of linear and 

 OLS  Basic GWR Local linear  CGWR 

S/N of B0: 1 5 1 5 1 5 1 5 

Conditional on S/N of B1 = 1 

Variance 0.031 0.036 0.113 0.190 0.146 0.145 0.071 0.117 

Bias 0.038 0.695 0.013 0.051 0.001 0.0005 0.004 0.028 

Conditional on S/N of B1 = 5 

Variance 0.030 0.027 0.248 0.294 0.152 0.114 0.088 0.152 

Bias 0.191 0.880 0.048 0.124 0.001 0.0002 0.004 0.010 

 OLS  Basic GWR Local linear  CGWR 

S/N of B0: 1 5 1 5 1 5 1 5 

Conditional on S/N of B1 = 1 

Variance 0.011 0.010 0.068 0.152 0.118 0.304 0.038 0.044 

Bias 0.035 0.049 0.013 0.020 0.011 0.017 0.003 0.006 

Conditional on S/N of B1 = 5 

Variance 0.010 0.010 0.241 0.265 0.487 0.530 0.089 0.084 

Bias 0.914 0.947 0.114 0.152 0.091 0.122 0.014 0.018 

 OLS  Basic GWR Local linear  CGWR 

S/N of B0: 1 5 1 5 1 5 1 5 

Conditional on S/N of B1 = 1 

Variance 0.026 0.033 0.180 0.433 0.333 0.843 0.067 0.188 

Bias 0.049 0.923 0.022 0.136 0.030 0.198 0.011 0.055 

Conditional on S/N of B1 = 5 

Variance 0.029 0.029 0.650 0.717 1.302 1.436 0.097 0.178 

Bias 0.377 1.370 0.271 0.541 0.203 0.459 0.008 0.046 
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ridge surfaces. Because there are many combinations for the S/N ratios of B0 and 

B1, we will only show the results of S/N = 1 and 5 (Tables 3-1 to 3-2). Unlike in 

the previous comparisons, we will also provide the variances and biases of the 

OLS estimates. In general, a larger S/N ratio tends to produce a larger bias. 

Moreover, the OLS estimates fail to capture the spatial trend causing the largest 

bias, but it uses all of the observations in the estimation (i.e., infinity bandwidth) 

and thus has the smallest variance. As for the three GWR estimations, the 

variances of the estimates are generally larger than the biases of the estimates.  

The results for a linear surface are shown in Table 3-1. As mentioned 

earlier, the average bandwidths of the local linear method were the largest, 

possibly indicating the smallest variances. In addition, the local linear method has 

the smallest bias, and also the smallest discount rates in the case of a linear 

surface (Table 1-1). Although the CGWR has a larger bias than the local linear 

method in the case of a linear surface, it dominates the basic GWR with respect to 

both variance and bias. The CGWR has the best performance in the case of a ridge 

surface, and it also outperforms both the basic GWR and the local linear method 

for both the variance and bias.  

4.3 Mixed type surfaces: 

We also repeat the same comparisons of the three GWR estimation 

methods with the mixed type surfaces. The results are similar to those in the 

single type surfaces, and thus we will only show the results of the discount rates. 

As we mentioned before, there are two cases in this scenario: linear-quadratic 

(polynomial surface) and ridge-hillside (non-polynomial surface). For the first 

case, the underlying surface of intercept is linear, and the slope is quadratic. For 

the second case, all surfaces are of non-polynomial type and it is more complex 

than the first one.  
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Table 4-1. The average discount rates of a linear-quadratic surface (mixed-type) 

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.062  0.279  0.155   1.934  1.643  1.420  

Basic GW R 3 2.110  0.407  0.181   1.048  1.067  0.935  

 5 3.119  0.537  0.231   0.688  0.687  0.711  

 1 1.492  0.225  0.080   2.888  1.514  0.905  

Local-Linear 3 3.100  0.534  0.169   1.405  1.314  0.954  

 5 5.357  0.775  0.268   0.928  0.871  0.753  

 1 0.764  0.183  0.100   1.301  0.802  0.538  

CGW R 3 1.132  0.345  0.179   0.708  0.849  0.785  

 5 1.257  0.388  0.217   0.404  0.523  0.584  

 

Table 4-2: The average discount rates of a ridge-hillside surface (mixed-type) 

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.457  0.545  0.337   2.160  3.268  2.868  

 Basic GW R 3 1.623  0.582  0.349   0.622  1.373  1.786  

 5 1.511  0.604  0.344   0.251  0.586  0.943  

 1 2.105  0.853  0.536   3.312  5.602  4.755  

Local-Linear 3 2.236  0.903  0.497   0.896  2.348  2.595  

 5 1.999  0.980  0.540   0.333  1.076  1.522  

 1 0.956  0.245  0.116   1.166  0.750  0.351  

CGW R 3 1.279  0.361  0.151   0.544  0.677  0.443  

 5 1.338  0.485  0.204   0.245  0.434  0.415  

 

Basically, The CGWR also has smaller discount rates than the basic GWR 

for the mixed type surfaces (Tables 4-1 to 4-2). We will focus on the results that 

are different than those of the single type surfaces. Although the local linear 

estimation is better than the GWR in the linear-quadratic surfaces, it has adverse 
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performance in the ridge-hillside surfaces. The results might suggest the 

instability of local- linear approach. On the contrary, for both cases, the CGWR 

dominates other two methods, similar to that in the single type scenario.  

From the computer simulations, we found that the proposed CGWR makes 

a significant improvement over the basic GWR. If the coefficients surfaces are 

non- linear, the CGWR also outperforms the local linear method. In the following 

section, we will use an empirical example to compare the CGWR and basic GWR, 

providing further evidence for supporting the CGWR. 

 

4.4 Random effect model 

We also repeated the same comparisons of the three GWR estimation 

methods for the random effect model. The results were similar to those for the 

fixed effect model, and thus we will only show the results of the discount rates of 

single-type surfaces.  

Table 5-1. The average discount rates on a linear surface (random effect).  

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 0.903  0.264  0.134    1.583  1.693  1.493  

Basic GW R 3 1.214  0.312  0.159    0.590  0.755  0.794  

 5 1.497  0.353  0.169   0.310  0.379  0.426  

 1 0.912  0.146  0.049    1.642  1.017  0.601  

Local-Linear 3 0.914  0.143  0.053    0.384  0.338  0.271  

 5 0.857  0.131  0.052    0.142  0.125  0.111  

 1 0.608  0.154  0.067    0.989  0.747  0.355  

CGW R 3 0.762  0.180  0.085   0.365  0.364  0.283  

 5 0.770  0.168  0.079    0.180  0.164  0.164  
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Table5-2: The average discount rates on a quadratic surface (random effect).  

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.500  0.618  0.375    2.316  4.047  1.745  

 Basic GW R 3 2.410  0.682  0.456    1.264  1.767  2.376  

 5 3.056  0.847  0.519   0.745  1.020  1.379  

 1 1.959  0.569  0.317    3.243  3.654  3.522  

Local-Linear 3 2.706  0.621  0.338    1.265  1.497  1.562  

 5 2.800  0.776  0.350    0.641  0.794  0.856  

 1 1.021  0.300  0.136    1.336  0.969  0.644  

CGW R 3 1.071  0.329  0.167   0.638  0.642  0.624  

 5 1.230  0.355  0.159    0.371  0.383  0.363  

 

Table 5-3. The average discount rates on a ridge surface (random effect).  

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 1.508  0.506  0.305    2.862  3.497  3.807  

Basic GW R 3 2.295  0.594  0.340    1.073  1.566  1.931  

 5 2.481  0.666  0.426   0.586  0.824  1.186  

 1 2.020  0.681  0.382    3.857  4.313  4.286  

Local-Linear 3 2.664  0.778  0.407    1.291  1.861  1.968  

 5 3.030  0.835  0.548    0.746  0.937  1.319  

 1 0.820  0.227  0.123    1.273  0.883  0.667  

CGW R 3 1.100  0.244  0.131   0.552  0.471  0.484  

 5 1.047  0.254  0.124    0.291  0.275  0.244  
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Table 5-4: The average discount rates on a hillside surface (random effect).  

  B0  B1 

  B0 

B1 

1 3 5  1 3 5 

 1 0.969  0.250  0.134    1.624  1.862  1.526  

Basic GW R 3 1.238  0.269  0.140    0.545  0.645  0.752  

 5 1.356  0.328  0.152   0.307  0.373  0.411  

 1 1.021  0.179  0.121    1.797  1.191  0.991  

Local-Linear 3 1.202  0.227  0.123    0.535  0.468  0.489  

 5 1.100  0.250  0.122    0.245  0.277  0.259  

 1 0.620  0.149  0.081    0.913  0.761  0.551  

CGW R 3 0.769  0.165  0.069   0.359  0.337  0.243  

 5 0.747  0.130  0.070    0.189  0.147  0.153  

 

The CGWR and local linear estimation also had smaller discount rates 

than the basic GWR for the random effect model (Tables 5-1 to 5-4). We will 

focus on the results that were different than those of the fixed effect model. 

Although the CGWR still dominated in the cases of ridge and hillside surfaces, 

the local linear estimation had better performances when the S/N ratio was larger. 

In general, for the random effect model, the local linear estimation was the best in 

the case of a linear surface, and the CGWR was the best for the other three cases, 

just as with the fixed effect model.  

This section showed how computer simulations were used to demonstrate 

that the proposed CGWR is a significant improvement over the basic GWR. 

Except for the case of a linear surface, the CGWR also outperformed the local 

linear method. In the following section, we will show how an empirical study was 

used to compare the CGWR and basic GWR to provide further evidence to 

support the CGWR. 
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Chapter 5. 

Empirical Study 

We now apply the CGWR to a real data set. The data considered are from 

the 2000 Taiwan Population Census and the goal is to study the relationship 

between elderly disability and related social factors. Like in many developed 

countries, population aging is a serious problem and the elderly populat ion in 

Taiwan has increased rapidly. For example, the proportion of people 65 years of 

age and over was 10.5% in the beginning of 2009, compared to 7% in 1994. 

However, most medical resources are concentrated in metropolitan areas or 

northern Taiwan, and this may not match the needs of the elderly. Hu and Yue 

(2002) studied this issue and found that the distribution of elderly disability is 

spatially autocorrelated and a classic spatial regression model can be applied. 

However, Brunsdon (1999) claimed that the phenomenon of spatial 

autocorrelation is likely to be caused by correlated random errors or spatial non-

stationarity, (i.e., identifiability). His claim motivates us to re-examine the data 

using the GWR-based model. 

The Taiwan census data are at the township level and there are 350 

townships involved. The dependent variable is the proportion of disabled elderly 

people in each township. Since this variable appears to be right skewed, a log 

transformation (i.e.,
* log( 1)i iy y  ) is applied. Four independent variables are 

selected: population density (POP), proportion of elderly (ELD), higher-age 

mortality rate (HMR) and education level (EDU). These independent variables are 

standardized into the interval [0, 1] before being plugging into the GWR model. 

Before applying the GWR, we first test the spatial non-stationarity (Leung et al., 

2000). The F-test of Leung et al. suggests that the model is spatial non-stationary 
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(p-value < 0.001). This confirms the conjecture of Brunsdon (1999) and we shall 

continue to proceed with the GWR-type analysis.  

Table 6. The correlat ions of coefficients from the disability data. The variables INT and POP were 

in group 1, and ELD, HMR, & EDU were in group 2.  

 

 INT POP ELD HMR EDU 

INT 1.000 0.463 -0.949 -0.951 -0.971 

POP 0.463 1.000 -0.281 -0.281 -0.653 

ELD -0.949 -0.281 1.000 0.914 0.875 

HMR -0.951 -0.281 0.914 1.000 0.868 

EDU -0.971 -0.653 0.875 0.868 1.000 

 

Since the correlation of intercept and the variable POP is 0.463 (Table 6), 

they are put in the same group. Similarly, the variables ELD, HMR, and EDU are 

in the other group. Recall that the CGWR does not work well in the case of 

negative correlation. Thus, we focus on the variables with positive correlation and 

we choose to work on the group of intercept and variable POP. First, we treat 

variable ELD, HMR, EDU as constant, after getting estimates for them from the 

basic GWR. Then, we apply the CGWR to the intercept and the variable POP, as 

follows:  

 
*

2 3 4 0 1
ˆ ˆ ˆ ˆ ˆ( )GWR GWR GWR CGWR CGWR

i i i i i i i i i i iy ELD HMR EDU POP r           (18) 

After fitting the CGWR, the calibrated bandwidths vary across the variables. 

Here, we let the lower and upper bounds of the bandwidth be (1 km, 400 km).  

Through the surface after fitting with each method, we find that there is a 

dramatically different between CGWR and others (Figure 3). For the intercept 

term, the other methods review the North-South pattern. However, CGWR shows 

that high disability occurred on inland or mountain area. On the other hand, local 
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linear method seems to fit with a linear expansion surface, which is a strong 

assumption. 

 

We use the pseudo R-square and residual plot to evaluate the performance 

of CGWR (Figure 4). The pseudo R-square is the Pearson product moment 

correlation coefficient of the fitted value and the observed value, and a larger 

value usually indicates a better fit. In this example, the pseudo R-square values of 

basic GWR and CGWR are 0.514 and 0.894, respectively. Moreover, the residual 

plots are also in favour of the CGWR, since there are fewer outliers and the 

outliers appear to have smaller variance.  

It should be noted that either one of the variable sets can be chosen as 

constant. If we apply the CGWR procedure on the other variable set (i.e., ELD, 

HMR, and EDU) then the CGWR still has a better fitting result, although the 

pseudo R-square is 0.874, which is slightly lower.      

Figure 3: The surface of Intercept and variable POP from different fitting method.  
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Figure 4: The residual plots & Residual histogram of the GWR,Local linear method and CGW R. 

(Top) The X-axis shows the fitted values and the Y-axis represents their standardized residuals. 

(Bottom) The X-axis shows the residual value.  
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Chapter 6.  

Discussion and Concluding Remarks 

Beginning from past decade, the GWR has acted as a new modelling 

technique used to deal with spatial non-stationarity. This technique allows 

regression coefficients to vary across space and obtains their estimates from a 

fixed bandwidth of observations. However, using a fixed bandwidth might not be 

appropriate since the independent variables would behave differently. In this 

paper, we proposed a method (CGWR) for modifying the GWR by relaxing the 

restriction of a fixed bandwidth. We compared the proposed method to the GWR 

and a local linear estimation, which was shown to be effective at reducing the  

bias. Based on simulation results, we found that the CGWR has the best 

performances given that the regression coefficients are positively correlated, and 

this advantage is especially noticeable in the cases of non-linear surfaces.  

Of course, the improvements in the CGWR are due to the fact that it 

allows the bandwidth to vary for each coefficient. If the coefficients are positively 

correlated, the CGWR can reduce the bias, as well as the variance. In the 

empirical study, if the coefficients are not always positively correlated, the 

CGWR can still be modified and applied to a set of variables that are positively 

correlated for any pairs of variables.  

However, the proposed method also has limitations. First, the most critical 

one is probably that the current settings for CGWR do not work well in the case of 

negative correlation, allowing the basic GWR to outperform the proposed CGWR. 

As a solution, we suggest calculating the correlation coefficients of the variables 

before applying the CGWR. Nevertheless, we can perform a two-stage fitting as 

we did at previous empirical study. In order to verify the feasibility of this 

approach, we conduct a experiment in two variables. That is, there are three 
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components in this model, which is intercept and two independent variables. Here, 

we redo the simulation by fixing second variable at first stage. By ratio of average 

discount rate, the outcome is similar to previous result. CGWR seems to fit well 

by this approach. Second, the CGWR is a computer intensive method, and would 

become extremely time-consuming if there are more variables. To increase the 

iteration speed, a moving average method could be used to increase the 

convergence speed. Third, we have not shown that the CGWR will converge if 

there are many variables, although we found that it would for cases up to four 

variables. A possible modification to a case with more variables would be to 

separate the variables into two groups and use double iteration. Then, CGWR 

could be used on each group of variables (inner loop), and the process re- iterated 

between the two groups (outer loop) until both groups of variables converge. To 

show that this idea is feasible, we conduct an experiment with six variables. The 

variables are separated into two groups of three variables each, and the estimation 

does converge.  
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Figure 5: Average discount rate of each method by fixing variab le x2, The baseline of the ratio of 

average discount rate is the GW R. 

 

In this study, we also found some potential problems in applying the 

GWR. The GWR still has room for further improvement, especially when the S/N 

ratio is small, the surfaces of the coefficients are non- linear and the coefficients 

are very different. In addition, the variance reduction of CGWR over GWR is 

much more obvious than that for the bias reduction. This indicates that the GWR 

estimates have large variances. In other words, if the variances of the GWR 

estimates could be reduced, the bias could also be further reduced, and thus it is 

likely that the estimates would be more stable.  
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Appendix A. The outline proof of the convergence for CGWR with fixed 

bandwidths 

 

Consider a non–stationary model with only the intercept and a single 

explanatory variable (i.e., yi i1 i2 if f    ), where i  is random error. 

To show the convergence of the CGWR algorithm, we first let the initial 

values be 
1 2
ˆ ˆ(0) (0) f f 0 . Then the estimation of 

1 2
ˆ ˆ & f f  can be written as: 

1 1 2 1 2 1 1 2 1 2 1

2 2 1 2 1 2 2 1 2 1 2

ˆ ( ) ...

ˆ ( ) ...

1

2

k

k

     

     

S S S S S S S S S S

S S S S S S S S S S

f Y Y Y Y R

f Y Y Y Y R
 

where 1 2 & R R
 

are the remainder terms of the estimators: 

To prove the convergence of the CGWR algorithm, we need to show that 

both 1R and 2R will converge to 0. Since the discussions of 1R  and 2R  are 

similar, we will only show the case for 1R .The case for 1R can be separated into 

two parts: 

Let 
* *k 1 k( )1 2

S S P B P , where P  is a matrix of eigenvectors for 1 2S S at its 

columns, 
*k

B  is a diagonal matrix with eigenvalues for 1 2S S on the diagonal, 

and k* is an arbitrary natural number.  

If the largest eigenvalue in the absolute values of 1 2S S ,  , is smaller than 

1, then the remainder 1R  converges to 0 as .k   

 
The smoothing matrices in the proof are similar to those used in the GAM. 

According to Hastie and Tishibirani (1990), the smoother matrices should satisfy 

the bounded condition (p. 121). Moreover, this assumption seems to be true in 

practice and it is always the case in our simulation and empirical studies.  
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Appendix B. Detailed results for bandwidths (fixed effect models, single-type)  

 

Note that the CGWR has two bandwidths for two coefficients, B0 and B1, 

respectively.  

 

   Linear surface   Quadratic surface  

  B0 

B1 

1 3 5 1 3 5 

 1 2.35 1.57 1.35 4.03 1.13 0.98 

GW R 3 1.75 1.46 1.26 1.26 1.03 0.94 

 5 1.56 1.31 1.20 1.09 0.98 0.92 

 1 9.73 9.56 10.26 2.63 1.58 1.22 

Local- 

Linear 
3 10.56 10.8 10.06 1.71 1.33 1.13 

 5 10.01 9.82 10.34 1.50 1.21 1.06 

 1 4.16 ; 7.24 1.60 ; 4.82 1.23 ; 5.19 6.58 ;7.77 0.87 ; 8.27 0.66 ; 6.28 

CGW R 3 4.23 ; 2.70 1.65 ; 2.31 1.18 ; 2.28 6.02 ; 3.69 0.82 ; 3.82 0.61 ; 2.10 

 5 3.50 ; 1.70 1.60 ; 1.65 1.25 ; 1.47 4.77 ; 1.44 0.89 ; 1.35 0.61 ; 0.88 

  Ridge surface  Hillside surface  

 1 4.2 1.01 0.83 2.25 1.67 1.41 

GW R 3 1.16 0.89 0.77 1.79 1.47 1.31 

 5 1.01 0.80 0.73 1.63 1.43 1.24 

 1 2.61 1.33 1.03 9.78 9.78 8.2 

Local- 

Linear 
3 1.68 1.12 0.95 9.75 9.01 7.4 

 5 1.28 1.01 0.91 8.67 8.93 6.04 

 1 4.79 ; 8.79 0.85 ; 8.69 0.65 ; 5.45 4.72 ; 7.45 1.63 ; 5.83 1.25 ; 5.34 

CGW R 3 5.24 ; 4.07 0.83 ; 2.15 0.66 ; 1.12 4.98 ; 3.11 1.57 ; 2.80 1.24 ; 2.70 

 5 3.64 ; 1.16 0.80 ; 0.99 0.65 ; 0.79 5.09 ; 1.67 1.68 ; 1.64 1.25 ; 1.66 
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