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Abstract 

Background and Objectives: Lung cancer is the leading cause of cancer deaths 

worldwide. With current use of autofluorescent bronchoscopic imaging to detect early 

lung cancer and limitations of pathologic examinations, a computer-aided diagnosis 

(CAD) system based on autofluorescent bronchoscopy was proposed to distinguish 5 

different pathological cancer types to achieve objective and consistent diagnoses. 

Methods: The collected database consisted of 12 adenocarcinomas and 11 squamous 

cell carcinomas. The corresponding autofluorescent bronchoscopic images were first 

transformed to a hue (H), saturation (S), and value (V) color space to obtain better 

interpretation of the color information. Color textural features were respectively 10 

extracted from the H, S, and V channels and combined in a logistic regression classifier 

to classify malignant types by machine learning. 

Results: After feature selection, the proposed CAD system achieved an accuracy of 

83% (19/23), a sensitivity of 73% (8/11), a specificity of 92% (11/12), a positive 

predictive value of 89% (8/9), a negative predictive value of 79% (11/14), and an area 15 

under the receiver operating characteristic curve of 0.81 for distinguishing lung cancer 

types. 

Conclusions: The proposed CAD system based on color textures of autofluorescent 

bronchoscopic images provides a diagnostic method of malignant types in clinical use. 

Keywords: lung cancer, autofluorescent bronchoscopy, computer-aided diagnosis, 20 

color texture 
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Introduction 

Lung cancer is the most common cancer and the leading cause of cancer deaths 

worldwide [1, 2]. One reason for the high mortality rate of lung cancer is the difficulty 25 

of early detection/diagnosis, which leads to a high prevalence of late-stage lung cancer 

at the time of diagnosis. Recent implementation of low-dose computed tomographic 

(CT) screening in high-risk groups of patients produced early detection of early-stage 

peripheral lung cancer and a significant reduction in mortality [3]. However, low-dose 

CT screening cannot detect endobronchial lesions, and a bronchoscopic study is the 30 

most important method for the early detection of endobronchial/tracheal lesions [4, 5]. 

Due to the low detection rate of early lung cancer using traditional white-light 

bronchoscopy (WLB), new bronchoscopic imaging techniques, including 

autofluorescent imaging (AFI) and narrow-band imaging (NBI), have become 

important in detecting endobronchial premalignant lesions in the bronchial mucosa [6-35 

8]. In addition, advantages of AFI include the synchronous localization of tumors, an 

ability to estimate the extent of the mass, and better estimation of the resection margins 

[9]. A meta-analysis comparing AFI to WLB and AFI with WLB to WLB, both showed 

higher detection rates and sensitivities but variable specificity [10]. 

In clinical settings, advanced stages of adenocarcinomas (ACs) and squamous cell 40 

carcinoma (SCC) require different treatment choices. In eastern advanced lung ACs, 
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the epidermal growth factor receptor (EGFR) is mutated in a higher portion of patients, 

and there is a good response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) [11, 12]. 

Because of the diversity of treatment choices, confirmation of the correct histologic 

type is the first step in determining the best treatment for lung cancer patients, followed 45 

by a molecular diagnostic panel of the lung cancer. Using an immunohistochemical 

(IHC) panel to confirm the correct histologic type is the most frequently used method, 

but it takes several days. In lung cancer patients with endobronchial lesions found by a 

bronchoscopic study, the initial bronchoscopic images might help make a diagnosis of 

the histologic type and facilitate subsequent cancer staging and treatment. However, the 50 

main limitation of bronchoscopic examinations is the variance among different 

observers [13]. Extracting diagnostic imaging features from bronchoscopy can be 

useful by providing more-complete tumor characterization. Thus, the use of computer-

aided diagnosis (CAD) can be a practical way to provide objective diagnostic 

suggestions. After extracting quantitative image features and combining them in a 55 

logistic regression classifier, different types can be modeled and presented via 

probabilities [14, 15]. So far, there is no literature about whether a CAD system can 

help recognize different cell types from WLB or AFI images. 

Previously, a CAD system was applied to classify normal mucosa and tumors 

using WLB [16]. An accuracy of 80% was achieved based on quantitative image 60 
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features. To the best of our knowledge, this is the first study to explore predictions of 

different cancer types with AFI. In this study, a CAD system was proposed to analyze 

textures of multiple color channels in autofluorescent bronchoscopy to classify lung 

cancer types, i.e., ACs and SCC. The color space of the original images was transformed 

to provide a better interpretation of color information and compared to the original one. 65 

From an analysis of color textures, complementary features were combined via a 

logistic regression classifier. Establishment of the CAD system is expected to provide 

more-objective recommendations for recognizing lung cancer types in clinical use. 

 

Materials and Methods 70 

Patient information 

This retrospective study was approved by the institutional review board of 

Shuang Ho Hospital (New Taipei City, Taiwan), and informed consent was waived. 

From September 2015 to April 2017, 70 patients from Shuang Ho Hospital were 

screened using BF-F260 (Olympus Optical, Tokyo, Japan). Among these cases, 36 75 

patients had normal mucosa, and 34 had positive findings of neoplastic changes under 

WLB and AFI. All 34 abnormal mucosa samples had a pathologic diagnosis by 

bronchoscopic biopsies. Among them, only 23 endobronchial tumors could clearly be 

recognized with WLB and AFI without confounding by bleeding. Two small-cell 
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carcinoma patients, two unknown carcinomas, and one tracheal tumor were excluded 80 

due to the limited sample sizes. Demographic information of the patient database 

included 12 AC patients (aged 42~83 years) and 11 SCC patients (aged 50~90 years). 

Figure 1 shows an example of an AC and SCC. 

To delineate the tumor area in an AFI, the background airway mucosa should be 

greenish with a consistent texture with no secretions or blood. Any abnormal or atypical 85 

expression of color which was not green detected by AFI was delineated as a suspected 

tumor area for further processing. 

 

Multichannel features 

 Conventional CAD systems quantify features of medical images in gray-scale [17, 90 

18]. These medical images include CT, ultrasound, magnetic resonance imaging (MRI), 

and so on. CAD systems focus on brightness variations in lesions and brightness 

contrasts between lesions and background tissues and can achieve substantial accuracy 

in classifying benign and malignant tumors. In this study, lung cancers were detected 

by AFI which presents lung tissues in color images. To utilize meaningful color 95 

information, multichannel features were extracted from the color channels for tissue 

characterization. Hue (H), saturation (S), and value (V) transformation was the first step 

in converting unintuitive red (R), green (G), and blue (B) channels into more 
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describable features. Then, textural features were individually extracted from the H, S, 

and V channels. 100 

HSV transformation 

Color information plays an inevitable role in AFI for detecting abnormal tissues. 

The choice of the color space can dramatically influence processing results. The RGB 

color space arises naturally from color camera hardware such as AFI. However, other 

color models such as the HSV scheme are preferable for extracting more corresponding 105 

colors of images for subsequent analyses [19]. HSV is one of the useful color models 

which defines color through three channels of hue, saturation, and value. Hue represents 

the fluorescent parts of an image. Saturation indicates the level of fluorescence, and 

value is the luminance of tissues. Extracting features from the HSV color space is 

expected to provide more-significant color information for diagnosing malignant types. 110 

Figure 2 shows the HSV color space composition. 

Textural features 

Texture analyses are widely used for pattern recognition in medical images [17, 

18]. Most systems extract textural information from sonographic or MRI patterns 

presented by gray-scale values. After combining textural features, patterns of benign 115 

and malignant tumors can be recognized by a classifier. Based on the success of 

previous studies [17, 18], this study further extracted textural features from HSV color 
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channels for classifying malignant types. After delineating the tumor area in 

autofluorescent bronchoscopy, tissues inside the tumor area were analyzed for tissue 

characterization. 120 

The tumor area enclosed by the contour is a cluster of similar biological structures 

shown as fluorescence. The fluorescence color texture was then extracted to analyze 

correlations between pixel values in individual channels, i.e., H, S, and V. In each 

channel, a gray-level co-occurrence matrix (GLCM) [20] of second-order statistics 

describes the joint frequencies of pair-wise combinations. By scanning each pixel and 125 

its adjacent pixels, co-occurrence matrices P=[p(i,j|d,θ)] are constructed to show 

frequencies of two adjacent pixels at distance d and direction θ. Gray-scale pixel values 

are i and j, respectively. In practice, distance d=1 and four offset directions, θ=0°, 45°, 

90°, and 135°, were used in the experiment (Fig. 3). For rotation invariance, these four 

directions were combined into a single matrix, and the statistics listed below are the 14 130 

GLCM textural features: 

Autocorrelation = ∑ ∑
(𝑝𝑥 − 𝜇𝑥)(𝑝𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
⁄𝑗𝑖 ; (1) 

Contrast = ∑ 𝑛2𝑛 {∑ ∑ 𝑝𝑗 (𝑖, 𝑗)𝑖 }, |𝑖 − 𝑗| = 𝑛; (2) 

Correlation = 
∑ ∑ (𝑖−𝜇𝑥)(𝑗−𝜇𝑦)𝑝(𝑖,𝑗)𝑗𝑖

𝜎𝑥𝜎𝑦
; (3) 

Cluster prominence = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4
𝑝(𝑖, 𝑗)𝑗𝑖 ; (4) 

Cluster shading = ∑ ∑ (𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3
𝑝(𝑖, 𝑗)𝑗𝑖 ; (5) 
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Dissimilarity = ∑ ∑ 𝑝(𝑖, 𝑗)|𝑖 − 𝑗|𝑗𝑖 ; (6) 

Energy = ∑ ∑ 𝑝(𝑖, 𝑗)2𝑗𝑖 ; (7) 

Entropy = −∑ ∑ 𝑝(𝑖, 𝑗)log⁡(𝑝(𝑖, 𝑗))𝑗𝑖 ; (8) 

Homogeneity = −∑ ∑
1

1+𝑖−𝑗
𝑝(𝑖, 𝑗)𝑗𝑖 ; (9) 

Difference variance = ∑ 𝑖2𝑝𝑥−𝑦(𝑖)𝑖 ; (10) 

Difference entropy = −∑ 𝑝𝑥+𝑦(𝑖)log⁡(𝑝𝑥+𝑦(𝑖))𝑖 ; (11) 

Information measure of correlation 

= 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋,𝐻𝑌}
 

𝐻𝑋𝑌 = (8), 

𝐻𝑋𝑌1

= −∑∑𝑝(𝑖, 𝑗)log⁡(𝑝𝑥(𝑖)𝑝𝑦(𝑗))

𝑗𝑖

 

𝐻𝑋 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑜𝑓𝑝𝑥 , 

𝐻𝑌 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑜𝑓𝑝𝑦; 

(12) 

Inverse difference normalized = ∑ ∑
1

1+|𝑖−𝑗|
𝑝(𝑖, 𝑗)𝑗𝑖 ; and (13) 

Inverse difference moment = ∑ ∑
1

1+(𝑖−𝑗)2
𝑝(𝑖, 𝑗)𝑗𝑖 ; (14) 

where μx, μy, σx, and σy are the means and standard deviations of the distributions of 

p(i,j|d,θ): 
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𝜇𝑥 = ∑ 𝑖 ∑ 𝑝(𝑖, 𝑗), 𝜇𝑦 = ∑ 𝑗∑ 𝑝(𝑖, 𝑗)𝑖𝑗𝑗𝑖  and 

 

(15) 

𝜎𝑥
2 = ∑ (𝑖 − 𝑢𝑥)

2
𝑖 ∑ 𝑝(𝑖, 𝑗),𝑗 𝜎𝑦

2 = ∑ (𝑗 − 𝑢𝑦)
2

𝑗 ∑ 𝑝(𝑖, 𝑗)𝑖 . 

(16) 

 

 

Statistical analysis 135 

Multichannel features were evaluated if they were statistically significant in 

distinguishing malignant types. This study first used the Kolmogorov-Smirnov test [21] 

to determine if the features were normally distributed. According to the determined 

normal or non-normal distribution, the corresponding Student’s t-test [21] and Mann-

Whitney U-test [21] were used to test features. Results showed a statistically significant 140 

difference between malignant types for features with a p value of <0.05. In the 

construction stage of the prediction model, textural features extracted from the HSV 

channels were grouped. Utilizing backward elimination in the binary logistic regression 

model [22], only one feature was eliminated each time. The feature with a minimum 

predictive residual error sum of squares was the one eliminated. 145 

In the training stage, the most relevant subset features for tumor diagnosis have 

the lowest error rates. Next, the leave-one-out cross-validation method [23, 24] 

validated the performance. Leave-one-out cross-validation is a kind of k-fold cross-
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validation where k equals the number of collected cases. In each iteration, k-1 are 

used for training and the model is then tested on the remaining observation. The 150 

estimate of the accuracy is considered to be almost unbiased but it may have high 

variance. The cross-validation method is widely used when the collected cases are 

rare. Ground truthing of the classifier was biopsy-proven lesion types. After the logistic 

regression, each tumor was given a predicted malignancy probability based on its 

features. Tumor types were classified according to a probability threshold. 155 

Consequently, five performance indices including the accuracy, sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) were obtained. 

The Chi-squared test in SPSS software (vers. 16 for Windows; SPSS, Chicago, IL, USA) 

judged the performance difference between the two feature sets. The receiver operating 

characteristic (ROC) curve presented trade-offs between sensitivity and specificity. Az, 160 

the area under a ROC curve, was tested by a bivariate Chi-squared test in ROCKIT 

software (C. Metz, University of Chicago, Chicago, IL, USA). 

 

Results 

This study proposed using HSV color space to extract textural features to 165 

distinguish malignant types in autofluorescent bronchoscopic images. In the 

experiment, the performances of HSV features and the RGB features were 
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compared to demonstrate the equipped color information of HSV. A total of 42 

features were calculated (14 for each channel). Among them, two HSV features 

including the information measure of the correlation in the S channel and 170 

correlation in the V channel had significant p values of <0.05 as shown in Table 1. 

Only these two features were then combined in the classifier to establish the 

prediction model with an accuracy of 83% (19/23), a sensitivity of 73% (8/11), a 

specificity of 92% (11/12), and Az=0.82. For RGB features, the information 

measure of the correlation in the R and G were significant (Table 2). Combining 175 

the features achieved an accuracy of 57% (13/23), a sensitivity of 73% (8/11), a 

specificity of 42% (5/12), and Az=0.67. In the comparison, the HSV features have 

significantly better specificity (p-value=0.0094) than RGB features. Among 12 AC 

cases, only one was misclassified with a probability of 90% (cases having probabilities 

of >50% were regarded as being SCC). The trade-offs between sensitivity and 180 

specificity were shown in ROC curves as Fig. 4. Illustrations of two misclassified cases 

are shown in Fig. 5a (misclassified AC) and 5c (misclassified SCC).  

 

Discussion 

AFI can provide early detection of endobronchial lesions, but there is no previous 185 

study concerning the use of AFI to differentiate the pathological classification. In this 



 

12 

 

study, we used a CAD with a new algorithm to make diagnoses of different pathological 

types from AFI data. In clinical interpretations, this method might save time for 

subsequent pathological diagnoses. 

 Compared to traditional WLB, AFI had better sensitivity and specificity to detect 190 

early endobronchial lesions. However, classifying carcinoma in situ and subtypes 

highly depends on a histological examination of biopsy specimens, which are only a 

portion of the abnormal tissues. To present a more-complete assessment of malignant 

types, the CAD system was proposed based on color textural features in AFI. In addition, 

inter-observer variabilities among different observers can be reduced via the use of the 195 

CAD system. In the experiment, using GLCM textural features from HSV-transformed 

images, the CAD system achieved an accuracy of 83% (19/23), a sensitivity of 73% 

(8/11), and a specificity of 92% (11/12) which was better than RGB features. Similar 

to the human perception of color, the HSV model separates the luminance 

component (V) of a color from its chrominance components (H and S). Hue is the 200 

color type and Saturation refers to the intensity of specific hue. HSV has been 

widely used in natural image processing including segmentation, clustering, and 

feature generation. Sural et al. used HSV to develop a framework for features used 

in image segmentation and color histogram generation, the two important 

approaches to content based image retrieval [25]. In the medicine use, HSV is also 205 
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more useful for the definition of existing trauma colors than RGB [26]. 

Additionally, using HSV in the segmentation on digital microscope images for 

acute lymphoblastic leukemia achieved accuracy over 99% [27]. In our result, 

utilizing the more intuitive HSV features, the diagnostic interpretation with regard 

to tumor characteristics in AFI can be better described and thus induce better 210 

performance. 

AFI is a novel modality in hospitals thus this preliminary study is the first 

study exploring using image processing and logistic regression classifier to 

establish a prediction model. Only malignant lung cancers were enrolled in the 

discrimination also limit the cohort size. Due to the limited data available in the 215 

experiment, no substantial number of patients can be a subset (training set) used 

to tune the classifier and also the other subset for validation. Instead, this 

preliminary study used leave-one-out cross-validation to evaluate the proposed 

CAD system. The generalization ability should be further confirmed after 

applying it to a sufficient number of patients in the future experiment. 220 

Compared to a previous CAD system which was applied to classify normal mucosa 

and tumors using WLB [18], this study achieved a similar accuracy (83% vs. 80%). The 

difference is that this study used HSV textures in AFI to classify different malignant 

types. Although the number of collected image cases was limited, distinguishing 
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malignant types is more challenging. With respect to misclassified cases, the reason for 225 

misclassifying the AC in Fig. 5a may have been the insignificant size of the tumor area. 

Because of the image resolution, restricted exhibition of tissue details in the tumor area 

provided incomplete diagnostic information. In Fig. 5b, the lesion occurred close to the 

boundary of the image. Similarly, the lack of a complete tumor area may have induced 

an incorrect diagnosis. In future studies, automatic lesion detection can be integrated 230 

into the proposed CAD system for both lesion detection and diagnosis. The system can 

provide a way to simultaneously alert users as to where a lesion is and to which type it 

belongs. 

 

Conclusions 235 

This study proposed a CAD system based on image features extracted from 

autofluorescent bronchoscopic images to achieve a diagnostic accuracy of 83% in 

classifying lung cancer types. This preliminary study provides a method of using 

HSV textures for malignant tissue characterization.  

 240 
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Figure Captions 

Fig. 1. Examples of (a) an adenocarcinoma and (b) a squamous cell carcinoma shown 

in autofluorescent bronchoscopy. 335 

Fig. 2. The HSV color space is composed of hue (H), saturation (S), and value (V) 

channels. 

Fig. 3. Spatial correlations between neighboring pixels were analyzed in four directions: 

0°, 45°, 90°, and 135° at distance=1. 

Fig. 4. Performance comparisons between HSV and RGB features using receiver 340 

operating characteristic (ROC) curves. 

Fig. 5. A misclassified (a) adenocarcinoma and (c) squamous cell carcinoma in 

autofluorescent bronchoscopy and the respective corresponding delineated tumor 

areas (b) and (d). 

  345 
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Table 1. Significant HSV textural features and corresponding p values evaluated using 

Student’s t-test 

Feature AC SCC p value 

Mean±SD Mean±SD 

Information measure of correlation (S) -0.854±0.015 -0.821±0.039 <0.05* 

Correlation (V) 0.984±0.003 0.976±0.013 <0.05* 

* A p value of <0.05 indicates a statistically significant difference. 

AC, adenocarcinoma; SCC, squamous cell carcinoma; S, saturation; V, value; SD, 

standard deviation. 350 

 

Table 2. Significant RGB textural features and corresponding p values evaluated 

using Student’s t-test 

Feature AC SCC p value 

Mean±SD Mean±SD 

Information measure of correlation (R) -0.866±0.017 -0.839±0.036 <0.05* 

Information measure of correlation (G) -0.845±0.037 -0.791±0.047 <0.05* 

* A p value of <0.05 indicates a statistically significant difference. 

AC, adenocarcinoma; SCC, squamous cell carcinoma; R, Red; G, Green; SD, 355 

standard deviation. 

 

Table 3. Performance comparisons between HSV and RGB textural features in 

classifying lung cancer types. 

 HSV RGB HSV vs. RGB 

(p value) 

Accuracy  83% (19/23) 57% (13/23) 0.0545 

Sensitivity  73% (8/11) 73% (8/11) 1.0000 
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Specificity  92% (11/12) 42% (5/12) 0.0094* 

Az 0.82 0.67 0.0715 

* p<0.05 indicates a statistically significant difference. 360 


