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Abstract 
 

Background: A computer-aided diagnosis (CAD) system based on intensity-invariant 

magnetic resonance (MR) imaging features was proposed to grade gliomas for general 

application to various scanning systems and settings. 

Method: In total, 34 glioblastomas and 73 lower-grade gliomas comprised the image 

database to evaluate the proposed CAD system. For each case, the local texture on MR 

images was transformed into a local binary pattern (LBP) which was intensity-invariant. 

From the LBP, quantitative image features, including the histogram moment and textures, 

were extracted and combined in a logistic regression classifier to establish a malignancy 

prediction model. The performance was compared to conventional texture features to 

demonstrate the improvement. 

Results: The performance of the CAD system based on LBP features achieved an accuracy 

of 93% (100/107), a sensitivity of 97% (33/34), a negative predictive value of 99% (67/68), 

and an area under the receiver operating characteristic curve (Az) of 0.94, which were 

significantly better than the conventional texture features: an accuracy of 84% (90/107), a 

sensitivity of 76% (26/34), a negative predictive value of 89% (64/72), and an Az of 0.89 

with respective p values of 0.0303, 0.0122, 0.0201, and 0.0334. 

Conclusions: More-robust texture features were extracted from MR images and combined 

into a significantly better CAD system for distinguishing glioblastomas from lower-grade 

gliomas. The proposed CAD system would be more practical in clinical use with various 

imaging systems and settings. 
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Introduction 

According to the World Health Organization tumor classification of the central 

nervous system (CNS), diffuse gliomas can be subdivided into grades II (low malignancy) 

to IV (high malignancy) according to their degree of malignancy [1, 2]. Grade II and III 

tumors are lower-grade gliomas (LGGs) with more-favorable outcomes [3]. Although there 

are several different subgroups among them, they still share many common 

histopathological and molecular signatures [2, 4]. In contrast, glioblastomas (GBMs) are 

the most malignant tumor type with a dismal prognosis despite advances in different 

therapeutic managements [5]. Conventionally, several pathological features, including 

mitotic activity, cytological atypia, neoangiogenesis, and tumor necrosis, are used to 

determine tumor grades. However, some of the criteria are not precise enough to prevent 

ambiguity in glioma grading [6, 7]. In addition, misgrading was reported in up to 30% of 

cases of diffuse gliomas, which resulted from heterogeneous expressions of aggressive 

cellular features with unguided surgical biopsies [7-11]. 

Magnetic resonance (MR) imaging (MRI) is the imaging method of choice for 

depicting tumors of the CNS. It can provide clear tissue contrasts and help estimate the 

malignancy of brain tumors [12-14]. In addition to conventional sequences, several 

physiological MRI techniques including diffusion-weighted imaging, MR spectroscopy, 

and perfusion-weighted imaging, have also been applied to differentiate LGGs from GBMs 

[15-18]. To avoid unnecessary operations and to facilitate more-accurate grading of diffuse 

gliomas in the CNS, the role of MRI cannot be overemphasized. Ryu et al. [15] performed 

a texture analysis on the corresponding apparent diffusion coefficient maps of MR 

diffusion-weighted images. Diffusion-weighted imaging is an imaging technique that uses 
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diffusion of water molecules (Brownian motion) to generate signals. Therefore, it is not 

anatomical imaging, and several important pieces of information related to gliomas, such 

as tumor necrosis, the blood-tumor-barrier, and angiogenesis, cannot be depicted by it. 

Kinoshita et al. [14] presented correlations between T2-weighted images and the genetic 

status of LGGs. However, biological features of glioma represented by T2-weighted 

images are limited and still underexplored. 

With the development of image-processing techniques, computer-aided diagnosis 

(CAD) systems were proposed to quantify tumor characteristics on MR images and 

combine them with artificial intelligence classifiers. Then, CAD systems can estimate 

tumor types and grades [19-21] by means of a probability model. The efficient procedures 

and consistent results can provide reliable suggestions to radiologists. Errors due to 

overlooking certain aspects may be reduced during clinical examinations. However, most 

textural features used in distinguishing tissue differences are based on gray-scale pixel 

values on MR images [22]. In practical use, different MRI systems and settings generate 

images with various brightness distributions. Intensity variations affect texture analyses 

and result in different performances [21]. A previous study used multiple feature sets 

together to distinguish tumor types of glioblastomas [23]. Rather than using numerous 

features, this study proposed extracting textural features after intensity-invariant 

transformation to strengthen the ability to distinguish textural features. A local binary 

pattern (LBP) [24] was proposed to transform inherent gray-scale pixel values into binary 

values according to the local textural composition. The transformed LBP map takes relative 

correlations between adjacent pixels into consideration and therefore becomes intensity-

invariant. The transformed textural features extracted from the LBP map can then be 
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compared to original textural features to show the improvement and the promising use in 

clinical examinations with various MRI systems and settings. 

 

Materials and Methods 

Patient information 

The Cancer Genome Atlas (TCGA) and the Cancer Imaging Archive (TCIA) 

The collected MRI datasets, including 34 GBM and 73 LGG patients, were from 

TCIA (http://cancerimagingarchive.net/) of the National Cancer Institute, a portal 

containing images of TCGA patients for image analysis. The materials and data provided 

by TCGA were used in compliance with all applicable laws, regulations, and policies for 

the protection of human subjects. All necessary approvals, authorizations, human subject 

assurances, informed consent documents, and approvals of institutional review boards were 

obtained [25]. All MR images used in this study were provided from three institutes: Henry 

Ford Hospital, Case Western Hospital, and Thomas Jefferson University Hospital. 

In total, 34 GBMs (grade IV) and 73 LGGs (grades II and III) were included in the 

study. For LGGs, 33 oligodendrogliomas, 16 oligoastrocytomas, and 24 astrocytomas were 

included. Nineteen oligodendrogliomas were classified as grade II, and 14 cases were 

classified as grade III. Seven cases of oligoastrocytoma were classified as grade II, and 

nine cases were classified as grade III. For astrocytomas, four cases were classified as grade 

II, and 20 cases were classified as grade III. As a result, we had totals of 30 grade II and 

43 grade III gliomas in the LGG group. More-detailed demographic features of the LGG 

and GBM groups are given in table 1. 

 

http://cancerimagingarchive.net/
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Image analysis 

Contrast-enhanced axial T1-weighted images were selected for analysis in this study. 

A board-certified neuroradiologist (K.H., with 12 years of experience), who was blinded 

to the clinical and histopathological information, selected the most representative 2D image 

of each tumor. Contour delineation of tumors was then manually performed using OsiriX 

in the selected contrast-enhanced T1WI. Pixels inside the defined tumor area were used for 

further feature analysis. 

 

LBP features 

Textural features are widely used in CAD systems to discriminate between benign and 

malignant tumors [26]. However, most texture analyses of image patterns based on the 

original gray-scale values are system-dependent [21]. The classification can only perform 

well when a specific scanning system is used. Different MRI scanning systems have 

various settings which may result in images with different brightness compositions. The 

brightness variability influences the reliability of textures interpreted by the gray-scales. It 

was not surprising that the 34 GBMs and 73 LGGs used in this experiment had various 

gray-scale distributions in image brightness (Fig. 1), because they were collected from 

three institutes: Henry Ford, Thomas Jefferson University, and Case Western Hospitals. To 

extract more-robust textural features, LBP transformation [24] was performed prior to 

texture extraction in the experiment. 

Because medical images or natural images may have various intensity distributions 

due to various illuminance or machine settings, the brightness variability thus influences 

the reliability of textures interpreted by the gray-scales. LBP is an efficient operator to 
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describe local image patterns. The 1st order derivative between the central and its 

neighboring pixels is transformed as a binary representation. Depending on the 

computational efficiency, various textural features can be obtained in real-time for clinical 

diagnoses. This is the advantage of LBP compared to other methods such as the Gabor 

filter and wavelet transformation [27]. The LBP algorithm uses local contrast for an 

intensity-invariant transformation. That is, regardless of the kind of resolution an image 

has, as long as contrast (the difference between adjacent pixels) exists, a relative correlation 

can be calculated. Therefore, LBP is appropriate for application to images for intensity-

invariant features. In the LBP transformation, an image pattern is defined in a local 3×3 

mask with gray-scales of nine image pixels. To achieve invariance with respect to shifts in 

brightness, the processed pixel (central) is compared to the eight surrounding neighbors by 

subtraction (Fig. 2). If a neighbor pixel is greater than the central pixel, one is assigned. 

Otherwise, a zero value is assigned. Consequently, the neighborhoods are thresholded by 

the central pixel value into a binary pattern. Signed differences rather than the original 

gray-scale are not influenced by shifts in brightness and therefore are intensity-invariant. 

Assigning different weights to neighbors with different orientations generates a 

representative value indicating different binary patterns using the following formula: 

LBP = ∑ 𝐶 × 2𝑖−18
𝑖=1 ;   (1) 

where C is the comparison result (1/0) between the central pixel and neighboring 

pixels, and i corresponds to the orientation in Fig. 2. After the LBP transformation, the 

resulting image (Fig. 3) is regarded as intensity-invariant. Therefore, extracting image 

features from it can be variation resistant. 
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LBP intensities inside the tumor area are regarded as a probability function and are 

shown as a histogram. The histogram moment [28, 29] was then used to characterize the 

histogram shape for comparisons between LGGs and GBMs. The quantitative moment 

features included the first, second, third, and fourth order central moments of the histogram, 

i.e., the mean, variance, skewness, and kurtosis: 

Mean =
1

𝑁
∑ 𝑃𝑖
𝑁
𝑖=1 ,     (2) 

Variance =
1

𝑁
∑ (𝑃𝑖 −𝑀𝑒𝑎𝑛 )2𝑁
𝑖=1 ,    (3) 

Skewness =
1

𝑁
∑ (𝑃𝑖 −𝑀𝑒𝑎𝑛 )3𝑁
𝑖=1 , and    (4) 

Kurtosis =
1

𝑁
∑ (𝑃𝑖 −𝑀𝑒𝑎𝑛 )4𝑁
𝑖=1 ,     (5) 

where Pi is the intensity value, and N is the number of pixels. The mean is the distribution 

center obtained by summarizing all intensities and dividing the sum by the number of pixels. 

Variance measures the level of spread of the intensity values, while skewness calculates 

the symmetricity of a distribution to determine whether it is biased to one side. Kurtosis is 

a metric describing a single-peak shape with heavy weight in the tails by comparison to a 

normal distribution. In addition to moment features, textural features describing 

correlations between adjacent pixel values were also extracted from the LBP for tumor 

characterization. The textures based on the gray-level co-occurrence matrix (GLCM) are 

described below. 

 

GLCM Textures 

Various CAD systems have used GLCM textures to describe image patterns for 

tumor classification. The matrix formulates co-occurrence frequencies of two adjacent 

pixels (i and j) to present correlations at different distances, d, and directions, θ [30, 31].  
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Establishing a matrix from an image G with reduced intensity bins reduces the 

computational complexity. In the experiment, a distance d=1 and four directions of θ=0°, 

45°, 90°, and 135° were used to take all combinations together into consideration. Co-

occurrence in the GLCM indicates whether two adjacent pixels have a correlation between 

them. Consequently, four directions are enough to express all conditions. For example, 0° 

of a pixel can be regarded as 180° of the other pixel. The following formulas are the GLCM 

textural features proposed in this study: 

Autocorrelation = ∑∑
(𝑝𝑥 − 𝜇𝑥)(𝑝𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
⁄

𝑗𝑖

 (6) 

Contrast = ∑𝑛2

𝑛

{∑∑𝑝

𝑗

(𝑖, 𝑗)

𝑖

} , |𝑖 − 𝑗| = 𝑛 (7) 

Correlation = 
∑ ∑ (𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑝(𝑖, 𝑗)𝑗𝑖

𝜎𝑥𝜎𝑦
 (8) 

Cluster prominence = ∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4
𝑝(𝑖, 𝑗)

𝑗𝑖

 (9) 

Cluster shade = ∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3
𝑝(𝑖, 𝑗)

𝑗𝑖

 (10) 

Dissimilarity = ∑∑𝑝(𝑖, 𝑗)|𝑖 − 𝑗|

𝑗𝑖

 (11) 

Energy = ∑∑𝑝(𝑖, 𝑗)2

𝑗𝑖

 (12) 

Entropy = −∑∑𝑝(𝑖, 𝑗)log⁡(𝑝(𝑖, 𝑗))

𝑗𝑖

 (13) 

Homogeneity = −∑∑
1

1 + 𝑖 − 𝑗
𝑝(𝑖, 𝑗)

𝑗𝑖

 (14) 

Difference variance = ∑𝑖2𝑝𝑥−𝑦(𝑖)

𝑖

 (15) 

Difference entropy = −∑𝑝𝑥+𝑦(𝑖)log⁡(𝑝𝑥+𝑦(𝑖))

𝑖

 (16) 

Information measure of correlation = 

𝐻𝑋𝑌 −𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋,𝐻𝑌}
 

𝐻𝑋𝑌 = (8), 
𝐻𝑋𝑌1

= −∑∑𝑝(𝑖, 𝑗)log⁡(𝑝𝑥(𝑖)𝑝𝑦(𝑗))

𝑗𝑖

 

𝐻𝑋 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦⁡𝑜𝑓⁡𝑝𝑥 , 

(17) 
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𝐻𝑌 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦⁡𝑜𝑓⁡𝑝𝑦 

Inverse difference normalized = ∑∑
1

1 + |𝑖 − 𝑗|
𝑝(𝑖, 𝑗)

𝑗𝑖

 (18) 

Inverse difference moment = ∑∑
1

1+ (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑗𝑖

 (19) 

where μx, μy, σx and σy are the mean and standard deviation (SD) of the marginal 

distributions of p(i,j|d,θ). 

𝜇𝑥 =∑𝑖∑𝑝(𝑖, 𝑗), 𝜇𝑦 =∑𝑗∑𝑝(𝑖, 𝑗)

𝑖𝑗𝑗𝑖

 

 

(20) 

𝜎𝑥
2 =∑(𝑖 − 𝑢𝑥)

2

𝑖

∑𝑝(𝑖, 𝑗),

𝑗

𝜎𝑦
2 =∑(𝑗 − 𝑢𝑦)

2

𝑗

∑𝑝(𝑖, 𝑗)

𝑖

 (21) 

 

Statistical analysis 

The proposed LBP features were individually tested to verify whether they could be 

used to distinguish between LGG and GBM tumors. The Kolmogorov-Smirnov test [32] 

was first used to determine their normalities. Student’s t-test [32] was then used to evaluate 

features with normal distributions, while others were evaluated by the Mann-Whitney U-

test [32]. Significant features were those with p values of < 0.05. 

With respect to the ability to combine LBP features, a binary logistic regression was 

used as the classifier. Taking the biopsy-proven pathology as the gold standard, backward 

elimination evaluated the relevance of features so that redundant features could be excluded. 

Feature selection ceased when the smallest error rate was achieved. The generalizability of 

the selected features was validated via leave-one-out [32]. In each validation iteration, one 

case was picked from the acquired cases and used to test the trained model based on the 

remaining n-1 cases. After classification, each case was given a probability as the 

likelihood of being a GBM. A case with a probability of ≥ 0.5 was considered to be a GBM 

in the experiment. 
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Performances of LBP features were compared to conventional GLCM features on 

five performance indices: accuracy, sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV). With different thresholds, the corresponding 

sensitivities and specificities were calculated and illustrated using a receiver operating 

characteristic (ROC) curve. Az, the area under the ROC curve, was calculated to evaluate 

the overall performance using ROCKIT software (C. Metz, University of Chicago, Chicago, 

IL, USA). A Chi-squared test in SPSS software (vers. 16 for Windows; SPSS, Chicago, IL, 

USA) was used to compare performance indices. 

 

Results 

Table 2 shows the significant LBP features tested by either Student’s t-test (with a 

normal distribution) or the Mann-Whitney U-test (with a non-normal distribution) and the 

corresponding p values.  After combining relevant features in a classifier, the performance 

of LBP features achieved an accuracy of 93% (100/107), a sensitivity of 97% (33/34), a 

specificity of 92% (67/73), and an Az of 0.94. All performance indices were better than 

conventional GLCM features (Table 3). The performance results were generated by the 

logistic regression classifier after feature selection using backward elimination. In 

particular, differences in accuracy, sensitivity, NPV, and Az were statistically significant 

(all p values < 0.05). A comparison of ROC curves is illustrated in Fig. 4. Especially for 

sensitivity, eight GBMs misclassified by conventional GLCM features were correctly 

classified by LBP features. Taking the grade 4 case in Fig. 1d as an example, using LBP 

features, the malignancy estimation improved from 2% to 100%. 

 



 

 

13 

 

Discussion 

A biopsy is the gold standard of clinical cancer diagnoses. However, the invasive 

procedure is not appropriate for some kinds of tumors such as brain tumors. Up to 30% of 

diffuse gliomas can be misgraded, which is caused by the heterogeneous composition of 

aggressive cellular tissues. To avoid unnecessary operations and provide more-accurate 

grading of diffuse gliomas, the role of MR images cannot be depreciated. The gray-scale 

brightness and contrast of image pixels are helpful in distinguishing different tissues and 

estimating the malignancy of brain tumors. The assistance provided by CAD systems can 

also improve the accuracy and efficiency of diagnoses. However, textural features which 

are widely used in CAD systems are easily affected by brightness variations caused by 

imaging parameters. 

Previously, after LBP transformation, texture descriptors were used to describe 

images of brain MR volumes for an image retrieval system [33]. LBP features are also used 

to represent salient micro-patterns in mammographic mass detection [34]. Rather than 

using LBP descriptors introduced in the previous literature, this study extracted GLCM 

features from LBP-transformed images and compared them to pure GLCM features. The 

results showed that LBP transformation is useful in combination with other texture 

calculation to extract intensity-invariant features. The LBP transformation uses relative 

differences between a pixel and its adjacent neighbors. Therefore, the local texture of MR 

images can be expressed in an intensity-invariant form. Quantitative image features, 

including the histogram moment and textures, were then extracted from the LBP to reduce 

intensity variations caused by different scanning settings. As shown in Table 2, nine 

features obtained a statistically significant difference in distinguishing LGGs and GBMs. 
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Benefitting from the complementary power of various features, the prediction model 

established by the logistic regression classifier achieved an accuracy of 93% (100/107) and 

an Az of 0.94, which were both significantly better than conventional features (an accuracy 

of 84% (90/107) and an Az of 0.89) with respective p values of 0.0303 and 0.0334 (Table 

3). The previous literature showed that a CAD system based on intensity histograms and 

GLCM features obtained accuracies of 87%~89% in classifying different types of brain 

tumors [23] from two hospitals. In this study, the accuracy of conventional GLCM features 

achieved an accuracy of 84% which is close to that reported in the previous literature. 

However, the collected database was from three hospitals with various MRI systems and 

settings as shown in Table 4, and thus would be a greater challenge to classify. 

By means of an LBP transformation, LBP features improved the accuracy from 84% 

to 93%. This improvement was significant (p = 0.0303) and can deal with various 

combinations of settings for generating images. To the best of our knowledge, this is the 

first study using LBPs for glioma grading. Results in the previous literature [23] using 

multiple MRI textural features for tumor extents in glioblastoma were compared to that of 

the proposed method as shown in Table 5. The success of the LBP may be due to its 

methodology using relative pixel value differences rather than absolute pixel values. This 

behavior imitates what radiologists do on clinical examinations. Each time, a radiologist 

only focuses on one image without considering other cases, thus the observation depends 

on the relative presentation of image pixels in the tumor area. Whether CAD systems can 

be practically applied to clinical use, their diagnostic performances as verified by cases 

from multiple sources such as multiple centers are relevant and need to be considered. 
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A previous study used multiple feature sets together to distinguish brain tumor types 

[23]. Time-consuming computations were involved, and the dimensions of the feature 

space needed to be further reduced. This study proposed a more-efficient way to enhance 

features. LBP transformation was proposed to enhance relative correlations between 

adjacent pixels to became intensity-invariant. The texture features extracted with LBPs 

were then strengthened to achieve an accuracy of 93% with a limited number of 107 cases. 

Intensity variations that exist between images obtained from different scan settings 

can thus be reduced via the LBP transformation, and textural features thus had a better 

performance. The limitation of the experiment is that too many different settings existed 

among images obtained from the three hospitals. We can only verify the effect of individual 

settings on textures in future experiments. Another aspect for a future study is that more-

complete MR sequences would be helpful in predicting tumor grades. This study only used 

contrast-enhanced T1WIs which have a weakness of peritumoral edema not possibly being 

clearly demonstrated. However, necrosis and/or angiogenesis are key histopathological 

determinants for differentiating grade II and III from grade IV gliomas. Necrosis is an area 

of a unenhanced region within the tumor with a signal resembling that of cerebrospinal 

fluid and can always be clearly depicted in contrast-enhanced T1WIs [13]. In addition, the 

activity of the angiogenesis module within the tumor was proven to be associated with the 

degree of contrast enhancement [35, 36]. Therefore, we believe that measurements of 

signal intensities on contrast-enhanced T1-weighted images can be key determinants for 

differentiating GBMs from LGGs. However, further investigations of the role of other MRI 

sequences like fluid-attenuated inversion recovery, diffusion-weighted imaging, perfusion-

weighted imaging, and MR spectroscopy are warranted. Also, whether LBPs can be 



 

 

16 

 

successfully applied to these images to obtain intensity-invariant textural features needs to 

be explored. The methods of MR image reconstruction would also be helpful in extracting 

more quantitative features from the three-dimensional volume for subsequent classification. 

 

Conclusions 

The LBP was introduced in this study to transform local textures in MR images into 

intensity-invariant ones. Compared to directly extracting textural features, features 

extracted with the LBP achieved a significantly improved accuracy from 84% to 93% in 

distinguishing LGGs and GBMs. Further validation of the proposed malignancy estimation 

model based on LBP features in different clinical cohorts is warranted. 
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Figure Captions 

Fig. 1. Collected low-grade gliomas (a, b) and glioblastomas (c, d) with various gray-scale 

distributions in image brightness. (http://cancerimagingarchive.net/ - "License", the 

CC BY license (https://creativecommons.org/licenses/by/3.0/). 

Fig. 2. A local binary pattern (LBP) was created by making comparisons between the 

processed pixel and its adjacent neighbors. 

Fig. 3.  Local binary pattern (LBP) transformation of (a) the tumor area in Fig. 1a and (b) 

the corresponding LBP. (http://cancerimagingarchive.net/ - "License" and the CC BY 

license (https://creativecommons.org/licenses/by/3.0/, tumor areas in this figure were 

extracted from original images). 

Fig. 4. Comparison of receiver operating characteristic (ROC) curves illustrating trade-offs 

between the sensitivity and specificity of local binary pattern (LBP) features and 

conventional gray-level co-occurrence matrix (GLCM) features. 

  

http://cancerimagingarchive.net/
https://creativecommons.org/licenses/by/3.0/
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https://creativecommons.org/licenses/by/3.0/


 

 

24 

 

Table 1. Demographic features of low-grade glioma (LGG) and glioblastoma GBM) 

groups 

 Age (years) Gender 
Tumor 

laterality 

Tumor  

location 

Histopathological 

subtypes 

LGG 46.9 ± 12.7 
Female: 44 

Male: 39 

Right: 43 

Midline: 1 

Left: 39 

Frontal: 41 

Temporal: 25 

Parietal: 7 

Oligodendrogliomas: 

33 

Oligoastrocytomas: 16  

Astrocytomas: 24 

GBM 64.2 ± 12.4 
Female: 14 

Male: 20 

Right: 19 

Left: 15 

Frontal: 12 

Temporal: 15 

Parietal: 4 

Occipital: 3 

All GBMs 

 

 

Table 2. Significant image features obtained from local binary pattern (LBP) 

transformation and corresponding p values generated by Student’s t-test 

(normal distribution) or the Mann-Whitney U-test (non-normal distribution) 

Feature Low-grade gliomas Glioblastomas p value 

Mean±SD Median Mean±SD Median 

Autocorrelation 1.61±0.42  1.43±0.28  < 0.05* 

Correlation  0.84  0.71 < 0.001* 

Cluster prominence 262.69±168

.19 

 177.06±111

.74 

 < 0.01* 

Cluster shade 21.31±13.8

1 

 14.84±9.43  < 0.01* 

Information 

measure of 

correlation 

-0.58±0.07  -0.50±0.04  < 0.001* 
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Mean  11.24  3.87 < 0.001* 

Variance  780.30  81.31 < 0.001* 

Skewness  3.24  4.14 < 0.01* 

Kurtosis  15.60  28.19 < 0.01* 

* A p value of < 0.05 indicates a statistically significant difference. 

 

Table 3. Performance comparisons between local binary pattern (LBP) features and 

conventional gray-level co-occurrence matrix (GLCM) features in 

distinguishing between low-grade gliomas and glioblastomas 

 LBP GLCM p value 

Accuracy  93% (100/107 84% (90/107) 0.0303* 

Sensitivity  97% (33/34) 76% (26/34) 0.0122* 

Specificity  92% (67/73) 88% (64/73) 0.4135 

PPV 85% (33/39) 74% (26/35) 0.2698 

NPV 99% (67/68) 89% (64/72) 0.0201* 

Az 0.94 0.89 0.0334* 

* A p value of < 0.05 indicates a statistically significant difference. 

PPV, positive predictive value; NPV, negative predictive value; Az, area under the 

receiver operating characteristic curve. 

 

Table 4. Representative magnetic resonance imaging (MRI) systems and settings of the 

collected database from three hospitals 

 Henry Ford 

Hospital 

Case Western 

Hospital 

Thomas Jefferson 

University 

MRI system 
GE 

Signa HDxt 

Siemens 

Avanto 

Siemens 

Magnetom Vision 

Magnetic field 

strength (T) 
1.5 1.5 1.5 

TE (ms) 13 2.81 3.5 

TR (ms) 500 2160 7.6 
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Slice thickness (mm) 2.5 1 1.5 

Flip angle 90 15 15 

Field of view (mm) 240 250 280 

Matrix 256×192 256×256 512×256 

Contrast medium 
Gadolinium-based 

contrast medium 

Gadolinium-based 

contrast medium 

Gadolinium-based 

contrast medium 

 

Table 5. Performances of local binary pattern (LBP) and gray-level co-occurrence matrix 

(GLCM) features compared to those in the glioma-related literature 

 LBP GLCM L.S. Hu [23] 

Accuracy  93% 84% 85% 

Sensitivity  97% 76% 85% 

Specificity  92% 88% 85% 

PPV 85% 74% 82% 

NPV 99% 89% 88% 

PPV, positive predictive value; NPV, negative predictive value. 


