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Abstract 

The lifetime prevalence of shoulder pain approaches 70%, which is mostly 40 

attributable to rotator cuff lesions such as inflammation, calcific tendinitis, and tears. 

On clinical examination, shoulder ultrasound is recommended to detect lesions. 

However, inter-operator variability of diagnostic accuracy exists due to the operator’ 

experience and expertise. In this study, a computer-aided diagnosis (CAD) system was 

developed to assist ultrasound operators in diagnosing rotator cuff lesions and to 45 

improve practicality of ultrasound examination. The collected cases included 43 

inflammations, 30 calcific tendinitis, and 26 tears. For each case, the lesion area and 

texture features were extracted from the entire lesions and combined in a multinomial 

logistic regression classifier for lesion classification. The proposed CAD achieved an 

accuracy of 87.9%. The individual accuracy of this CAD system was 88.4% for 50 

inflammation, 83.3% for calcific tendinitis, and 92.3% for tear groups. The k value of 

Cohen’s Kappa was 0.798. Based on diagnostic performance, this CAD has promise for 

clinical use. 

Keywords: Rotator cuff lesions, shoulder ultrasound, computer-aided diagnosis, 

texture 55 
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Introduction 

The prevalence of shoulder pain is high in many countries, and the lifetime 

prevalence of shoulder pain approaches 70% (Luime et al. 2004), only lower than lower 

back pain prevalence (84%) (Walker 2000). In America, shoulder pain costs the health 60 

care system 7 billion per year and is the cause of 13% of sick leave (Hidalgo-Lozano et 

al. 2010). Up to 70% of shoulder pain is attributed to rotator cuff lesions (Macfarlane 

et al. 1998; Mitchell et al. 2005). According to Neer’s classification system, lesions of 

the rotator cuff can be classified as inflammation, calcific tendinitis, and full or partial 

thickness tears. Inflammation is thickened, irregular, heteroechoic and loss of 65 

homogeneous texture with no signs of tears. Calcific tendinitis comes in several forms, 

and foci of hyperechoic micro-calcification without acoustic shadows are the common 

form. However, large foci of calcification may be soft or hard, solitary or lobulated 

(Beggs 2011). Soft calcification is fragmented and hyperechoic with a well-defined 

margin and with or without acoustic shadows. Hard calcification has a hyperechoic 70 

convex superficial contour, often with acoustic shadows (Beggs 2011). On ultrasound, 

supraspinatus tears appear as hypoechoic areas with irregular margins (Kurol et al. 1991; 

Allen and Wilson 2001; Vlychou et al. 2009). They could extend from the bursal to the 

articular surface as full-thickness tears or affect only a part of tendon thickness as the 

partial-thickness tears (Beggs 2011). 75 



 

3 

 

Patients with rotator cuff lesions have shoulder pain, positive impingement signs, 

limited forward elevation, weak abduction, and external rotation, which may cause 

difficulty in holding things. Rotator cuff tears, with an overall prevalence rate of 20.7%, 

are the most severe type, causing severe shoulder pain and impingement signs, limited 

forward elevation and weak abduction and external rotation. As the population ages, 80 

the prevalence rate of rotator cuff tears is expected to increase. 

In the treatment of rotator cuff tendinopathy, the status of rotator cuff integrity 

determines surgical intervention or conservative treatment. Clinical symptoms and 

physical examination are considered unreliable to diagnose rotator cuff lesions (Park et 

al. 2005) because the severity of the rotator cuff tendinopathy affects the diagnostic 85 

values of commonly used clinical tests. Additionally, considerable inter-observer 

variability exists between physicians (Beaudreuil et al. 2009). Consequently, clinical 

assessment relies on imaging modalities to evaluate the integrity of rotator cuff tendons 

(Murphy et al. 2013). Shoulder X-ray, ultrasound, magnetic resonance imaging and 

more specific arthrography are available imaging techniques for clinical examination 90 

(Shahabpour et al. 2008). The literature recommends shoulder ultrasound as a useful 

imaging tool to detect rotator cuff lesions (Allen and Wilson 2001; Middleton et al. 

2004; de Jesus et al. 2009) and full-thickness rotator cuff tears when performed by 

experienced musculoskeletal radiologists or shoulder orthopedic surgeons (Smith et al. 
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2011). The accuracy of ultrasound performed by experienced operators is comparable 95 

to that of magnetic resonance imaging (MRI) (Teefey et al. 2004; de Jesus et al. 2009). 

The diagnostic performance based on ultrasound is likely reduced upon examination by 

general radiologists and ultrasonographers as well as to identify partial-thickness 

rotator cuff tears and other intra-substance tendon abnormalities (Smith et al. 2011). To 

strengthen the clinical use of ultrasound, the inter-operator variability should be further 100 

reduced. 

Ultrasound is a useful diagnostic tool for shoulder disorders and as an initial 

imaging study for detecting rotator cuff lesions. The advantages of ultrasound to detect 

shoulder lesions are that it is quick, relatively inexpensive, easy to assess and with few 

contraindications (Beggs 2006). Most publications of shoulder ultrasound studies 105 

demonstrate the sensitivity and specificity of rotator cuff tears. The accuracy of 

shoulder ultrasound to detect partial and full rotator cuff tears has a sensitivity of 46% 

to 95% and a specificity of 50% to 97% (Mack et al. 1985; Brandt et al. 1989; Soble et 

al. 1989; Kurol et al. 1991; Wiener and Seitz 1993; van Holsbeeck et al. 1995; 

Alasaarela et al. 1998; Read and Perko 1998; Teefey et al. 2000; Roberts et al. 2001; 110 

Miller et al. 2008). Sensitivity and specificity for the assessment of full thickness rotator 

cuff tears are better than for partial-thickness rotator cuff tears (Middleton et al. 2004; 

Teefey et al. 2004; Smith et al. 2011).  The use of ultrasound for the assessment of 
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partial-thickness rotator cuff tears is controversial (Martin-Hervas et al. 2001; Mitchell 

et al. 2005; Moosmayer et al. 2007) and is an uncertain clinical issue. According to the 115 

literature reviews, the inter-observer agreement of rotator cuff lesions from shoulder 

ultrasound is only poor to moderate due to different operator professionals and 

experiences (Kamwendo et al. 1991; de Winter et al. 1999; O'Connor et al. 2005), which 

implies that additional diagnostic tools such as Computer-aided diagnosis (CAD) are 

needed for less experienced general and junior operators. 120 

CAD systems have been proposed to distinguish between benign and malignant 

lesions such as breast, prostate cancer (Joo et al. 2004; Doi 2005; Giger et al. 2008; 

Moon et al. 2012a; Lo et al. 2015a; Lo et al. 2015b) and the identification of carotid 

atherosclerosis (Bonanno et al. 2015). The advantages of CAD systems include 

quantitative attributes, efficiency, and consistency. After extracting the quantitative 125 

features from a lesion area, the complementary abilities of various features are 

combined in an artificial intelligence classifier to estimate the likelihood of a specific 

type of lesion. With the assistance of CAD, the diagnostic performance of seven 

radiologists in distinguishing between benign and malignant breast lesions was 

improved (Kashikura et al. 2013). However, few studies addressed the application of 130 

CAD in shoulder musculoskeletal ultrasound. One study used a fixed rectangular to 

enclose region of interest (ROI) for feature extraction which may not reveal the 
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properties of whole lesion tissue. (Horng and Chen 2009). 

The purpose of this study is to create a CAD system using shoulder 

musculoskeletal ultrasound to improve operators’ performance in diagnosing rotator 135 

cuff lesions. It could be the diagnostic tool to assist the general radiologists and 

ultrasonographers in shoulder musculoskeletal ultrasound and to improve practicality 

of shoulder ultrasound examination. Based on the success of CAD systems in 

interpreting ultrasound images, a CAD system based on shoulder ultrasound was 

proposed in this study to classify rotator cuff lesions as inflammation, calcific tendinitis, 140 

and thickness tears. Numerous textural features and lesion area were implemented in 

the experiment to diagnose rotator cuff lesions. To the best of our knowledge, this is 

the first study exploring the performance of quantitative features extracted from whole 

rotator cuff lesions in shoulder ultrasound for lesion classification. The results would 

be especially helpful to assist junior physicians in distinguishing lesions with similar 145 

properties on clinical examination. 

 

Materials and Methods 

Patients and data acquisition 

Institutional review board approval was obtained and informed consent was 150 

waived for this retrospective study. The database consisted of 99 shoulder ultrasound 
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images in 93 adult patients collected from January 2011 to February 2014. The 93 

patients consisted of 43 men and 50 women aged 31-89 years (mean age, 57.5 years).  

The shoulder ultrasound images in the collected database were generated using an 

ALOKA alpha-6 ultrasound scanner (Hitachi-Aloka Medical, Tokyo, Japan) with a 155 

linear array probe (scan width: 36 mm) ranging from 5 to 13 MHz. The settings of the 

ultrasound scanner, such as gain compensation, were consistent for all patients. During 

examination, the patients were in a standard sitting position and the routine of 

ultrasound examination was followed. After acquisition, the shoulder ultrasound 

images were removed from the scanner and stored as 8-bit images with pixel values 160 

ranging from 0 to 255. The lesion types were classified into three categories, including 

43 cases of tendon inflammation, 30 cases of calcific tendinitis, and 26 cases of 

supraspinatus tear. The diagnosis determined by the consensus of one shoulder 

orthopedic surgeon and one physical medicine and rehabilitation (PM&R) physician 

was used as the gold standard to evaluate the performance of the proposed CAD system. 165 

 

Contour delineation 

The proposed CAD was a semi-automatic procedure based on the input of 

manually delineated lesion contours. The lesion contours were manually delineated by 

a shoulder orthopedic surgeon using ImageJ, a medical image processing program 170 
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developed at the NIH by Wayne Rasband (http://rsb.info.nih.gov/ij/). The principle of 

the delineation procedure was to enclose the lesion area while avoiding the normal 

tendons. Fig. 1 shows the acquired ultrasound images and the delineation of lesion 

contours based on the sonographic appearance. The shoulder orthopedic surgeon 

involved in identifying the lesion contour and the one whose judgment formed the gold 175 

standard were one and the same. 

 

Feature extraction 

Using the sonographic appearance, the lesion contours that enclosed the specific 

tissue were obtained after the contour delineation. From the lesions, the lesion area and 180 

texture features were extracted to express tissue characteristics. The normal 

supraspinatus tendon is a convex beak-shaped hyperechoic structure in long-axis view 

(Petranova et al. 2012). The features of supraspinatus inflammation are heteroechoic 

and loss of homogeneous texture with no signs of tears. Foci of hyperechoic micro-

calcification without acoustic shadows are the common form of calcific tendinitis. 185 

However, large foci of hard calcification appear hyperechoic convex contour with 

acoustic shadows (Beggs 2011). Supraspinatus tears appear as hypoechoic areas with 

irregular margins (Kurol et al. 1991; Allen and Wilson 2001; Vlychou et al. 2009).  

According to the tissue characteristics mentioned in prior studies, the 
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morphological features widely used in CAD systems may not be useful in lesion 190 

classification because there is no rule of shape description for a specific lesion type.  

Morphology features in CAD systems focus on dealing with the form and structure of 

a lesion such as the outward appearance. Nevertheless, the lesion area is a basic property 

that can be combined with other features for classification. In the experiment, the 

number of pixels included in the delineated lesion was counted and used as an estimate 195 

of the lesion area. 

To quantify the echogenicities of different lesion types, the second-order statistics 

of ultrasound texture (Moon et al. 2012b) are proposed in this study as quantitative 

texture features. Second-order statistics describes the correlations between adjacent 

pixels in the lesion area. In ultrasound images, texture patterns are the combinations of 200 

tissue echogenicities expressed on a gray-scale. Consequently, analyzing the gray-scale 

co-occurrence matrices (GLCM) (Haralick et al. 1973) representing the correlations 

between adjacent pixels is proposed to reveal the texture difference between various 

lesion types. 

In GLCM, an image can be quantized to be G with a reduced number of intensity 205 

bins, Ng (Ng=64 in the experiment). A new image G having less image values can be 

obtained with a reduced number of intensity bins. Lower levels than 64 had relatively 

poor performance in the experiment while more levels induced extra computation. 
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Considering the efficiency and enough details of levels, 64 quantization levels were 

used. Afterward, the Ng × Ng co-occurrence matrices P=[p(i,j|d,θ)] were generated from 210 

G by scanning each image pixel and its neighboring pixels. The element P=[p(i,j|d,θ)] 

indicates the frequencies of two neighboring pixel values separated by distance d and 

the direction angle θ; one has a gray value i and the other has a gray value j. Fig. 2 

shows the two parameters d=1 and θ=0°, 45°, 90°, or 135° used in the GLCM method 

for the relationship among neighboring pixels in the experiment. Four co-occurrence 215 

matrices with different angles were considered to extract GLCM features. 

Eight GLCM texture features were calculated based on the following formulas: 
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Haralick’s 
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distributions of p(i,j|d,θ) 
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Because 4 different directions were used in GLCM texture extraction, the mean and SD 220 

metrics were the statistics of the 4 directions. Consequently, the mean and SD of the 

above features were used to present lesion characteristics such as brightness, relative 

contrast, and heterogeneity for lesion classification. 

 

Statistical analysis 225 

 For lesion classification, all the proposed features were combined in a multinomial 

logistic regression classifier (Hosmer et al. 2000) to establish a prediction model. 

Stepwise backward elimination was used to explore the most relevant combination of 

the subset features. When the least error rate was achieved, the corresponding subset 

features were selected for the prediction model. Leave-one-out cross-validation 230 

(Hosmer et al. 2000) was then used to evaluate the generalization ability of the 

established model. In each iteration, one case was picked from K collected cases and 
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was used to test the trained model by the remaining K-1 cases. 

Taking the diagnosis determined by agreement of a shoulder orthopedic surgeon 

and one physical medicine and rehabilitation physician as the gold standard, the 235 

classification performance of the prediction model was obtained by probabilities. For 

each case, the likelihood of inflammation, calcific tendinitis, and tears was generated 

and expressed as probabilities. The highest probability value determined the lesion type 

of the case in the prediction model. The accuracy was obtained by summarizing the 

cases that were correctly classified. The test methods used in the experiment were 240 

analyzed by SPSS software (version 16 for Windows; SPSS, Chicago, IL, USA). 

The measurement of observer reliability was performed to examine the agreement 

of lesion types between the proposed CAD system and two interpreters. As a statistical 

measure, Cohen’s Kappa (Landis and Koch 1977), which ranges from -1.0 to 1.0, where 

large numbers indicate better reliability, was used to determine the implementation of 245 

CAD in the experiment. The agreement was considered slight if the k value was 0.20; 

fair if k was between 0.21 to 0.40; moderate if k was between 0.41 to 0.60; substantial 

if k was between 0.61 to 0.80; and almost perfect if k was between 0.81 to 1.00. 

 

Results 250 

After feature selection, the relevant texture features were selected and combined 
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in the classifier to generate a prediction model. Stepwise backward elimination was 

used to explore the most relevant combination of the subset features. When the least 

error rate was achieved, the corresponding subset features were selected for the 

prediction model. The selected features included Lesion Area, Local Homogeneity (SD),255 

 Cluster Shade (mean), Cluster Prominence (mean), Cluster Prominence (SD), 

and Haralick’s Correlation (mean). The performance of the model is listed as Table 1 

and the detailed numbers of correctly classified and misclassified cases are listed Table 

2. The CAD system achieved an overall accuracy of 87.9%. The individual accuracy of 

this CAD system was 88.4% for inflammation, 83.3% for calcific tendinitis, and 92.3% 260 

for the tear groups. Fig. 3(a) and 3(b) demonstrate a difficult case from the tear group 

that was correctly classified by the proposed CAD system. 

    With respect to the measurement of observer reliability between the proposed 

CAD system and the agreement of two interpreters, the resulting k value of Cohen’s 

Kappa was 0.798, which is substantial and statistically significant (p<0.001). 265 

According to the classification result, the selected GLCM texture features 

describing the statistics of gray-scale distribution of lesion regions reflected the US 

image appearance and the underlying physical meaning. Such as that Homogeneity is 

formulated to express whether the echogenicities of tissue were similar which can be 

referred to that supraspinatus tendinitis are heteroechoic and loss of homogeneous 270 
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texture. Heteroechoic texture represents inflammation and loss of normal strucual 

property of supraspinatus. Cluster shade and cluster prominence are measures of the 

lack of symmetry in gray-scale distributions which indicate that calcific tendinitis come 

in foci of hyperechoic calcification. Lesion area was a selected feature indicating that 

calcific tendinitis was tend to be smaller than the other two types because micro-275 

calcifications are common form of calcific tendinitis. Lesion area would be a useful 

feature while being combined with other texture features in the classification of 

inflammation and tear group. 

 

Discussion 280 

A CAD system based on lesion area and statistical textures was established to 

interpret tissue echogenicities using shoulder musculoskeletal ultrasound. For 

distinguishing lesion types, a prediction model built by a logistic regression classifier 

was generated and evaluated. The performance achieved an overall accuracy of 87.9% 

to classify rotator cuff inflammation, calcific tendinitis and tears. The individual 285 

accuracy of the inflammation and tear groups was relatively higher (88.4% and 92.3%, 

respectively) and that of the calcific tendinitis group was relatively lower (83.3%). 

Additionally, Cohen’s Kappa, acquired from the analysis of observer reliability between 

the CAD system and the surgeon, was 0.798, which is a substantial and statistically 
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significant result (p<0.001). A previous study (Horng and Chen 2009) used only a 290 

portion of the lesion tissue (fixed 30×60 pixels) for tissue characterization to obtain an 

accuracy of 92.5%. The reported study used numerous features for classification 

including the fractal dimension, the texture spectrum, the statistical feature matrix, the 

texture feature coding method, and the gray-level co-occurrence matrix. While more 

features may result in better performance, the efficiency should be considered for 295 

clinical use. Based on the accuracies reported in the previous study and this study, 

texture features are useful in classifying rotator cuff lesions. Nevertheless, extracting 

quantitative features from the whole lesion area as proposed in this study is expected to 

be more reliable than the extraction from partial area in the previous study. In the 

observation of tissue composition, heterogeneity is commonly presented. Using an 300 

arbitrary region of the lesion to extract lesion features would be too subjective and 

operator dependent. The variability between different lesions and observers is 

considerable. 

The accuracy of the proposed CAD in the calcific tendinitis group was relatively 

low (83.3%) and Fig. 3(c) and 3(d) show a misclassified case of calcific tendinitis and 305 

its delineated lesion area. Clinically, calcific tendinitis is found as hyperechoic spots or 

masses in ultrasound. It is believed that ultrasound has a high diagnostic accuracy for 

calcific tendinitis, although few studies focused on the diagnostic accuracy of calcific 
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tendinitis (Martin-Hervas et al. 2001; Kayser et al. 2005). Nevertheless, the CAD 

system did not perform comparably to a general radiologist as expected. A possible 310 

reason may be the heterogeneity of tissue composing calcific tendinitis. Different 

ultrasound settings during image acquisition results in the brightness variability which 

could affect the texture values. The effect would be stronger for heterogeneous tissue. 

In future experiments, intensity-invariant texture features can be developed to reduce 

the effect caused by brightness variability. However, if the sonographic characteristics 315 

of a lesion can’t be described by the selected features, it could not be correctly classified. 

This would be one of the limitations of both ultrasound imaging and the proposed CAD 

system. Another limitation is that the lesion contours used in the CAD were manually 

delineated. A future study will be investigated to automatically detect supraspinatus 

lesion area. Meanwhile, more experiments will be undertaken in the future to explore 320 

the clinical application of the proposed CAD, such as improvements in different 

observers’ interpretations with CAD. 

Summarily, the CAD system achieved high accuracy (92.3%) in the tear group 

including partial or full-thickness tears (Fig. 4(a), 4(b)) by means of the analysis of 

tissue enclosed in the lesion contour. The performance achieved by quantitative 325 

echogenicity texture analysis can provide a clinical suggestion for general radiologists 

or ultrasonographers who may not achieve an accuracy as high as a shoulder orthopedic 
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surgeon (Smith et al. 2011).  

 

Conclusion 330 

The CAD system based on the statistical textures and lesion area extracted from 

the shoulder ultrasound images achieved good accuracy in classifying rotator cuff 

inflammation, calcific tendinitis and tears. The diagnostic suggestions generated by the 

proposed CAD would be practical and promising for clinical use. 
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Figure Captions 

Fig. 1 Various lesions in the supraspinatus tendon shown in long-axis ultrasound images. 480 

(a) A case of tendon inflammation. (b) A case of calcific tendinitis. (c) A case of 

supraspinatus tear (lesion contours are delineated with yellow lines using 

ImageJ). (d), (e), (f) The lesion contours of (a), (b), and (c), respectively, which 

were delineated by a shoulder orthopedic surgeon using ImageJ. 

Fig. 2. The pixel pairs of four directions from the centered pixel (o). Pixel 1 to 4 are 485 

the neighboring pixels in the direction of 0°, 45°, 90°, and 135° with d=1, 

respectively. 

Fig. 3 A case of partial-thickness supraspinatus tear correctly classified by the proposed 

CAD system. (a) The partial-thickness supraspinatus tear with unobvious 

characteristics in long-axis ultrasound image (hypoechoic area near the tendon 490 

insertion indicated by a white arrow). (b) The delineated lesion area of tear for 

CAD analysis. A case of calcific tendintis which was incorrectly classified to 

inflammation group by the proposed CAD system. (c) Multiple 

microcalcifications (white arrow) (d) The delineated lesion of calcific tendinitis 

for CAD analysis. 495 

Fig. 4 An example showing the difference between a full-thickness and a partial-

thickness supraspinatus tear. (a) A full-thickness supraspinatus tear shows the 
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hypoechoic area, which extends from the bursal to the articular surface. (b) A 

case of partial-thickness tear shows the focal hypoechoic area (white arrow), 

which affects only a part of the tendon thickness. 500 

 

Tables 

Table 1 The accuracy of the proposed CAD in classifying rotator cuff lesions. 

Group Pathology Accuracy 

I Inflammation 88.4% 

II Calcific tendinitis 83.3% 

III Tears 92.3% 

Overall  87.9% 

 

Table 2 The detailed classification results of the proposed CAD in classifying rotator 505 

cuff lesions. 

Gold standard / CAD Inflammation Calcific tendinitis   Tears    Overall 

Inflammation    38       2             3       43 

Calcific tendinitis 3      25             2       30 

Tears 1     1            24       26 

 


