
 

 

Quantitative Breast Lesion Classification Based on Multichannel 

Distributions in Shear-wave Imaging 

 

 
 



 

 

Abstract 

Background and Objectives: A computer-aided diagnosis (CAD) system based on the 

quantified color distributions in shear-wave elastography (SWE) was developed to 

evaluate the malignancies of breast tumors.  

Methods: For 57 benign and 31 malignant tumors, 18 SWE features were extracted 

from regions of interest (ROI), including the tumor and peritumoral areas. In the ROI, 

a histogram in each color channel was described using moments such as the mean, 

variance, skewness, and kurtosis. Moreover, three color channels were combined as a 

vector to evaluate tissue elasticity. The SWE features were then combined in a logistic 

regression classifier for breast tumor classification. 

Results: The performance of the CAD system achieved an accuracy of 81%. 

Combining the CAD system with a BI-RADS assessment obtained an Az improvement 

from 0.77 to 0.89 (p-value<0.05). 

Conclusions: The combination of the proposed CAD system based on SWE features 

and the BI-RADS assessment would provide a promising diagnostic suggestion. 

  

Keywords: Breast cancer, shear-wave elastography, computer-aided diagnosis, 

histogram moment, vector quantification
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1. Introduction 

Breast lesion characteristics identified with B-mode ultrasound (US) are 

interpreted to distinguish between benign and malignant lesions in a clinical 

examination [1]. The description criteria and categories are defined in the Breast 

Imaging Reporting and Data System (BI-RADS) lexicon, which was developed by the 

American College of Radiology [2]. These descriptors, which are quantified in various 

computer-aided diagnosis (CAD) systems [3-10] to evaluate tumor malignancy, can be 

classified as morphology and texture characteristics. Recently, elasticity assessment 

was added as an associated feature of breast US in the fifth edition of BI-RADS [2]. 

Breast cancers such as scirrhous carcinoma and invasive cancers tend to be stiffer than 

many benign tumors [11, 12]. On clinical examination, elastography as an imaging 

modality provides additional elasticity information by a cine loop or a single image [13, 

14]. Tissue elasticity information can be estimated based on the tissue displacements 

under a manual or automatic force [15]. According to the elasticity modulus, tissue 

elasticity is mapped to pixel values in the color elastographic images for display. 

Shear-wave elastography (SWE) is an emerging technique that automatically 

emits the radiation force to estimate elasticity with less operator dependence than 

conventional elastography, which is based on manual compression [15]. Additionally, 
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an observer can evaluate tissue stiffness via only one SWE image rather than a complete 

image cine loop as in conventional elastography. The SWE image provides tissue 

elasticity as the velocity of shear waves propagating in tissue and displays the 

corresponding kilopascals (kPas) on a color map. Using the elasticity information in the 

map, radiologists can re-evaluate the malignancies of tumors to reduce unnecessary 

biopsies [16-18]. However, the qualitative assessment of SWE images through visual 

observation is user dependent. To provide an objective evaluation, a quantitative 

analysis for interpreting elastography images would be helpful. Additionally, manually 

calculating the kPa value of each pixel is time consuming because the number of pixels 

in a region of interest (ROI) is usually greater than ten thousand (ex: 100×100). In this 

study, an automated method was proposed to analyze the color patterns in SWE images 

using individual colors or a combination of color channels. The quantified elasticity 

information was then used in a CAD system for breast tumor classification. Finally, the 

performance of a combined CAD system and BI-RADS assessment was evaluated. 

Using the quantified elasticity features, tumor malignancy could be better evaluated in 

a more efficient way for clinical use. 

 

2. Materials and Methods 

2.1 Patients and data acquisition 



 

3 

 

Our institution review board approved this study, and informed consent was 

obtained from all patients. From November 2012 to December 2013, 81 patients had 

undergone elastography examinations. Three of them had two tumors, and two had 

three tumors. By core needle biopsy or fine-needle aspiration cytology, the 88 biopsy-

proven cases were classified into 57 benign and 31 malignant tumors. Patients with 

benign tumors ranged in age from 26 to 77 years (mean=50±11). The pathology types 

were 25 fibrocystic changes, 22 fibroadenomas, and 10 papillomas. The measured sizes 

were 1.42±1.20 cm. For malignant tumors, patients ranged in age from 30 to 76 years 

(mean=54±13). They exhibited 27 invasive ductal carcinomas (IDC), 1 invasive lobular 

carcinoma (ILC), and 3 ductal carcinoma in situ (DCIS), with measured sizes of 

1.51±0.76 cm. Radiologists who were blinded to the pathology report classified the 

tumors into BI-RADS assessment categories by B-mode findings. There were 2 (2%) 

tumors in BI-RADS 2 (benign), 17 (19%) in BI-RADS 3 (probably benign), 52 (59%) 

in BI-RADS 4 (suspicious abnormality), and 17 (19%) in BI-RADS 5 (highly 

suggestive of malignancy). 

Both B-mode and elastography images were acquired using the Aixplorer 

ultrasound system (SuperSonic Image, Les Jardins de la Duranne, Aix en Provence, 

France) with a 5-14 MHz linear broadband transducer (SL15-4). During acquisition, 

the B-mode image was displayed first to show the anatomical information surrounding 
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the target tumor. A ROI was centered on the target tumor and included tissues around 

the peritumoral areas to generate an SWE image. The elasticity information is described 

using Young’s modulus, defined as E = σ / ε where ε is the deformation of the tissue 

under the applied compression σ. For all cases, the default maximum kPa was 180 (7.7 

m/sec) in the color display, which is mapped from the value of the elasticity modulus. 

 

2.2 SWE features 

The acquired SWE images were color maps that conveyed elasticity information 

about the tissues. In this study, we proposed extracting a series of quantitative SWE 

features from the color maps to evaluate tumor elasticity automatically. SWE features 

included histogram distributions in individual and multiple color channels of the color 

map. Spatial correlation was also considered to generate more accurate elasticity 

features. 

 

2.2.1 Single-channel features 

Fig. 1 (a) and (b) show shear-wave elastographic images for benign and malignant 

breast tumors. The elasticities of various tissues are shown in different colors. Tissues 

inside or around the benign tumor in Fig. 1 (a) are soft and are shown in colors in the 

blue range. By separating the colors in the image into red (R), green (G), and blue (B) 
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channels, the value distributions of different channels are distinct. As shown in the 

histograms in Fig. 1 (a), the R and G histograms are left-biased, and the B histogram is 

center-weighted. In contrast, tissues around the malignant tumor in Fig. 1 (b) are shown 

in various colors, with more well-distributed histograms in the R, G, and B channels. 

Consequently, we can compare the differences between histograms to reveal the color 

composition, which is the key characteristic to distinguish between benign and 

malignant tumors in elastography. 

By regarding the color distribution in an SWE image as a probability distribution, 

the color image histogram can be characterized by its moments [19]. Moments [20, 21] 

are specific quantitative measures of the shape. In the experiment, the 24-bit depth color 

was decomposed into 8-bit R, G, and B channels. The first-, second-, third-, and fourth-

order central moments of the histograms in each channel were calculated to indicate the 

histogram shape (i.e., mean, variance, skewness, and kurtosis). 

Mean𝑐 =
1

𝑁
∑ 𝑃𝑐𝑖
𝑁
𝑖=1     (1) 

Variance𝑐 =
1

𝑁
∑ (𝑃𝑐𝑖 −𝑀𝑒𝑎𝑛𝑐)

2𝑁
𝑖=1    (2) 

Skewness𝑐 =
1

𝑁
∑ (𝑃𝑐𝑖 −𝑀𝑒𝑎𝑛𝑐)

3𝑁
𝑖=1    (3) 

Kurtosis𝑐 =
1

𝑁
∑ (𝑃𝑐𝑖 −𝑀𝑒𝑎𝑛𝑐)

4𝑁
𝑖=1     (4) 

where c is the color channel of R, G or B. Pi is the pixel value. Mean is the center 

location of a distribution calculated by adding up all pixel values and dividing the sum 
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by the number of pixels. Variance is a measure of spread about the mean. Skewness 

indicates whether the histogram is a symmetric distribution or skewed to one side (left 

or right side). Kurtosis is a single-peaked histogram with heavy weight in the tails 

relative to the normal distribution.  

 A total of 12 single-channel features, including four moments of each of three 

channels, were calculated: Rmean, Gmean, Bmean, Rvar, Gvar, Bvar, Rskew, Gskew, 

Bskew, Rkur, Gkur, and Bkur. 

  

2.2.2 Multi-channel features 

The elasticity levels are shown in different colors in an SWE image. From soft to 

hard, the colors are continuously encoded from blue to red. The middle color transitions 

include blue to green, green to yellow, and yellow to red. To emphasize the existence 

of hard tissues, such as those indicated by yellow and red, vector quantization [22, 23] 

was used to reduce the continuous color levels into these four relevant colors for 

elasticity presentation. The R, G, and B channels of a pixel were joined as a color vector. 

Based on the vector distances between a color and the four main colors, the image pixels 

were classified into four clusters. Euclidean distance was used as the similarity metric 

in the quantization using the following formula: 

( ) ( ) ( )222

iBBiGGiRRPMi MPMPMPED −+−+−=    (5) 
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where EDPMi is the vector difference between a pixel color P and one of the main colors 

Mi={blue, green, yellow, red} in the R, G, and B channels. Each pixel is reassigned a 

new color according to the nearest color. Fig. 2 shows the quantized color maps of Fig. 

1. The numbers of the four-color clusters were divided by the total number of pixels to 

estimate their ratios in an image: Bdensity, Gdensity, Ydensity, and Rdensity. A 

weighted ColorAvg was also calculated by taking the original kPa value into 

consideration. The definition is: 

NumNumNumNum
NumNumNumNum RYGB

RYGBColorAvg
+++

+++= 1441087236

                (6) 

where Num is the number of each color after vector quantization. 

 In addition to the color information, spatial correlation was observed to have an 

influence on elasticity estimation. In some cases, the areas close to the skin were 

displayed in stiffness colors relative to the peritumoral areas, as shown in Fig. 3 (a). 

 This phenomenon can be regarded as noise because the areas were far from the 

target tumor. Spatial correlation was thus combined with the kPa-weighted color 

information to correct for the possible influence automatically. As shown in Fig. 3 (b), 

the spatial weights from the ROI middle to the border are defined as an intensity 

decreasing function. This feature is defined as following: 
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( ) ( ) ( )( )

( ) ( )( )



−+−−+

−+−−+

=

P

ji

P

jiij
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HMidPWMidPWMidHMidkPaP

SpatialAvg   (7) 

where Pij(kPa) is the kPa value of a pixel with i and j as the coordinates; HMid and 

WMid are the half values of the ROI height and width, respectively; Pi is the coordinate 

value of a pixel in horizontal; and Pj is the coordinate value of a pixel in vertical. 

 

2.3 Performance evaluation 

The proposed SWE features were evaluated to determine whether they were 

statistically significant in distinguishing between benign and malignant tumors. The 

Kolmogorov-Smirnov test [24] was first used to determine if the value distribution of a 

feature was normal. Normal-distributed features were tested by Student’s t-test [24], 

and non-normal features were tested by the Mann-Whitney U test [24]. A p-value of 

less than 0.05 indicates statistical significance. 

Tumor classification was based on the combination of the SWE features. Based on 

the biopsy-proven pathology, relevant subsets of features were selected in a binary 

logistic regression model [25]. During backward elimination, features with the lowest 

error rate were picked in the trained classifier. For the generalization ability, the leave-

one-out cross-validation method [26] was used for evaluation. Each time, one case was 

left out of all N cases and used to test the trained result with the remaining N-1 cases. 
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Using the logistic regression formula with the selected features, the probability of 

the malignancy being a cancer was generated. Different probability thresholds may 

result in different combinations of sensitivity and specificity. Az, the area under the 

receiver operating characteristic (ROC) curve, was used to show the overall trade-offs 

between sensitivity and specificity. Performance differences were compared by chi-

square test in SPSS software (version 16 for Windows; SPSS, Chicago, IL, USA). 

In addition to classifying all cases directly, the possible combination of the CAD 

system and BI-RADS assessment was also explored in the experiment. Because the 

elasticity information is only one of many tumor characteristics, elastography features 

should be combined with B-mode features to obtain more reliable diagnostic results 

from clinical examinations. The commonly used BI-RADS assessment categories are 

BI-RADS 3 (probably benign, ≦2%), BI-RADS 4 (suspicious abnormality, <95%), and 

BI-RADS 5 (highly suggestive of malignancy). In other words, the malignancies of 

tumors in the BI-RADS categories under 5 may need further evaluation with more 

findings. Therefore, the proposed CAD system was combined with the BI-RADS 

assessment in the experiment to show the complementary advantages. 

 

3. Results 
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The differential ability of each SWE feature to distinguish between benign and 

malignant lesions was tested and is shown in Table 1. p-value<0.05 is the threshold to 

determine whether the result is statistically significant. These features were combined 

in a binary logistic regression model for diagnosis. A tumor with a predicted probability 

>0.5 was regarded as malignant in the results. The diagnostic performance in different 

BI-RADS assessment categories was evaluated, as shown in Table 2. In the 

classification, the CAD system performed poorly in classifying BI-RADS 5 cases but 

achieved accuracies of 100%, 94%, and 83% for BI-RADS 2, 3, and 4 cases, 

respectively. Because the BI-RADS 5 cases were highly suggested to be malignant, the 

CAD system was combined with the BI-RADS assessment by classifying the BI-RADS 

5 cases as malignancies. As shown in Table 3, the performance of the CAD system 

improved, with accuracy rising from 81% to 88% (Az=0.77 vs. 0.89, p-value<0.05). 

The Az difference can be observed in Fig. 4. 

 

4. Discussion 

The American College of Radiology suggests elasticity assessment as a tool to 

evaluate breast tumor malignancy in the fifth edition of BI-RADS, released in 2013 [2]. 

The suggestion indicates that elastography provides additional diagnostic information 

over conventional B-mode imaging. On clinical examination, a newly developed SWE 



 

11 

 

emits the radiation force to obtain more reproducible results than conventional manual 

compression. Based on SWE, we extracted various quantitative features in this study to 

provide a more objective and efficient elasticity evaluation. Twelve features were tested 

for statistical significance in distinguishing between benign and malignant breast 

lesions (Table 1). In particular, SpatialAvg, which combined spatial and color 

information, was better than using color information alone (ColorAvg). The use of 

SpatialAvg would be helpful in reducing the effect of artifacts in the ROI border. Fig. 

1 is a simple example showing that extracting features from the R, G, and B channels 

to distinguish between benign and malignant tumors is practical. In the experiment, 

using the mean and standard deviation of the pixel values from the R, G, and B channels 

resulted in an accuracy of 68%, which is lower than the performance achieved by the 

18 SWE features (81%). Therefore, it is necessary to use all 18 proposed SWE features. 

In addition to the original RGB color space, HSV was also applied in the 

experiment to provide performance comparisons with different color spaces [27]. The 

Az achieved by HSV was 0.70, which was lower than the 0.77 achieved by RGB. 

Combining both color spaces simultaneously resulted in no better performance 

(Az=0.77). The corresponding ROC curves are illustrated in Fig. 5. HSV is useful in 

distinguishing between different colors in natural images. However, in the color 

elastographic images, pixels having similar saturation and brightness values are only 
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different in hue. Therefore, the analysis of RGB may already provide sufficient 

information. Additionally, using the original RGB values without further color space 

transformation is efficient. 

The performance of the CAD system based on the proposed SWE features 

achieved an accuracy of 81% with a sensitivity of 61% and a specificity of 91%. The 

high specificity shows that the elasticity information may be helpful in avoiding 

unnecessary biopsies. To evaluate the clinical use of the CAD system, the performances 

of the CAD system on different BI-RADS assessment categories are listed in Table 2. 

Although tissue elasticity is useful in diagnosis, it is only one of numerous 

characteristics of malignant tumors. BI-RADS 5 tumors have B-mode findings such as 

taller-than-wide, irregular shape, spiculation, and hypoechogenicity [1], which could 

not definitely indicate hard tissues in the tumor area. Therefore, the assessments from 

elastography and B-mode imaging may not be consistent in the same cases. However, 

BI-RADS 5 cases are regarded as highly suggestive of malignancy. It is reasonable to 

keep the B-mode results for BI-RADS 5 cases and combine the classification results of 

other cases from the CAD system (Table 3). The combined sensitivity improved from 

61% to 81%, and the combined Az improved from 0.77 to 0.89 (p-value=0.0048). The 

results are consistent with the studies [16, 17, 28, 29] conducted by human observation 

showing that tumor elasticity provides additional diagnostic information over B-mode 
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imaging.  

The only manual step to generate the proposed SWE features is defining an ROI, 

which is also a necessary step to generate the elasticity color map in the Aixplorer 

ultrasound system. Previous CAD systems using SWE features [30] achieved Az=0.97, 

which is higher than Az=0.77 in this study. The combinations of BI-RADS assessments 

achieved Az=0.973 and Az=0.89, respectively. The performance difference may depend 

on the types of lesions in individual databases. For the image database used in this study, 

the result suggested to use SWE features for BI-RADS cases with uncertain malignancy 

to improve the Az from 0.77 to 0.89 (p-value<0.05). The advantages of the proposed 

method are convenience and efficiency. Users may want to use the proposed method if 

they do not have sophisticated skills for determining whether the segmented contour is 

good or bad. This method also provides another tool for users who are unsatisfied with 

the segmentation results in previous studies [30] because they already have their 

preferences for contour description. Using user-defined ROI to specify tumor area is a 

necessary step to generate an SWE image. Consequently, we believe that the proposed 

method based on ROIs is appropriate for all types of users and has the least operator 

dependence. 

A limitation of this study is how to appropriately select the tumor ROI. To the best 

of our knowledge, there is no published paper indicating the best way to define the ROI. 
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Prior studies only suggested including peritumoral areas in addition to the tumor itself 

[31] or using an adaptive ROI size for different tumors [18]. In this experiment, we 

compared the performances of SWE features extracted from the whole ROI (81%) and 

the ROI center (72%), which was one-fourth the size of the whole ROI. The results 

showed that defining the ROI by extending the half size of the tumor from the tumor 

boundary provides more diagnostic information than using only the tumor itself, which 

may not provide sufficiently robust results. In future experiments exploring this issue, 

we will perform tumor segmentation to delineate the tumor contour and explore the 

effects of different sizes of ROIs derived from the tumor contour for a more complete 

evaluation. 

A possible improvement of the CAD system could be quality inspection. As 

mentioned previously, artifacts may be induced by overcompression on the probe. An 

artifact is shown as stiffness color in the skin area, i.e., the boundary of a ROI. CAD 

can detect an artifact automatically and trigger a quality alarm or ignore the inaccurate 

information. Another future study will integrate the quantitative features in B-mode 

imaging into the CAD system. A totally automated diagnostic procedure, including the 

information from SWE and B-mode images, would be an efficient tool in clinical use. 

 

5. Conclusions 
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A CAD system based on the quantitative SWE features was developed in this study 

to distinguish malignant from benign breast tumors. Combining the CAD system with 

a BI-RADS assessment achieved an improved Az=0.89 (p-value<0.05) which would 

provide promising diagnostics in clinical use. 
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Figure Captions 

Fig. 1. Shear-wave elastographic images of two tumors and their corresponding red, 

green, and blue channels; (a) a benign tumor; (b) a malignant tumor. 

Fig. 2. Quantized color maps comprising four color clusters; (a) quantized Fig. 1 (a); 

(b) quantized Fig. 1 (b). 

Fig. 3. An illustration of how to combine color and spatial information; (a) the artifact 

in the skin area is displayed in stiffness colors; (b) the spatial weights from the 

ROI middle to the border are defined as an intensity decreasing function. 

Fig. 4. The ROC curves of the CAD system based on SWE features and the CAD system 

combined with the BI-RADS assessment. 

Fig. 5. The ROC curves of the CAD systems based on SWE features extracted from 

HSV and RGB color spaces. 
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Table 1. The mean, standard deviation (SD), median, and p-value (Student’s t-test or 

Mann-Whitney U-test) of SWE features in ROIs. 

Features  Benign Malignant  p-value 

Mean±SD Median Mean±SD Median 

Rmean 0.15±0.03  0.16±0.07  0.68 

Gmean 0.20±0.06  0.25±0.10  0.02* 

Bmean 0.58±0.06  0.56±0.07  0.15 

Rvar  0.009  0.010 0.03* 

Gvar 0.02±0.01  0.03±0.01  <0.001* 

Bvar  0.01  0.02 0.03* 

Rskew 1.65±0.96  1.98±1.06  0.13 

Gskew 1.30±0.71  1.02±0.69  0.07 

Bskew -0.01±0.48  -0.46±0.61  <0.001* 

Rkur  7.09  10.05 0.38 

Gkur  4.40  3.82 0.03* 

Bkur  3.10  3.68 0.35 

Bdensity  0.99  0.94 <0.001* 

Gdensity  0.0008  0.0320 <0.001* 

Ydensity  0.0003  0.0061 <0.001* 

Rdensity  0.000  0.004 <0.001* 

ColorAvg  36.11  38.91 <0.001* 

SpatialAvg  36.06  38.77 <0.001* 

*p-value<0.05 indicates a statistically significant difference. 
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Table 2. The performance of the proposed CAD system on different BI-RADS category 

cases 

 

  

Case Category Accuracy Sensitivity Specificity PPV NPV 

BI-RADS 2 100% (2/2) N/A 100% (2/2) N/A 100% (2/2) 

BI-RADS 3 94% (16/17) 100% (2/2) 93% (14/15)) 67% (2/3) 100% (14/14) 

BI-RADS 4 83% (43/52) 54% (7/13) 92% (36/39) 70% (7/10) 86% (36/42) 

BI-RADS 5 59% (10/17) 63% (10/16) 0% (0/1) 91% (10/11) 0% (0/6) 
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Table 3. The performances of different combinations of BI-RADS category cases and 

classifiers 

*p-value<0.05 indicates a statistically significant difference. 

 

 

Classifier Accuracy Sensitivity Specificity PPV NPV Az 

Radiologist 

(BI-RADS 5) 

94% 

(16/17) 

100% 

(16/16) 

0% (0/1) 94% 

(16/17) 

N/A N/A 

CAD 

(BI-RADS 2,3,4,5) 

81% 

(71/88) 

61% 

(19/31) 

91% 

(52/57) 

79% 

(19/24) 

81% 

(52/64) 

0.77 

CAD 

(BI-RADS 2,3,4) 

+ 

Radiologist 

( BI-RADS 5) 

88% 

(77/88) 

81% 

(25/31) 

91% 

(52/57) 

83% 

(25/30) 

90% 

(52/58) 

0.89 

p-value 0.2163 0.0932 1.0000 0.6953 0.1911 0.0048* 


