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Abstract 42 

Radiologists likely incorrectly classify benign masses into Breast Imaging Reporting 43 

and Data System (BI-RADS) category 3. A computer-aided diagnosis (CAD) system 44 

was developed in this study as a second viewer to avoid misclassifying carcinomas. 45 

69 biopsy-proven BI-RADS category 3 cases including 21 malignant and 48 benign 46 

masses were used to evaluate the CAD system. To improve the texture features, the 47 

gray-scale variations between images were reduced by transforming pixels into 48 

intensity-invariant ranklet coefficients. The textures of the tumor and speckle pixels 49 

were extracted from the transformed ranklet images to provide more robust features 50 

than conventional CAD systems. In the result, tumor texture and speckle texture with 51 

ranklet transformation achieved significantly better areas under the receiver operating 52 

characteristic curve (Az) compared with those without it (Az=0.83 vs. 0.58 and 53 

Az=0.80 vs. 0.56, p-value<0.05). The improved CAD system can be a second reader 54 

to confirm the classification of BI-RADS category 3 masses.55 



 

 

Keywords: Breast cancer; ultrasound; BI-RADS; computer-aided diagnosis; ranklet  56 



 

1 

 

Introduction 57 

Breast ultrasound (US) has been used in cancer detection to distinguish between 58 

benign and malignant lesions (Stavros et al. 1995; Kelly et al. 2010; Weigel et al. 59 

2013). US examination has been shown to detect additional breast cancers compared 60 

with conventional mammography (Weigel et al. 2013). The sonographic appearance 61 

of lesions is interpreted by radiologists for clinical diagnosis. The American College 62 

of Radiology (ACR) developed the Breast Imaging Reporting and Data System 63 

(BI-RADS) lexicon (Mendelson et al. 2013) to standardize the sonographic 64 

descriptors. The descriptors were then quantified in various computer-aided diagnosis 65 

(CAD) systems to automatically evaluate the likelihood of malignant tumors (Drukker 66 

et al. 2005; Kim et al. 2005; Moon et al. 2012a; Moon et al. 2012b). The quantitative 67 

features extracted from the US B-mode images included the tumor shape, texture, and 68 

speckle texture features (Moon et al. 2012a; Moon et al. 2012b). The tumor texture 69 

was extracted from the delineated tumor area, whereas the speckle texture correlated 70 

with detected speckle pixels inside and surrounding the tumor area. With the 71 

assistance of CAD systems, clinicians have demonstrated improved performance in 72 

diagnosing different masses (Kashikura et al. 2013). In the study by Kashikura et al., 73 

the performance indices of the area under the receiver operating characteristic (ROC) 74 
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curve significantly improved for seven observers (Kashikura et al. 2013). 75 

The ACR also suggested BI-RADS assessment categories for tumor 76 

classification and management strategies when US examination is used. Lesions 77 

labeled as BI-RADS category 2 (benign) will not be biopsied, and those labeled as 78 

BI-RADS category 4 (suspicious abnormality) will definitely be biopsied. Between 2 79 

and 4, BI-RADS category 3 (probably benign) lesions are in a clinical gray zone. 80 

Follow up is recommended instead of core needle biopsy due to the low likelihood of 81 

malignancy (less than 2%) (Sickles 1994; Berg 2004; Leung and Sickles 2007). This 82 

management strategy was supported in the results of previous studies (Graf et al. 2007; 83 

Berg et al. 2008; Kim et al. 2012; Gruber et al. 2013). Tumors with circumscribed 84 

margins and parallel orientations are considered to likely be benign. However, 85 

radiologists should evaluate tumors with more objective suggestions to avoid 86 

misclassifying carcinomas into BI-RADS category 3 (Lazarus et al. 2006; Lee et al. 87 

2008). Acting as a second reader, the CAD system (Moon et al. 2013a) distinguished 88 

more malignant lesions from benign lesions among category 3 cases. However, the 89 

performance of the texture features was not as good as that of the shape features in the 90 

CAD system. The texture analysis of ultrasound patterns was system-dependent 91 

(Chang et al. 2005). CAD systems based on texture analysis may only perform well in 92 

one specific ultrasound system. Different US system settings and different US 93 
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scanners may result in different performances in texture analysis (Tsui et al. 2010). 94 

With the development of image processing, previous studies (Masotti et al. 2009; 95 

Yang et al. 2013) have extracted invariant texture features from the ranklet 96 

transformed region of interest (ROI) for tumor detection and diagnosis. The ranklet 97 

transform based on the multi-resolution and orientation-selective analysis was 98 

invariant to linear/nonlinear grayscale variations (Masotti et al. 2009). Masotti et al. 99 

used the gray-scale invariant texture features to detect breast tumors in mammography 100 

for false positive reduction (Masotti et al. 2009). Yang et al. extracted the texture 101 

features from US images to classify breast tumors (Yang et al. 2013). However, the 102 

texture features were extracted from ROIs which may not accurately contribute tumor 103 

information in the methods of Masotti et al. and Yang et al.. The current work 104 

proposes extracting intensity-invariant texture features from automatically delineated 105 

tumor area to obtain more specific tumor characteristics. Compared to Yang et al., the 106 

US database used in the current work is BI-RADS category 3 breast masses. 107 

Classifying BI-RADS category 3 cases having less than 2% malignancy assessed by 108 

the radiologists is more challenging to CAD systems. The performance result would 109 

be closer to the real clinical examination using CAD systems as second readers. 110 

 111 

Materials and Methods 112 



 

4 

 

Fig. 1 shows the flowchart of the proposed CAD system. First, tumor contour 113 

segmentation is performed by the CAD system to separate the specific tumor area 114 

from the background tissues in the US image. According to the delineated tumor 115 

contour, the area enclosed by the tumor contour was defined as the tumor area and the 116 

extended area within a distance of 5 pixels to the tumor contour was the area for 117 

speckle detection. The ranklet-transformed images were then submitted to the 118 

procedure after tumor area segmentation to provide the transformed pixel values of 119 

the defined tumor area and speckle area for intensity-invariant texture extraction. 120 

Based on the biopsy-proven pathology, the diagnostic performances of the two 121 

ranklet-transformed texture sets were calculated using binary logistic regression. 122 

 123 

Patients and data acquisition 124 

Approval was obtained from the institutional review board of Seoul National 125 

University Hospital, and informed consent was waived for this retrospective study. 126 

The breast US data were collected using an ATL HDI 3000 scanner (Philips, Bothell, 127 

WA) or a Medison Voluson 530 scanner (Kretz Technik, Zipf, Austria) during a 128 

2-year period. One hundred consecutive tumors were acquired before needle biopsy. 129 

Initially, the cases were assessed as 32 BI-RADS category 3, 56 category 4, and 12 130 

category 5 masses. Five radiologists performed blinded retrospective interpretation to 131 
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assess the BI-RADS category for each tumor. Sixty-nine masses including 21 132 

malignant and 48 benign masses were assigned to BI-RADS category 3 by at least one 133 

of the five radiologists in the experiment. Twenty-one malignant lesions were 134 

classified as histological grade 2 (6 cases) or grade 3 (15 cases) invasive ductal 135 

carcinomas (IDC). The size ranged from 1.2-4.7 cm (mean=2.7 cm). The benign 136 

lesions were composed of 34 fibroadenomas (FA), 13 fibrocystic changes (FCC), and 137 

1 papilloma. The size ranged 1.4-4.3 cm (mean=2.6 cm). The patients’ ages ranged 138 

from 20-84 years (mean=43 years). Patients with malignant lesions had age range of 139 

28-84 years (mean=47.2 years). For benign cases, the patients’ ages ranged from 140 

20-53 years (mean=39.9 years). The age difference between the benign and malignant 141 

groups was statistically significant (p-value=0.001). Fifteen lesions were palpable and 142 

54 lesions were nonpalpable. The illustrations in Fig. 2 (a) show the cropped tumors 143 

with surrounding fat and the posterior area from the acquired US images. The figures 144 

shown in Fig. 2 (a) from left to right are a FA, an IDC acquired by ATL, a FCC, and 145 

an IDC obtained by Medison. Whether the image cases were acquired from either 146 

ATL or Medison, the brightness and contrast of the acquired US images were various. 147 

 148 

Tumor segmentation  149 

First, the tumor area was delineated for quantitative feature extraction. To reduce 150 
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operator dependence, the level-set segmentation method (Moon et al. 2013a) was used 151 

to automatically delineate the tumor contour in the original US images. Using the 152 

grayscale gradient as the criterion in the differential equation, the level-set function 153 

developed the user-defined seeds into a complex shape with changing topology to 154 

obtain the tumor contour. To address the tumors with weak edges, a sigmoid filter 155 

(Suri 2008) was used to enhance the image contrast and to make the tumor boundary 156 

more distinct. A gradient magnitude filter (Deriche 1990) was then applied to generate 157 

a gradient image that showed the magnitude in the horizontal and vertical directions. 158 

Using the level-set function on the gradient image accomplished the segmentation 159 

procedure. 160 

The level-set function ψ(x, t), which is a high-dimension function, uses the initial 161 

contour (t) as the zero level set Γ(x, t) = {ψ(x, t) = 0} where x is a point in N. Based 162 

on the partial differential equation, the level-set function ψ(x, t=0) evolved from the 163 

initial contour (t=0) is defined as 164 

distx == )0,(        (1) 165 

The distance between the point x and (t=0) is defined as dis with a sign to indicate 166 

the position. A positive or negative sign means that the point is outside or inside the 167 

initial contour, respectively. Then, the partial differential equation is defined by the 168 

given values of ψ(x, t=0) and F, which provides the propagation speed from the initial 169 
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contour to the outer region. The equation is  170 

0=+  F        (2) 171 

Fig. 2 (b) shows the tumor contours of Fig. 2(a) automatically delineated by the 172 

level-set segmentation. 173 

 174 

Speckle detection 175 

After acquiring the tumor area via tumor segmentation, the speckle pixels 176 

around the tumor area were detected to extract speckle features. The speckle patterns 177 

in the B-mode images were analyzed regarding their tissue characteristics for breast 178 

tumor classification (Moon et al. 2012a; Moon et al. 2012b). The inherent speckle 179 

pattern in US images is generated by microstructures that cause scattering, which are 180 

contained in tissues such as the breast parenchyma including ducts and glands. 181 

Scattered US pulses result in granular appearances in the interference pattern with 182 

small grayscale differences in the B-mode images. For fully developed speckle, the 183 

intensity image has an exponential distribution with a mean-to-standard deviation (SD) 184 

ratio of 1.0. To extract the speckle pixels, the 0-255 pixel values in the US images 185 

were log decompressed to the raw intensity value defined as 186 

( )
( )

0
,

10y x,
ByxB

=       (3) 187 

where B(x,y) is the acquired B-mode grayscale value and B0 is a linearization factor 188 



 

8 

 

related to the transducer frequency (Berg et al. 2008) that converts B(x,y) to a linear 189 

scale. A moving 5×5 window was then used to detect the speckle pixels with a 190 

mean-to-SD distribution of 0.8-1.2 as the tolerance range in the raw intensity image. 191 

The criterion is defined as following: 192 
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where a=2 was used for the window size. Speckle pixels satisfying WmSD=0.8-1.2 195 

within a distance of 5 to the tumor boundary were gathered as the speckle map for 196 

texture analysis in the experiment. Fig. 2 (c) shows the speckle pixels detected around 197 

the tumors in Fig. 2 (a) for speckle texture calculation. 198 

 199 

Texture features 200 

Texture analysis has been widely used for pattern recognition in digital images 201 

(Gonzalez 2008). In US images, the texture information is based on the echo pattern 202 

presented by the grayscale echogenicity. Previous studies (Moon et al. 2012b; Lo et al. 203 

2014) have suggested extracting texture features inside or surrounding the tumor area 204 

for tissue characterization. The quantitative texture features used in CAD systems can 205 
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be classified into tumor textures and speckle textures. Both texture feature sets 206 

provide useful information in distinguishing between benign and malignant breast 207 

lesions. However, the gray-scale variations between US images from different system 208 

settings and scanners may affect the performances of texture features. In this study, 209 

we propose to extract texture features from the ranklet-transformed US images to 210 

obtain intensity-invariant tumor textures and speckle textures. The target areas for 211 

texture extraction are the previously defined tumor area and speckle area. 212 

 213 

Ranklet transform 214 

The ranklet transform was used in grayscale medical images for 215 

intensity-invariant texture extraction (Masotti and Campanini 2008; Yang et al. 2013). 216 

In US B-mode images, analyzing the grayscale tissue echogenicity in the tumor region 217 

and speckle pixels (Moon et al. 2012a; Moon et al. 2012b) has been demonstrated to 218 

be useful in breast tumor classification. In clinical use, US images were not always 219 

acquired using the same scanner settings and scanner models. Fig. 3 shows the effects 220 

of different grayscale distributions on the shape and texture features. Regardless of the 221 

case that was selected from ATL (Fig. 3(a)) or Medison (Fig. 3(b)), the segmentation 222 

results on the original, contrast enhanced, gamma corrected, and histogram equalized 223 

images (Gonzalez 2008) were similar. The SDs of four NRL entropy values were 0.03 224 
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and 0.02 for the ATL and Medison cases, respectively. However, the texture value of 225 

the cluster shade highly depended on the grayscale distribution results in the SD 226 

(36.33 and 45.46 for the ATL and Medison cases, respectively). 227 

In this study, to reduce the effect of intensity variation, the ranklet transform 228 

(Masotti and Campanini 2008) was applied to the US images to achieve 229 

intensity-invariant texture features. Calculating the relative rank of the pixel values 230 

rather than original grayscale pixel values is the key methodology of the ranklet 231 

transform. The use of multi-resolution and orientation-selective transformations 232 

achieves the analysis of different scales and angles. Using a resolution value of R, a 233 

number of overlapping crops with R×R are extracted by shifting an R×R crop window. 234 

The resolutions of 2, 4, and 8 for an 8×8 image generate 49, 25, and 1 crops, 235 

respectively. For each resolution, the image is separated into two subsets, X and Y, 236 

according to the selected orientations. The divisions are based on the Haar functions 237 

used in the wavelet transform (Mallat 1989) and shown in Fig. 4 for the vertical, 238 

horizontal, and diagonal orientations. For each resolution and orientation, the number 239 

of pixel pairs (PH, PL) in each crop is calculated when the relative rank of pixels of PH 240 

in the subset X is higher than that of PL in the other subset Y. If there are C pixels in a 241 

crop, C/2×C/2=C2/4 comparisons are needed. The resulting number, which originally 242 

ranges from 0 to C2/4, can be normalized to be between -1 and 1. The derived ranklet 243 
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transform coefficient RO is formulated as following: 244 

DHVO
C

o
Yp

CCp

o
R ,,,1

8

2

)1
2

(
4

)(

=−

  +−

=



  (6) 245 

In the subset YO, the pixel ranks π(p) are summed. While more pixels in YO have 246 

higher grayscale values than those in XO, the RO is close to 1. Otherwise, it is close to 247 

-1. The ranklet coefficient for a crop is close to 0 if there is no global value variation. 248 

After performing the ranklet transform, the pixel values are replaced by the ranklet 249 

coefficient to express the regularity correlation in the area. Specifically, the ranklet 250 

images are texture patterns extracted from different scales and angles. Fig. 5 shows 251 

the ranklet images of the cases in Fig. 3. Using a resolution value of 4 as an example, 252 

the original US images with different grayscale distributions have very similar ranklet 253 

images regardless of the orientation (vertical, horizontal, or diagonal). The SDs of the 254 

cluster shades in R4D were 2.78 and 4.59 for the ATL (Fig. 5(a)) and Medison (Fig. 255 

5(b)) cases, respectively. In the experiment, five image resolutions (2, 4, 8, 16, and 32) 256 

and three orientations (vertical, horizontal, and diagonal) were used. The minimum 257 

resolution was 2 to extract least local information. The maximum resolution was 32 258 

because not all tumors had sizes more than 32 pixels. Each resolution scale was the 259 

double of the prior scale to generate new contrast information. For each tumor case, 260 

the texture calculation was performed 15 times in the ranklet images for the different 261 
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combinations of resolution and orientation and normalized using the grayscale values 262 

of 0-255. 263 

 264 

GLCM texture 265 

The defined tumor and speckle areas are the clusters of similar biological 266 

structures. The texture information inside the tumor and speckle areas can be 267 

extracted by analyzing the correlations between pixel values. The gray-level 268 

co-occurrence matrix (GLCM) (Haralick et al. 1973) is the second-order statistic 269 

describing the joint frequencies of pair-wise combinations. Co-occurrence matrices 270 

(P=[p(i,j|d,θ)]) are constructed by scanning each pixel and the adjacent pixels. The 271 

matrix element P=[p(i,j|d,θ)] describes the frequencies of two adjacent pixels at a 272 

distance of d and a direction θ, one with gray-scale i and the other with gray-scale j. In 273 

the experiment, the distance for the occurrence of two pixels at a distance d=1 and 274 

four offset directions, θ=0°, 45°, 90°, 135°, was used. For rotation invariance, the 275 

results from different directions were summed and averaged to be an element in the 276 

matrix (Haralick et al. 1973). The direction average and SD of eight GLCM metrics 277 

defined below were quantified as the texture features. 278 

 279 

Energy = ( )
i j

djip
2

,,   (7) 
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Entropy = 
( ) ( )( )−

i j
djipdjip  ,,log,,  (8) 

Correlation = 
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Haralick’s Correlation = 
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i j
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where μx, μy, σx and σy are mean and SD of the marginal distributions of p(i,j|d,θ). 280 
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Fig. 2 (b) and (c) show the tumor and speckle areas from which the GLCM texture 281 

were extracted, respectively. The tumor texture and speckle texture were GLCM 282 

features extracted from five scales and three orientations of the tumor and speckle 283 

areas after ranklet transformation, respectively. Both feature sets had 240 texture 284 

features. To evaluate the effectiveness of ranklet transform, the performances of the 285 

two feature sets were compared to those from the original US images in the 286 

experiment. 287 

 288 
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Statistical analysis 289 

The quantitative features were evaluated if they were significant in 290 

distinguishing between benign and malignant lesions. Kolmogorov-Smirnov test 291 

(Field 2009) was used to determine whether the value distribution of a feature is 292 

normal distribution or not. Features with normal distribution were evaluated using 293 

Student’s t-test (Field 2009). Otherwise, the Mann-Whitney U test (Field 2009) was 294 

used. The resulting p-values less than 0.05 were interpreted as statistically significant. 295 

Significant features of tumor texture and speckle texture were combined to be feature 296 

sets, respectively. In the classifier of binary logistic regression (Hosmer 2000), 297 

stepwise backward elimination evaluated the features in a feature set. While the least 298 

error rate was obtained, the corresponding features were selected to be the most 299 

relevant. After feature selection, leave-one-out cross-validation was used to evaluate 300 

the generalization ability. Each time, one individual case was separated from the total 301 

cases and was used to test the result trained by the remaining cases. 302 

After classification, five performance indices including accuracy, sensitivity, 303 

specificity, positive predictive value (PPV), and negative predictive value (NPV) were 304 

calculated according to the biopsy-proven pathology. The performance differences 305 

between two feature sets were evaluated using chi-square test. The trade-offs between 306 

sensitivity and specificity were analyzed using ROC curve. Az, area under the ROC 307 
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curve, was compared using the z-test in ROCKIT software (C. Metz, University of 308 

Chicago, Chicago, IL, USA). Other test methods were performed using SPSS 309 

software (version 16 for Windows; SPSS, Chicago, IL, USA). 310 

 311 

Results 312 

Using the Kolmogorov-Smirnov test, 186 tumor textures and 181 speckle 313 

textures were normally distributed. The number of significant features for the tumor 314 

texture and speckle texture were 46 and 35, respectively. Ten features of tumor texture 315 

with ranklet transformation were selected in the classifier. They were Cluster 316 

Prominence ave. (R16D), Energy std. (R32H), Entropy ave. (R32H), Correlation std. 317 

(R32H), Inverse Difference Moment ave. (R32H), Inverse Difference Moment std. 318 

(R32H), Cluster Prominence ave. (R32H), Cluster Prominence std. (R32H), Haralick 319 

Correlation ave. (R32H), and Haralick Correlation std. (R32H). The 11 selected 320 

speckle features with ranklet transform were Cluster Prominence std. (R16H), Haralick 321 

Correlation std. (R16H), Energy ave. (R32H), Entropy ave. (R32H), Correlation ave. 322 

(R32H), Correlation std. (R32H), Inverse Difference Moment ave. (R32H), Inertia std. 323 

(R32H), Cluster Shade std. (R32H), Cluster Prominence std. (R32H), and Haralick 324 

Correlation ave. (R32H). Most selected features were from R32H, the resolution of 32 325 

with the horizontal orientation. The common features were Entropy ave. (R32H), 326 
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Correlation std. (R32H), Cluster Prominence std. (R32H), and Haralick Correlation ave. 327 

(R32H). 328 

The performances of the selected texture features with ranklet transformation 329 

were compared to those of the original texture features in Table 1. Regardless of the 330 

location the texture features were extracted from (tumor area or speckle pixels), the 331 

original intensity-based textures performed poorly in diagnosis. Only sixty percent of 332 

the cases were correctly classified by the texture features. In contrast, the texture 333 

features extracted from images after ranklet transformation performed better than 334 

those from the original B-mode images. For the tumor texture, the features with 335 

ranklet transformation achieved an accuracy of 80% (55/69) and a sensitivity of 76% 336 

(16/21), which are significantly better than an accuracy of 58% (40/69) and a 337 

sensitivity of 38% (8/21) for the original texture features. The specificities were not 338 

significantly different. The accuracy and sensitivity of the speckle texture with 339 

ranklet transformation are also significantly better than the original speckle texture 340 

(83% (57/69) vs. 62% (43/69) and 71% (15/21) vs. 33% (7/21), respectively). 341 

Similarly, the differences in specificity and NPV were not significant. With respect to 342 

the trade-offs between sensitivity and specificity, the Az differences between the 343 

texture sets with and without ranklet transformation were significant (p-value=0.0009 344 

and 0.02, respectively). The corresponding ROC curves are shown in Fig. 6. 345 
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Assessment of combined performance showed that the use of two feature sets 346 

together resulted in essentially equal performance. 347 

 348 

Discussion 349 

Various CAD systems have been developed to distinguish between malignant 350 

and benign tumors using US images (Drukker et al. 2005; Kim et al. 2005; Moon et al. 351 

2013b). Acting as a second viewer, a CAD system that can confirm the classification 352 

of malignant tumors initially classified as BI-RADS category 3 by radiologists is 353 

important. To provide more objective suggestions, a CAD system reviewed the 354 

quantitative characteristics of BI-RADS category 3 masses to avoid misclassifying 355 

carcinomas in a previous study (Moon et al. 2013a). The elliptical-shaped features 356 

performed well in the CAD system to confirm malignant tumors. However, the 357 

performance of the texture features was not as good as that of the shape features. One 358 

possible reason for this result is that the texture features are easily affected by the 359 

grayscale distribution. 360 

In this study, we proposed using ranklet transformation (Masotti and Campanini 361 

2008) to extract robust texture features independent of the intensity variation. Using 362 

ranklet transformations with multiple resolutions and orientations, the original 363 

B-mode US images were converted to ranklet images that represented the regularity 364 
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correlation in the area. As shown in Fig. 3 and 5, the SDs of the cluster shades in the 365 

four different US images were reduced from 36.33 and 45.46 to 2.78 and 4.59 for the 366 

ATL and Medison cases, respectively. This result indicates that extracting texture 367 

features from ranklet images is intensity-invariant. Based on the effectiveness of this 368 

technique, the performances of tumor textures and speckle textures extracted from 369 

ranklet images were analyzed to confirm the classification of malignant tumors 370 

initially classified as BI-RADS category 3. The diagnostic result showed that texture 371 

features with ranklet transformation are significantly better than those of features 372 

without it. The Az values improved from 0.56-0.58 to 0.80-0.83. The texture features 373 

extracted from the ranklet images were demonstrated to be intensity-invariant and to 374 

provide diagnostic information in classifying tumors examined using different US 375 

equipment (ATL and Medison). Compared with other existing CAD systems (Kim et 376 

al. 2005; Moon et al. 2012b), our database composed of different scanner settings and 377 

models is more reliable. Additionally, the effectiveness of extracting 378 

intensity-invariant speckle texture after ranklet transform indicates that the method 379 

can be applied to discrete pixels. Detecting and analyzing speckle features for tumor 380 

diagnosis can be performed in an ROI (Moon et al. 2012a; Moon et al. 2012b) which 381 

is simpler than tumor segmentation. More time can be saved by using speckle texture 382 

than tumor texture. 383 
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The success is in agreement with a previous study using ranklet transformation 384 

in breast tumor classification (Yang et al. 2013). The Az of the tumor texture was 385 

0.90-0.94, which is higher than the value of 0.83 obtained in this study. Nevertheless, 386 

the BI-RADS category 3 breast masses used in this study had less than 2% 387 

malignancy as assessed by radiologists and were more challenging to assess using 388 

CAD systems. Additionally, the Az improvement from 0.58 to 0.83 in this study is 389 

higher than that from 0.81 to 0.90 in the literature. The superior Az improvement 390 

achieved here demonstrates that the ranklet transformation is a promising tool in 391 

developing superior CAD systems. 392 

According to the selected features in the classifier, most selected features were 393 

from R32H, the resolution of 32 with the horizontal orientation. The result indicates 394 

that these features had more relevant diagnostic information than others. A possible 395 

reason is that the contrast difference in large-scale resolution is clearer than 396 

small-scale in the ranklet transform and provides more contrast information for 397 

texture analysis. This may also be explained by the typical shape of breast tumors, 398 

which tend to be ellipsoid with their longest axis horizontal. 399 

A limitation of this study is that the number of specimens in the experiment is 400 

only 69. More BI-RADS category 3 breast masses collected from different scanner 401 

models using different settings should be included in future studies to evaluate the 402 
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ability to generalize the proposed CAD system. Another limitation is the significant 403 

difference in the ages between the benign and malignant tumors. Age can be a 404 

feature to estimate the likelihood of tumors being carcinomas. To investigate the 405 

usefulness of the proposed texture features, the comparisons between benign and 406 

malignant cases should be performed for similar age cases to reduce the effect of 407 

age. Nevertheless, the proposed texture features also describe the composition of 408 

echo patterns in tumors such as homogeneity and heterogeneity which may not 409 

completely correlate with age. Collecting the cases with similar ages to explore 410 

the correlation between textures and ages would be an interesting future study. 411 

However, acquiring hundreds of benign and malignant cases with same ages 412 

would need many years. 413 

To improve the CAD performance, a novel method of feature selection may be 414 

helpful. The ranklet transform used multiple resolutions and orientations to generate 415 

hundreds of texture features. Determining the most relevant subset of these features is 416 

an interesting topic. Using the least features to achieve the best performance would 417 

improve the efficiency. Combining relevant features with complementary diagnostic 418 

information is the key aspect of this methodology. 419 
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Figure Captions 523 

Fig. 1. The flowchart of the proposed CAD system 524 

Fig. 2. Examples of acquired US images and the corresponding contours and speckle 525 

pixels. (a) A fibroadenoma, an invasive ductal carcinoma from the ATL 526 

scanner, a fibrocystic change, and an invasive ductal carcinoma from the 527 

Medison scanner (b) The corresponding segmentation results (c) The 528 

corresponding detected speckle pixels. 529 

Fig. 3. Quantification results of the US images obtained from the ATL and Medison 530 

scanners. (a) The segmentation results and feature values of different grayscale 531 

distributions of an US image from ATL. (b) The segmentation results and 532 

feature values of different grayscale distributions of a US image from 533 

Medison. 534 

Fig. 4. An image is separated into two subsets according to the vertical, horizontal, 535 

and diagonal orientations for ranklet transformation. 536 

Fig. 5. Ranklet images and feature values of the US images obtained from the ATL 537 

and Medison scanners. (a) The ranklet images (resolution=4) with three 538 

orientations and feature values in different grayscale distributions of a US 539 

image from ATL. (b) The ranklet images (resolution=4) with three orientations 540 

and feature values in different grayscale distributions of a US image from 541 
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Medison. 542 

Fig. 6. The receiver operating characteristic (ROC) curves of the original tumor 543 

texture, tumor texture with ranklet transformation, original speckle texture, 544 

and speckle texture with ranklet transformation.  545 
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Table 1. The performance differences of tumor texture and speckle texture with and 546 

without ranklet transformation using the chi-square test. 547 

 Tumor 

Texture 

Tumor 

Texture 

(Ranklet) 

Tumor 

Texture 

vs. 

Tumor 

Texture 

(Ranklet) 

Speckle 

Texture 

Speckle 

Texture 

(Ranklet) 

Speckle 

Texture 

vs. 

Speckle 

Texture 

(Ranklet) 

 

Accuracy  58% 

(40/69) 

80% 

(55/69) 

0.0058* 62% 

(43/69) 

83% 

(57/69) 

0.0076* 

Sensitivity  38% 

(8/21) 

76% 

(16/21) 

0.0126* 33% 

(7/21) 

71% 

(15/21) 

0.0134* 

Specificity  67% 

(32/48) 

81% 

(39/48) 

0.1035 75% 

(36/48) 

88% 

(42/48) 

0.1167 

PPV 33% 

(8/24) 

64% 

(16/25) 

0.0318* 37% 

(7/19) 

71% 

(15/21) 

0.0281* 

NPV 71% 

(32/45) 

89% 

(39/44) 

0.0396* 72% 

(36/50) 

88% 

(42/48) 

0.0570 

Az 0.58 0.83 0.0009* 0.56 0.80 0.02* 

* p-value<0.05 indicates a statistically significant difference. 548 
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